import os from smolagents import CodeAgent, ToolCallingAgent from smolagents import OpenAIServerModel from tools.fetch import fetch_webpage from tools.yttranscript import get_youtube_transcript, get_youtube_title_description import myprompts from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # --- Basic Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized.") def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") try: # Use the reviewer agent to determine if the question can be answered by a model or requires code print("Calling reviewer agent...") reviewer_answer = reviewer_agent.run(myprompts.review_prompt + "\nThe question is:\n" + question) print(f"Reviewer agent answer: {reviewer_answer}") question = question + '\n' + myprompts.output_format fixed_answer = "" if reviewer_answer == "code": fixed_answer = gaia_agent.run(question) print(f"Code agent answer: {fixed_answer}") elif reviewer_answer == "model": # If the reviewer agent suggests using the model, we can proceed with the model agent print("Using model agent to answer the question.") fixed_answer = model_agent.run(myprompts.model_prompt + "\nThe question is:\n" + question) print(f"Model agent answer: {fixed_answer}") return fixed_answer except Exception as e: error = f"An error occurred while processing the question: {e}" print(error) return error # model = OpenAIServerModel( # model_id="gpt-4.1-nano", # api_base="https://api.openai.com/v1", # api_key=os.environ["OPENAI_API_KEY"], # ) MODEL_NAME = "meta-llama/Llama-3.2-3B" # 3B isn't released by Meta officially, but use 8B or a 3B variant like TinyLlama if needed tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model_init = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto", torch_dtype=torch.float16 # or bfloat16 ) def model(prompt: str, max_new_tokens=512): input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens) output = tokenizer.decode(output_ids[0], skip_special_tokens=True) return output reviewer_agent= ToolCallingAgent(model=model, tools=[]) model_agent = ToolCallingAgent(model=model,tools=[fetch_webpage]) gaia_agent = CodeAgent(tools=[fetch_webpage,get_youtube_title_description,get_youtube_transcript ], model=model) if __name__ == "__main__": # Example usage question = "What was the actual enrollment of the Malko competition in 2023?" agent = BasicAgent() answer = agent(question) print(f"Answer: {answer}")