LPX55
commited on
Commit
·
c7db87b
1
Parent(s):
a4381af
test
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from dotenv import load_dotenv
|
|
14 |
import concurrent.futures
|
15 |
import ast
|
16 |
import torch
|
|
|
17 |
|
18 |
from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
|
19 |
from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
|
@@ -416,6 +417,7 @@ detection_model_eval_playground = gr.Interface(
|
|
416 |
),
|
417 |
gr.JSON(label="Raw Model Results", visible=False),
|
418 |
gr.Markdown(label="Consensus", value="")
|
|
|
419 |
],
|
420 |
title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
|
421 |
description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
|
|
|
14 |
import concurrent.futures
|
15 |
import ast
|
16 |
import torch
|
17 |
+
from gradio_log import Log
|
18 |
|
19 |
from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
|
20 |
from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
|
|
|
417 |
),
|
418 |
gr.JSON(label="Raw Model Results", visible=False),
|
419 |
gr.Markdown(label="Consensus", value="")
|
420 |
+
Log(anomaly_detection_results, dark=True, xterm_font_size=12)
|
421 |
],
|
422 |
title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
|
423 |
description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
|