LPX55
fix: add missing import for infer_onnx_model in model_loader and update its definition in onnx_helpers
ceff40b
# Shared ONNX inference function for use by app.py and model_loader.py | |
def infer_onnx_model(hf_model_id, preprocessed_image_np, model_config: dict): | |
from .onnx_model_loader import get_onnx_model_from_cache, load_onnx_model_and_preprocessor | |
from .utils import softmax | |
import numpy as np | |
import logging | |
logger = logging.getLogger(__name__) | |
_onnx_model_cache = {} | |
try: | |
ort_session, _, _ = get_onnx_model_from_cache(hf_model_id, _onnx_model_cache, load_onnx_model_and_preprocessor) | |
for input_meta in ort_session.get_inputs(): | |
logger.info(f"Debug: ONNX model expected input name: {input_meta.name}, shape: {input_meta.shape}, type: {input_meta.type}") | |
logger.info(f"Debug: preprocessed_image_np shape: {preprocessed_image_np.shape}") | |
ort_inputs = {ort_session.get_inputs()[0].name: preprocessed_image_np} | |
ort_outputs = ort_session.run(None, ort_inputs) | |
logits = ort_outputs[0] | |
logger.info(f"Debug: logits type: {type(logits)}, shape: {logits.shape}") | |
probabilities = softmax(logits[0]) | |
return {"logits": logits, "probabilities": probabilities} | |
except Exception as e: | |
logger.error(f"Error during ONNX inference for {hf_model_id}: {e}") | |
return {"logits": np.array([]), "probabilities": np.array([])} | |
import numpy as np | |
from torchvision import transforms | |
from PIL import Image | |
import logging | |
def preprocess_onnx_input(image, preprocessor_config): | |
if image.mode != 'RGB': | |
image = image.convert('RGB') | |
initial_resize_size = preprocessor_config.get('size', {'height': 224, 'width': 224}) | |
crop_size = preprocessor_config.get('crop_size', initial_resize_size['height']) | |
mean = preprocessor_config.get('image_mean', [0.485, 0.456, 0.406]) | |
std = preprocessor_config.get('image_std', [0.229, 0.224, 0.225]) | |
transform = transforms.Compose([ | |
transforms.Resize((initial_resize_size['height'], initial_resize_size['width'])), | |
transforms.CenterCrop(crop_size), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
input_tensor = transform(image) | |
return input_tensor.unsqueeze(0).cpu().numpy() | |
def postprocess_onnx_output(onnx_output, model_config): | |
logger = logging.getLogger(__name__) | |
class_names_map = model_config.get('id2label') | |
if class_names_map: | |
class_names = [class_names_map[k] for k in sorted(class_names_map.keys())] | |
elif model_config.get('num_classes') == 1: | |
class_names = ['Fake', 'Real'] | |
else: | |
class_names = {0: 'Fake', 1: 'Real'} | |
class_names = [class_names[i] for i in sorted(class_names.keys())] | |
probabilities = onnx_output.get("probabilities") | |
if probabilities is not None: | |
if model_config.get('num_classes') == 1 and len(probabilities) == 2: | |
fake_prob = float(probabilities[0]) | |
real_prob = float(probabilities[1]) | |
return {class_names[0]: fake_prob, class_names[1]: real_prob} | |
elif len(probabilities) == len(class_names): | |
return {class_names[i]: float(probabilities[i]) for i in range(len(class_names))} | |
else: | |
logger.warning("ONNX post-processing: Probabilities length mismatch with class names.") | |
return {name: 0.0 for name in class_names} | |
else: | |
logger.warning("ONNX post-processing failed: 'probabilities' key not found in output.") | |
return {name: 0.0 for name in class_names} | |