|
def infer_gradio_api(image_path): |
|
from gradio_client import Client, handle_file |
|
import numpy as np |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview") |
|
result_dict = client.predict( |
|
input_image=handle_file(image_path), |
|
api_name="/simple_predict" |
|
) |
|
logger.info(f"Debug: Raw result_dict from Gradio API (model_8): {result_dict}, type: {type(result_dict)}") |
|
fake_probability = result_dict.get('Fake Probability', 0.0) |
|
logger.info(f"Debug: Parsed result_dict: {result_dict}, Extracted fake_probability: {fake_probability}") |
|
return {"probabilities": np.array([fake_probability])} |
|
|
|
def preprocess_gradio_api(image): |
|
temp_file_path = "./temp_gradio_input.png" |
|
image.save(temp_file_path) |
|
return temp_file_path |
|
|
|
def postprocess_gradio_api(gradio_output, class_names): |
|
import numpy as np |
|
import logging |
|
logger = logging.getLogger(__name__) |
|
probabilities_array = None |
|
if isinstance(gradio_output, dict) and "probabilities" in gradio_output: |
|
probabilities_array = gradio_output["probabilities"] |
|
elif isinstance(gradio_output, np.ndarray): |
|
probabilities_array = gradio_output |
|
else: |
|
logger.warning(f"Unexpected output type for Gradio API post-processing: {type(gradio_output)}. Expected dict with 'probabilities' or numpy.ndarray.") |
|
return {class_names[0]: 0.0, class_names[1]: 1.0} |
|
|
|
logger.info(f"Debug: Probabilities array entering postprocess_gradio_api: {probabilities_array}, type: {type(probabilities_array)}, shape: {getattr(probabilities_array, 'shape', None)}") |
|
|
|
if probabilities_array is None or probabilities_array.size == 0: |
|
logger.warning("Probabilities array is None or empty after extracting from Gradio API output. Returning default scores.") |
|
return {class_names[0]: 0.0, class_names[1]: 1.0} |
|
|
|
fake_prob = float(probabilities_array.item()) |
|
real_prob = 1.0 - fake_prob |
|
return {class_names[0]: fake_prob, class_names[1]: real_prob} |
|
|
|
def preprocess_resize_256(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((256, 256))(image) |
|
|
|
def preprocess_resize_224(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
return transforms.Resize((224, 224))(image) |
|
|
|
def postprocess_pipeline(prediction, class_names): |
|
|
|
return {pred['label']: float(pred['score']) for pred in prediction} |
|
|
|
def postprocess_logits(outputs, class_names): |
|
|
|
logits = outputs.logits.cpu().numpy()[0] |
|
probabilities = softmax(logits) |
|
return {class_names[i]: probabilities[i] for i in range(len(class_names))} |
|
|
|
def postprocess_binary_output(output, class_names): |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
probabilities_array = None |
|
if isinstance(output, dict) and "probabilities" in output: |
|
probabilities_array = output["probabilities"] |
|
elif isinstance(output, np.ndarray): |
|
probabilities_array = output |
|
else: |
|
logger.warning(f"Unexpected output type for binary post-processing: {type(output)}. Expected dict with 'probabilities' or numpy.ndarray.") |
|
return {class_names[0]: 0.0, class_names[1]: 1.0} |
|
|
|
logger.info(f"Debug: Probabilities array entering postprocess_binary_output: {probabilities_array}, type: {type(probabilities_array)}, shape: {getattr(probabilities_array, 'shape', None)}") |
|
|
|
if probabilities_array is None: |
|
logger.warning("Probabilities array is None after extracting from output. Returning default scores.") |
|
return {class_names[0]: 0.0, class_names[1]: 1.0} |
|
|
|
if probabilities_array.size == 1: |
|
fake_prob = float(probabilities_array.item()) |
|
elif probabilities_array.size == 2: |
|
fake_prob = float(probabilities_array[0]) |
|
else: |
|
logger.warning(f"Unexpected probabilities array shape for binary post-processing: {probabilities_array.shape}. Expected size 1 or 2.") |
|
return {class_names[0]: 0.0, class_names[1]: 1.0} |
|
|
|
real_prob = 1.0 - fake_prob |
|
return {class_names[0]: fake_prob, class_names[1]: real_prob} |
|
|
|
def to_float_scalar(value): |
|
if isinstance(value, np.ndarray): |
|
return float(value.item()) |
|
return float(value) |
|
import numpy as np |
|
import io |
|
from PIL import Image, ImageFilter, ImageChops |
|
from torchvision import transforms |
|
|
|
def softmax(vector): |
|
e = np.exp(vector - np.max(vector)) |
|
probabilities = e / e.sum() |
|
return [float(p.item()) for p in probabilities] |
|
|
|
def augment_image(img_pil, methods, rotate_degrees=0, noise_level=0, sharpen_strength=1): |
|
for method in methods: |
|
if method == "rotate": |
|
img_pil = img_pil.rotate(rotate_degrees) |
|
elif method == "add_noise": |
|
noise = np.random.normal(0, noise_level, img_pil.size[::-1] + (3,)).astype(np.uint8) |
|
img_pil = Image.fromarray(np.clip(np.array(img_pil) + noise, 0, 255).astype(np.uint8)) |
|
elif method == "sharpen": |
|
img_pil = img_pil.filter(ImageFilter.UnsharpMask(radius=2, percent=sharpen_strength, threshold=3)) |
|
return img_pil, img_pil |
|
|
|
def convert_pil_to_bytes(image, format='JPEG'): |
|
img_byte_arr = io.BytesIO() |
|
image.save(img_byte_arr, format=format) |
|
img_byte_arr = img_byte_arr.getvalue() |
|
return img_byte_arr |
|
|
|
|
|
|