Spaces:
Running
Running
File size: 10,209 Bytes
ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 ab2a904 6f034a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
# π FastAPI AI Text Detector
A production-ready FastAPI application for **AI-generated vs. human-written text detection** in both **English** and **Nepali**. Models are auto-managed and endpoints are secured via Bearer token authentication.
---
## ποΈ Project Structure
```
βββ app.py # Main FastAPI app entrypoint
βββ config.py # Configuration loader (.env, settings)
βββ features/
β βββ text_classifier/ # English (GPT-2) classifier
β β βββ controller.py
β β βββ inferencer.py
β β βββ model_loader.py
β β βββ preprocess.py
β β βββ routes.py
β βββ nepali_text_classifier/ # Nepali (sentencepiece) classifier
β βββ controller.py
β βββ inferencer.py
β βββ model_loader.py
β βββ preprocess.py
β βββ routes.py
βββ np_text_model/ # Nepali model artifacts (auto-downloaded)
β βββ classifier/
β β βββ sentencepiece.bpe.model
β βββ model_95_acc.pth
βββ models/ # English GPT-2 model/tokenizer (auto-downloaded)
β βββ merges.txt
β βββ tokenizer.json
β βββ model_weights.pth
βββ Dockerfile # Container build config
βββ Procfile # Deployment entrypoint (for PaaS)
βββ requirements.txt # Python dependencies
βββ README.md # This file
βββ .env # Secret token(s), environment config
```
---
### π Key Files and Their Roles
- **`app.py`**: Entry point initializing FastAPI app and routes.
- **`Procfile`**: Tells Railway (or similar platforms) how to run the program.
- **`requirements.txt`**: Tracks all Python dependencies for the project.
- **`__init__.py`**: Package initializer for the root module and submodules.
- **`features/text_classifier/`**
- **`controller.py`**: Handles logic between routes and the model.
- **`inferencer.py`**: Runs inference and returns predictions as well as file system
utilities.
- **`features/NP/`**
- **`controller.py`**: Handles logic between routes and the model.
- **`inferencer.py`**: Runs inference and returns predictions as well as file system
utilities.
- **`model_loader.py`**: Loads the ML model and tokenizer.
- **`preprocess.py`**: Prepares input text for the model.
- **`routes.py`**: Defines API routes for text classification.
---
## βοΈ Setup & Installation
1. **Clone the repository**
```bash
git clone https://github.com/cyberalertnepal/aiapi
cd aiapi
```
2. **Install dependencies**
```bash
pip install -r requirements.txt
```
3. **Configure secrets**
- Create a `.env` file at the project root:
```env
SECRET_TOKEN=your_secret_token_here
```
- **All endpoints require `Authorization: Bearer <SECRET_TOKEN>`**
---
## π¦ Running the API Server
```bash
uvicorn app:app --host 0.0.0.0 --port 8000
```
---
## π Security: Bearer Token Auth
All endpoints require authentication via Bearer token:
- Set `SECRET_TOKEN` in `.env`
- Add header: `Authorization: Bearer <SECRET_TOKEN>`
Unauthorized requests receive `403 Forbidden`.
---
## π§© API Endpoints
### English (GPT-2) - `/text/`
| Endpoint | Method | Description |
| --------------------------------- | ------ | ----------------------------------------- |
| `/text/analyse` | POST | Classify raw English text |
| `/text/analyse-sentences` | POST | Sentence-by-sentence breakdown |
| `/text/analyse-sentance-file` | POST | Upload file, per-sentence breakdown |
| `/text/upload` | POST | Upload file for overall classification |
| `/text/health` | GET | Health check |
#### Example: Classify English text
```bash
curl -X POST http://localhost:8000/text/analyse \
-H "Authorization: Bearer <SECRET_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"text": "This is a sample text for analysis."}'
```
**Response:**
```json
{
"result": "AI-generated",
"perplexity": 55.67,
"ai_likelihood": 66.6
}
```
#### Example: File upload
```bash
curl -X POST http://localhost:8000/text/upload \
-H "Authorization: Bearer <SECRET_TOKEN>" \
-F 'file=@yourfile.txt;type=text/plain'
```
---
### Nepali (SentencePiece) - `/NP/`
| Endpoint | Method | Description |
| --------------------------------- | ------ | ----------------------------------------- |
| `/NP/analyse` | POST | Classify Nepali text |
| `/NP/analyse-sentences` | POST | Sentence-by-sentence breakdown |
| `/NP/upload` | POST | Upload Nepali PDF for classification |
| `/NP/file-sentences-analyse` | POST | PDF upload, per-sentence breakdown |
| `/NP/health` | GET | Health check |
#### Example: Nepali text classification
```bash
curl -X POST http://localhost:8000/NP/analyse \
-H "Authorization: Bearer <SECRET_TOKEN>" \
-H "Content-Type: application/json" \
-d '{"text": "ΰ€―ΰ₯ ΰ€ΰ€¦ΰ€Ύΰ€Ήΰ€°ΰ€£ ΰ€΅ΰ€Ύΰ€ΰ₯ΰ€― ΰ€Ήΰ₯ΰ₯€"}'
```
**Response:**
```json
{
"label": "Human",
"confidence": 98.6
}
```
#### Example: Nepali PDF upload
```bash
curl -X POST http://localhost:8000/NP/upload \
-H "Authorization: Bearer <SECRET_TOKEN>" \
-F 'file=@NepaliText.pdf;type=application/pdf'
```
---
## π API Docs
- **Swagger UI:** [http://localhost:8000/docs](http://localhost:8000/docs)
- **ReDoc:** [http://localhost:8000/redoc](http://localhost:8000/redoc)
---
## π§ͺ Example: Integration with NestJS
You can easily call this API from a NestJS microservice.
