Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
-
import ollama
|
3 |
from PIL import Image
|
4 |
import io
|
5 |
import base64
|
|
|
|
|
|
|
6 |
# Page configuration
|
7 |
st.set_page_config(
|
8 |
page_title="Gemma-3 OCR",
|
@@ -10,10 +12,49 @@ st.set_page_config(
|
|
10 |
layout="wide",
|
11 |
initial_sidebar_state="expanded"
|
12 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Title and description in main area
|
14 |
-
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Add clear button to top right
|
18 |
col1, col2 = st.columns([6,1])
|
19 |
with col2:
|
@@ -21,40 +62,42 @@ with col2:
|
|
21 |
if 'ocr_result' in st.session_state:
|
22 |
del st.session_state['ocr_result']
|
23 |
st.rerun()
|
|
|
24 |
st.markdown('<p style="margin-top: -20px;">Extract structured text from images using Gemma-3 Vision!</p>', unsafe_allow_html=True)
|
25 |
st.markdown("---")
|
|
|
26 |
# Move upload controls to sidebar
|
27 |
with st.sidebar:
|
28 |
st.header("Upload Image")
|
29 |
uploaded_file = st.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
|
30 |
-
|
31 |
if uploaded_file is not None:
|
32 |
# Display the uploaded image
|
33 |
image = Image.open(uploaded_file)
|
34 |
st.image(image, caption="Uploaded Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
if st.button("Extract Text 🔍", type="primary"):
|
37 |
-
with st.spinner("Processing image..."):
|
38 |
-
try:
|
39 |
-
response = ollama.chat(
|
40 |
-
model='gemma3:12b',
|
41 |
-
messages=[{
|
42 |
-
'role': 'user',
|
43 |
-
'content': """Analyze the text in the provided image. Extract all readable content
|
44 |
-
and present it in a structured Markdown format that is clear, concise,
|
45 |
-
and well-organized. Ensure proper formatting (e.g., headings, lists, or
|
46 |
-
code blocks) as necessary to represent the content effectively.""",
|
47 |
-
'images': [uploaded_file.getvalue()]
|
48 |
-
}]
|
49 |
-
)
|
50 |
-
st.session_state['ocr_result'] = response.message.content
|
51 |
-
except Exception as e:
|
52 |
-
st.error(f"Error processing image: {str(e)}")
|
53 |
# Main content area for results
|
54 |
if 'ocr_result' in st.session_state:
|
55 |
st.markdown(st.session_state['ocr_result'])
|
56 |
else:
|
57 |
st.info("Upload an image and click 'Extract Text' to see the results here.")
|
|
|
58 |
# Footer
|
59 |
st.markdown("---")
|
60 |
-
st.markdown("Made with
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
import io
|
4 |
import base64
|
5 |
+
import requests
|
6 |
+
import os
|
7 |
+
|
8 |
# Page configuration
|
9 |
st.set_page_config(
|
10 |
page_title="Gemma-3 OCR",
|
|
|
12 |
layout="wide",
|
13 |
initial_sidebar_state="expanded"
|
14 |
)
|
15 |
+
|
16 |
+
# Set up Hugging Face API
|
17 |
+
HF_API_KEY = os.environ.get("HF_API_KEY", "") # Get API key from environment variable
|
18 |
+
if not HF_API_KEY:
|
19 |
+
HF_API_KEY = st.secrets.get("HF_API_KEY", "") # Try getting from Streamlit secrets
|
20 |
+
|
21 |
+
# Hugging Face API function
|
22 |
+
def process_image_with_hf(image_bytes):
|
23 |
+
API_URL = "https://api-inference.huggingface.co/models/google/gemma-3-vision"
|
24 |
+
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
25 |
+
|
26 |
+
# Convert image to base64
|
27 |
+
image_b64 = base64.b64encode(image_bytes).decode('utf-8')
|
28 |
+
|
29 |
+
# Prepare payload
|
30 |
+
payload = {
|
31 |
+
"inputs": {
|
32 |
+
"image": image_b64,
|
33 |
+
"text": """Analyze the text in the provided image. Extract all readable content
|
34 |
+
and present it in a structured Markdown format that is clear, concise,
|
35 |
+
and well-organized. Ensure proper formatting (e.g., headings, lists, or
|
36 |
+
code blocks) as necessary to represent the content effectively."""
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
# Make API request
|
41 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
42 |
+
|
43 |
+
if response.status_code != 200:
|
44 |
+
raise Exception(f"API request failed with status code {response.status_code}: {response.text}")
|
45 |
+
|
46 |
+
return response.json()[0]["generated_text"]
|
47 |
+
|
48 |
# Title and description in main area
|
49 |
+
try:
|
50 |
+
# Try to load the image from assets folder
|
51 |
+
st.markdown("""
|
52 |
+
# <img src="data:image/png;base64,{}" width="50" style="vertical-align: -12px;"> Gemma-3 OCR
|
53 |
+
""".format(base64.b64encode(open("./assets/gemma3.png", "rb").read()).decode()), unsafe_allow_html=True)
|
54 |
+
except FileNotFoundError:
|
55 |
+
# Fallback if image doesn't exist
|
56 |
+
st.title("Gemma-3 OCR")
|
57 |
+
|
58 |
# Add clear button to top right
|
59 |
col1, col2 = st.columns([6,1])
|
60 |
with col2:
|
|
|
62 |
if 'ocr_result' in st.session_state:
|
63 |
del st.session_state['ocr_result']
|
64 |
st.rerun()
|
65 |
+
|
66 |
st.markdown('<p style="margin-top: -20px;">Extract structured text from images using Gemma-3 Vision!</p>', unsafe_allow_html=True)
|
67 |
st.markdown("---")
|
68 |
+
|
69 |
# Move upload controls to sidebar
|
70 |
with st.sidebar:
|
71 |
st.header("Upload Image")
|
72 |
uploaded_file = st.file_uploader("Choose an image...", type=['png', 'jpg', 'jpeg'])
|
73 |
+
|
74 |
if uploaded_file is not None:
|
75 |
# Display the uploaded image
|
76 |
image = Image.open(uploaded_file)
|
77 |
st.image(image, caption="Uploaded Image")
|
78 |
+
|
79 |
+
# Check if API key is available
|
80 |
+
if not HF_API_KEY:
|
81 |
+
st.error("Hugging Face API key is missing. Please set it as an environment variable or in Streamlit secrets.")
|
82 |
+
else:
|
83 |
+
if st.button("Extract Text 🔍", type="primary"):
|
84 |
+
with st.spinner("Processing image..."):
|
85 |
+
try:
|
86 |
+
# Get image bytes
|
87 |
+
img_bytes = uploaded_file.getvalue()
|
88 |
+
|
89 |
+
# Process with Hugging Face API
|
90 |
+
result = process_image_with_hf(img_bytes)
|
91 |
+
st.session_state['ocr_result'] = result
|
92 |
+
except Exception as e:
|
93 |
+
st.error(f"Error processing image: {str(e)}")
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Main content area for results
|
96 |
if 'ocr_result' in st.session_state:
|
97 |
st.markdown(st.session_state['ocr_result'])
|
98 |
else:
|
99 |
st.info("Upload an image and click 'Extract Text' to see the results here.")
|
100 |
+
|
101 |
# Footer
|
102 |
st.markdown("---")
|
103 |
+
st.markdown("Made with using Gemma-3 Vision Model | [Report an Issue](https://github.com/bulentsoykan/streamlit-OCR-app/issues)")
|