# Shared ONNX inference function for use by app.py and model_loader.py def infer_onnx_model(hf_model_id, preprocessed_image_np, model_config: dict): from .onnx_model_loader import get_onnx_model_from_cache, load_onnx_model_and_preprocessor from .utils import softmax import numpy as np import logging logger = logging.getLogger(__name__) _onnx_model_cache = {} try: ort_session, _, _ = get_onnx_model_from_cache(hf_model_id, _onnx_model_cache, load_onnx_model_and_preprocessor) for input_meta in ort_session.get_inputs(): logger.info(f"Debug: ONNX model expected input name: {input_meta.name}, shape: {input_meta.shape}, type: {input_meta.type}") logger.info(f"Debug: preprocessed_image_np shape: {preprocessed_image_np.shape}") ort_inputs = {ort_session.get_inputs()[0].name: preprocessed_image_np} ort_outputs = ort_session.run(None, ort_inputs) logits = ort_outputs[0] logger.info(f"Debug: logits type: {type(logits)}, shape: {logits.shape}") probabilities = softmax(logits[0]) return {"logits": logits, "probabilities": probabilities} except Exception as e: logger.error(f"Error during ONNX inference for {hf_model_id}: {e}") return {"logits": np.array([]), "probabilities": np.array([])} import numpy as np from torchvision import transforms from PIL import Image import logging def preprocess_onnx_input(image, preprocessor_config): if image.mode != 'RGB': image = image.convert('RGB') initial_resize_size = preprocessor_config.get('size', {'height': 224, 'width': 224}) crop_size = preprocessor_config.get('crop_size', initial_resize_size['height']) mean = preprocessor_config.get('image_mean', [0.485, 0.456, 0.406]) std = preprocessor_config.get('image_std', [0.229, 0.224, 0.225]) transform = transforms.Compose([ transforms.Resize((initial_resize_size['height'], initial_resize_size['width'])), transforms.CenterCrop(crop_size), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) input_tensor = transform(image) return input_tensor.unsqueeze(0).cpu().numpy() def postprocess_onnx_output(onnx_output, model_config): logger = logging.getLogger(__name__) class_names_map = model_config.get('id2label') if class_names_map: class_names = [class_names_map[k] for k in sorted(class_names_map.keys())] elif model_config.get('num_classes') == 1: class_names = ['Fake', 'Real'] else: class_names = {0: 'Fake', 1: 'Real'} class_names = [class_names[i] for i in sorted(class_names.keys())] probabilities = onnx_output.get("probabilities") if probabilities is not None: if model_config.get('num_classes') == 1 and len(probabilities) == 2: fake_prob = float(probabilities[0]) real_prob = float(probabilities[1]) return {class_names[0]: fake_prob, class_names[1]: real_prob} elif len(probabilities) == len(class_names): return {class_names[i]: float(probabilities[i]) for i in range(len(class_names))} else: logger.warning("ONNX post-processing: Probabilities length mismatch with class names.") return {name: 0.0 for name in class_names} else: logger.warning("ONNX post-processing failed: 'probabilities' key not found in output.") return {name: 0.0 for name in class_names}