def infer_gradio_api(image_path): from gradio_client import Client, handle_file import numpy as np import logging logger = logging.getLogger(__name__) client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview") result_dict = client.predict( input_image=handle_file(image_path), api_name="/simple_predict" ) logger.info(f"Debug: Raw result_dict from Gradio API (model_8): {result_dict}, type: {type(result_dict)}") fake_probability = result_dict.get('Fake Probability', 0.0) logger.info(f"Debug: Parsed result_dict: {result_dict}, Extracted fake_probability: {fake_probability}") return {"probabilities": np.array([fake_probability])} def preprocess_gradio_api(image): temp_file_path = "./temp_gradio_input.png" image.save(temp_file_path) return temp_file_path def postprocess_gradio_api(gradio_output, class_names): import numpy as np import logging logger = logging.getLogger(__name__) probabilities_array = None if isinstance(gradio_output, dict) and "probabilities" in gradio_output: probabilities_array = gradio_output["probabilities"] elif isinstance(gradio_output, np.ndarray): probabilities_array = gradio_output else: logger.warning(f"Unexpected output type for Gradio API post-processing: {type(gradio_output)}. Expected dict with 'probabilities' or numpy.ndarray.") return {class_names[0]: 0.0, class_names[1]: 1.0} logger.info(f"Debug: Probabilities array entering postprocess_gradio_api: {probabilities_array}, type: {type(probabilities_array)}, shape: {getattr(probabilities_array, 'shape', None)}") if probabilities_array is None or probabilities_array.size == 0: logger.warning("Probabilities array is None or empty after extracting from Gradio API output. Returning default scores.") return {class_names[0]: 0.0, class_names[1]: 1.0} fake_prob = float(probabilities_array.item()) real_prob = 1.0 - fake_prob return {class_names[0]: fake_prob, class_names[1]: real_prob} def preprocess_resize_256(image): if image.mode != 'RGB': image = image.convert('RGB') return transforms.Resize((256, 256))(image) def preprocess_resize_224(image): if image.mode != 'RGB': image = image.convert('RGB') return transforms.Resize((224, 224))(image) def postprocess_pipeline(prediction, class_names): # Assumes HuggingFace pipeline output return {pred['label']: float(pred['score']) for pred in prediction} def postprocess_logits(outputs, class_names): # Assumes model output with logits logits = outputs.logits.cpu().numpy()[0] probabilities = softmax(logits) return {class_names[i]: probabilities[i] for i in range(len(class_names))} def postprocess_binary_output(output, class_names): # output can be a dictionary {"probabilities": numpy_array} or directly a numpy_array import logging logger = logging.getLogger(__name__) probabilities_array = None if isinstance(output, dict) and "probabilities" in output: probabilities_array = output["probabilities"] elif isinstance(output, np.ndarray): probabilities_array = output else: logger.warning(f"Unexpected output type for binary post-processing: {type(output)}. Expected dict with 'probabilities' or numpy.ndarray.") return {class_names[0]: 0.0, class_names[1]: 1.0} logger.info(f"Debug: Probabilities array entering postprocess_binary_output: {probabilities_array}, type: {type(probabilities_array)}, shape: {getattr(probabilities_array, 'shape', None)}") if probabilities_array is None: logger.warning("Probabilities array is None after extracting from output. Returning default scores.") return {class_names[0]: 0.0, class_names[1]: 1.0} if probabilities_array.size == 1: fake_prob = float(probabilities_array.item()) elif probabilities_array.size == 2: fake_prob = float(probabilities_array[0]) else: logger.warning(f"Unexpected probabilities array shape for binary post-processing: {probabilities_array.shape}. Expected size 1 or 2.") return {class_names[0]: 0.0, class_names[1]: 1.0} real_prob = 1.0 - fake_prob # Ensure Fake and Real sum to 1 return {class_names[0]: fake_prob, class_names[1]: real_prob} def to_float_scalar(value): if isinstance(value, np.ndarray): return float(value.item()) # Convert numpy array scalar to Python float return float(value) # Already a Python scalar or convertible type import numpy as np import io from PIL import Image, ImageFilter, ImageChops from torchvision import transforms def softmax(vector): e = np.exp(vector - np.max(vector)) # for numerical stability probabilities = e / e.sum() return [float(p.item()) for p in probabilities] # Convert numpy array elements to Python floats using .item() def augment_image(img_pil, methods, rotate_degrees=0, noise_level=0, sharpen_strength=1): for method in methods: if method == "rotate": img_pil = img_pil.rotate(rotate_degrees) elif method == "add_noise": noise = np.random.normal(0, noise_level, img_pil.size[::-1] + (3,)).astype(np.uint8) img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8)) elif method == "sharpen": img_pil = img_pil.filter(ImageFilter.UnsharpMask(radius=2, percent=sharpen_strength, threshold=3)) return img_pil, img_pil def convert_pil_to_bytes(image, format='JPEG'): img_byte_arr = io.BytesIO() image.save(img_byte_arr, format=format) img_byte_arr = img_byte_arr.getvalue() return img_byte_arr