LPX55 commited on
Commit
c7db87b
·
1 Parent(s): a4381af
Files changed (1) hide show
  1. app.py +2 -0
app.py CHANGED
@@ -14,6 +14,7 @@ from dotenv import load_dotenv
14
  import concurrent.futures
15
  import ast
16
  import torch
 
17
 
18
  from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
19
  from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
@@ -416,6 +417,7 @@ detection_model_eval_playground = gr.Interface(
416
  ),
417
  gr.JSON(label="Raw Model Results", visible=False),
418
  gr.Markdown(label="Consensus", value="")
 
419
  ],
420
  title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
421
  description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
 
14
  import concurrent.futures
15
  import ast
16
  import torch
17
+ from gradio_log import Log
18
 
19
  from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
20
  from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
 
417
  ),
418
  gr.JSON(label="Raw Model Results", visible=False),
419
  gr.Markdown(label="Consensus", value="")
420
+ Log(anomaly_detection_results, dark=True, xterm_font_size=12)
421
  ],
422
  title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
423
  description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",