File size: 4,588 Bytes
6f034a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import asyncio
import logging
from io import BytesIO

from fastapi import HTTPException, UploadFile, status, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from nltk.tokenize import sent_tokenize

from .inferencer import classify_text
from .preprocess import parse_docx, parse_pdf, parse_txt

security = HTTPBearer()

# Verify Bearer token from Authorization header
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    token = credentials.credentials
    expected_token = os.getenv("MY_SECRET_TOKEN")
    if token != expected_token:
        raise HTTPException(
            status_code=status.HTTP_403_FORBIDDEN,
            detail="Invalid or expired token"
        )
    return token

# Classify plain text input
async def handle_text_analysis(text: str):
    text = text.strip()
    if not text or len(text.split()) < 10:
        raise HTTPException(status_code=400, detail="Text must contain at least 10 words")
    if len(text) > 10000:
        raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")

    label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, text)
    return {
        "result": label,
        "perplexity": round(perplexity, 2),
        "ai_likelihood": ai_likelihood
    }

# Extract text from uploaded files (.docx, .pdf, .txt)
async def extract_file_contents(file: UploadFile) -> str:
    content = await file.read()
    file_stream = BytesIO(content)

    if file.content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
        return parse_docx(file_stream)
    elif file.content_type == "application/pdf":
        return parse_pdf(file_stream)
    elif file.content_type == "text/plain":
        return parse_txt(file_stream)
    else:
        raise HTTPException(
            status_code=415,
            detail="Invalid file type. Only .docx, .pdf, and .txt are allowed."
        )

# Classify text from uploaded file
async def handle_file_upload(file: UploadFile):
    try:
        file_contents = await extract_file_contents(file)
        if len(file_contents) > 10000:
            return {"message": "File contains more than 10,000 characters."}

        cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
        if not cleaned_text:
            raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.")
      
        label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, cleaned_text)
        return {
            "content": file_contents,
            "result": label,
            "perplexity": round(perplexity, 2),
            "ai_likelihood": ai_likelihood
        }
    except Exception as e:
        logging.error(f"Error processing file: {e}")
        raise HTTPException(status_code=500, detail="Error processing the file")

# Analyze each sentence in plain text input
async def handle_sentence_level_analysis(text: str):
    text = text.strip()
    if text[-1] != ".":
        text+="."
    if len(text) > 10000:
        raise HTTPException(status_code=413, detail="Text must be less than 10,000 characters")
     
    sentences = sent_tokenize(text, language="english")
    results = []
    for sentence in sentences:
        if not sentence.strip():
            continue
        label, perplexity, ai_likelihood = await asyncio.to_thread(classify_text, sentence)
        results.append({
            "sentence": sentence,
            "label": label,
            "perplexity": round(perplexity, 2),
            "ai_likelihood": ai_likelihood
        })
    return {"analysis": results}

# Analyze each sentence from uploaded file
async def handle_file_sentence(file: UploadFile):
    try:
        file_contents = await extract_file_contents(file)
        if len(file_contents) > 10000:
            return {"message": "File contains more than 10,000 characters."}

        cleaned_text = file_contents.replace("\n", " ").replace("\t", " ").strip()
        if not cleaned_text:
            raise HTTPException(status_code=404, detail="The file is empty or only contains whitespace.")

        result = await handle_sentence_level_analysis(cleaned_text)
        return {
            "content": file_contents,
            **result
        }
    except Exception as e:
        logging.error(f"Error processing file: {e}")
        raise HTTPException(status_code=500, detail="Error processing the file")

# Optional synchronous helper function
def classify(text: str):
    return classify_text(text)