bwilkie's picture
Update myagent.py
d9f0f18 verified
raw
history blame
6.14 kB
import os
from smolagents import CodeAgent, ToolCallingAgent
from smolagents import OpenAIServerModel
from tools.fetch import fetch_webpage
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
import myprompts
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
t torch
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
# Use the reviewer agent to determine if the question can be answered by a model or requires code
print("Calling reviewer agent...")
reviewer_answer = reviewer_agent.run(myprompts.review_prompt + "\nThe question is:\n" + question)
print(f"Reviewer agent answer: {reviewer_answer}")
question = question + '\n' + myprompts.output_format
fixed_answer = ""
if reviewer_answer == "code":
fixed_answer = gaia_agent.run(question)
print(f"Code agent answer: {fixed_answer}")
elif reviewer_answer == "model":
# If the reviewer agent suggests using the model, we can proceed with the model agent
print("Using model agent to answer the question.")
fixed_answer = model_agent.run(myprompts.model_prompt + "\nThe question is:\n" + question)
print(f"Model agent answer: {fixed_answer}")
return fixed_answer
except Exception as e:
error = f"An error occurred while processing the question: {e}"
print(error)
return error
# Load model and tokenizer
model_id = "LiquidAI/LFM2-1.2B"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16, # Fixed: was string, should be torch dtype
trust_remote_code=True,
# attn_implementation="flash_attention_2" # <- uncomment on compatible GPU
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Create a wrapper class that matches the expected interface
class LocalLlamaModel:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = model.device if hasattr(model, 'device') else 'cpu'
def _extract_text_from_messages(self, messages):
"""Extract text content from ChatMessage objects or handle string input"""
if isinstance(messages, str):
return messages
elif isinstance(messages, list):
# Handle list of ChatMessage objects
text_parts = []
for msg in messages:
if hasattr(msg, 'content'):
# Handle ChatMessage with content attribute
if isinstance(msg.content, list):
# Content is a list of content items
for content_item in msg.content:
if isinstance(content_item, dict) and 'text' in content_item:
text_parts.append(content_item['text'])
elif hasattr(content_item, 'text'):
text_parts.append(content_item.text)
elif isinstance(msg.content, str):
text_parts.append(msg.content)
elif isinstance(msg, dict) and 'content' in msg:
# Handle dictionary format
text_parts.append(str(msg['content']))
else:
# Fallback: convert to string
text_parts.append(str(msg))
return '\n'.join(text_parts)
else:
return str(messages)
def generate(self, prompt, max_new_tokens=512*5, **kwargs):
try:
print("Prompt: ", prompt)
print("Prompt type: ", type(prompt))
# Extract text from the prompt (which might be ChatMessage objects)
text_prompt = self._extract_text_from_messages(prompt)
print("Extracted text prompt:", text_prompt[:200] + "..." if len(text_prompt) > 200 else text_prompt)
# Tokenize the text prompt
inputs = self.tokenizer(text_prompt, return_tensors="pt").to(self.model.device)
input_ids = inputs['input_ids']
# Generate output
with torch.no_grad():
output = self.model.generate(
input_ids,
do_sample=True,
temperature=0.3,
min_p=0.15,
repetition_penalty=1.05,
max_new_tokens=max_new_tokens,
pad_token_id=self.tokenizer.eos_token_id, # Handle padding
)
# Decode only the new tokens (exclude the input)
new_tokens = output[0][len(input_ids[0]):]
response = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
return response.strip()
except Exception as e:
print(f"Error in model generation: {e}")
return f"Error generating response: {str(e)}"
def __call__(self, prompt, max_new_tokens=512, **kwargs):
"""Make the model callable like a function"""
return self.generate(prompt, max_new_tokens, **kwargs)
# Create the model instance
wrapped_model = LocalLlamaModel(model, tokenizer)
# Now create your agents - these should work with the wrapped model
reviewer_agent = ToolCallingAgent(model=wrapped_model, tools=[])
model_agent = ToolCallingAgent(model=wrapped_model, tools=[fetch_webpage])
gaia_agent = CodeAgent(
tools=[fetch_webpage, get_youtube_title_description, get_youtube_transcript],
model=wrapped_model
)
if __name__ == "__main__":
# Example usage
question = "What was the actual enrollment of the Malko competition in 2023?"
agent = BasicAgent()
answer = agent(question)
print(f"Answer: {answer}")