name: "ClusterDiarizer" num_workers: 1 sample_rate: 16000 batch_size: 64 device: cpu verbose: True diarizer: manifest_filepath: .temp/manifest.json out_dir: .temp oracle_vad: False collar: 0.25 ignore_overlap: True vad: model_path: vad_multilingual_marblenet external_vad_manifest: null parameters: window_length_in_sec: 0.15 shift_length_in_sec: 0.01 smoothing: "median" overlap: 0.5 onset: 0.1 offset: 0.1 pad_onset: 0.1 pad_offset: 0 min_duration_on: 0 min_duration_off: 0.2 filter_speech_first: True speaker_embeddings: model_path: titanet_large parameters: window_length_in_sec: [ 1.5,1.25,1.0,0.75,0.5 ] shift_length_in_sec: [ 0.75,0.625,0.5,0.375,0.25 ] multiscale_weights: [ 1,1,1,1,1 ] save_embeddings: True clustering: parameters: oracle_num_speakers: False max_num_speakers: 8 enhanced_count_thres: 80 max_rp_threshold: 0.25 sparse_search_volume: 30 maj_vote_spk_count: False chunk_cluster_count: 50 embeddings_per_chunk: 10000 msdd_model: model_path: diar_msdd_telephonic parameters: use_speaker_model_from_ckpt: True infer_batch_size: 25 sigmoid_threshold: [ 0.7 ] seq_eval_mode: False split_infer: True diar_window_length: 50 overlap_infer_spk_limit: 5 asr: model_path: stt_en_conformer_ctc_large parameters: asr_based_vad: False asr_based_vad_threshold: 1.0 asr_batch_size: null decoder_delay_in_sec: null word_ts_anchor_offset: null word_ts_anchor_pos: "start" fix_word_ts_with_VAD: False colored_text: False print_time: True break_lines: False ctc_decoder_parameters: pretrained_language_model: null beam_width: 32 alpha: 0.5 beta: 2.5 realigning_lm_parameters: arpa_language_model: null min_number_of_words: 3 max_number_of_words: 10 logprob_diff_threshold: 1.2