**.env**
```env
FASTAPI_BASE_URL=http://localhost:8000
SECRET_TOKEN=your_secret_token_here
```
**fastapi.service.ts**
```typescript
import { Injectable } from "@nestjs/common";
import { HttpService } from "@nestjs/axios";
import { ConfigService } from "@nestjs/config";
import { firstValueFrom } from "rxjs";
@Injectable()
export class FastAPIService {
constructor(
private http: HttpService,
private config: ConfigService,
) {}
async analyzeText(text: string) {
const url = `${this.config.get("FASTAPI_BASE_URL")}/text/analyse`;
const token = this.config.get("SECRET_TOKEN");
const response = await firstValueFrom(
this.http.post(
url,
{ text },
{
headers: {
Authorization: `Bearer ${token}`,
},
},
),
);
return response.data;
}
}
```
**app.module.ts**
```typescript
import { Module } from "@nestjs/common";
import { ConfigModule } from "@nestjs/config";
import { HttpModule } from "@nestjs/axios";
import { AppController } from "./app.controller";
import { FastAPIService } from "./fastapi.service";
@Module({
imports: [ConfigModule.forRoot(), HttpModule],
controllers: [AppController],
providers: [FastAPIService],
})
export class AppModule {}
```
**app.controller.ts**
```typescript
import { Body, Controller, Post, Get } from '@nestjs/common';
import { FastAPIService } from './fastapi.service';
@Controller()
export class AppController {
constructor(private readonly fastapiService: FastAPIService) {}
@Post('analyze-text')
async callFastAPI(@Body('text') text: string) {
return this.fastapiService.analyzeText(text);
}
@Get()
getHello(): string {
return 'NestJS is connected to FastAPI';
}
}
```
---
## π§ Main Functions in Text Classifier (`features/text_classifier/` and `features/text_classifier/`)
- **`load_model()`**
Loads the GPT-2 model and tokenizer from the specified directory paths.
- **`lifespan()`**
Manages the application lifecycle. Initializes the model at startup and handles cleanup on shutdown.
- **`classify_text_sync()`**
Synchronously tokenizes input text and predicts using the GPT-2 model. Returns classification and perplexity.
- **`classify_text()`**
Asynchronously runs `classify_text_sync()` in a thread pool for non-blocking text classification.
- **`analyze_text()`**
**POST** endpoint: Accepts text input, classifies it using `classify_text()`, and returns the result with perplexity.
- **`health()`**
**GET** endpoint: Simple health check for API liveness.
- **`parse_docx()`, `parse_pdf()`, `parse_txt()`**
Utilities to extract and convert `.docx`, `.pdf`, and `.txt` file contents to plain text.
- **`warmup()`**
Downloads the model repository and initializes the model/tokenizer using `load_model()`.
- **`download_model_repo()`**
Downloads the model files from the designated `MODEL` folder.
- **`get_model_tokenizer()`**
Checks if the model already exists; if not, downloads itβotherwise, loads the cached model.
- **`handle_file_upload()`**
Handles file uploads from the `/upload` route. Extracts text, classifies, and returns results.
- **`extract_file_contents()`**
Extracts and returns plain text from uploaded files (PDF, DOCX, TXT).
- **`handle_file_sentence()`**
Processes file uploads by analyzing each sentence (under 10,000 chars) before classification.
- **`handle_sentence_level_analysis()`**
Checks/strips each sentence, then computes AI/human likelihood for each.
- **`analyze_sentences()`**
Splits paragraphs into sentences, classifies each, and returns all results.
- **`analyze_sentence_file()`**
Like `handle_file_sentence()`βanalyzes sentences in uploaded files.
---
## π Deployment
- **Local**: Use `uvicorn` as above.
- **Railway/Heroku**: Use the provided `Procfile`.
- **Hugging Face Spaces**: Use the `Dockerfile` for container deployment.
---
## π‘ Tips
- **Model files auto-download at first start** if not found.
- **Keep `requirements.txt` up-to-date** after adding dependencies.
- **All endpoints require the correct `Authorization` header**.
- **For security**: Avoid committing `.env` to public repos.
---
|