LPX55
fix: add missing import for infer_onnx_model in model_loader and update its definition in onnx_helpers
ceff40b
# Shared ONNX inference function for use by app.py and model_loader.py
def infer_onnx_model(hf_model_id, preprocessed_image_np, model_config: dict):
from .onnx_model_loader import get_onnx_model_from_cache, load_onnx_model_and_preprocessor
from .utils import softmax
import numpy as np
import logging
logger = logging.getLogger(__name__)
_onnx_model_cache = {}
try:
ort_session, _, _ = get_onnx_model_from_cache(hf_model_id, _onnx_model_cache, load_onnx_model_and_preprocessor)
for input_meta in ort_session.get_inputs():
logger.info(f"Debug: ONNX model expected input name: {input_meta.name}, shape: {input_meta.shape}, type: {input_meta.type}")
logger.info(f"Debug: preprocessed_image_np shape: {preprocessed_image_np.shape}")
ort_inputs = {ort_session.get_inputs()[0].name: preprocessed_image_np}
ort_outputs = ort_session.run(None, ort_inputs)
logits = ort_outputs[0]
logger.info(f"Debug: logits type: {type(logits)}, shape: {logits.shape}")
probabilities = softmax(logits[0])
return {"logits": logits, "probabilities": probabilities}
except Exception as e:
logger.error(f"Error during ONNX inference for {hf_model_id}: {e}")
return {"logits": np.array([]), "probabilities": np.array([])}
import numpy as np
from torchvision import transforms
from PIL import Image
import logging
def preprocess_onnx_input(image, preprocessor_config):
if image.mode != 'RGB':
image = image.convert('RGB')
initial_resize_size = preprocessor_config.get('size', {'height': 224, 'width': 224})
crop_size = preprocessor_config.get('crop_size', initial_resize_size['height'])
mean = preprocessor_config.get('image_mean', [0.485, 0.456, 0.406])
std = preprocessor_config.get('image_std', [0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.Resize((initial_resize_size['height'], initial_resize_size['width'])),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
input_tensor = transform(image)
return input_tensor.unsqueeze(0).cpu().numpy()
def postprocess_onnx_output(onnx_output, model_config):
logger = logging.getLogger(__name__)
class_names_map = model_config.get('id2label')
if class_names_map:
class_names = [class_names_map[k] for k in sorted(class_names_map.keys())]
elif model_config.get('num_classes') == 1:
class_names = ['Fake', 'Real']
else:
class_names = {0: 'Fake', 1: 'Real'}
class_names = [class_names[i] for i in sorted(class_names.keys())]
probabilities = onnx_output.get("probabilities")
if probabilities is not None:
if model_config.get('num_classes') == 1 and len(probabilities) == 2:
fake_prob = float(probabilities[0])
real_prob = float(probabilities[1])
return {class_names[0]: fake_prob, class_names[1]: real_prob}
elif len(probabilities) == len(class_names):
return {class_names[i]: float(probabilities[i]) for i in range(len(class_names))}
else:
logger.warning("ONNX post-processing: Probabilities length mismatch with class names.")
return {name: 0.0 for name in class_names}
else:
logger.warning("ONNX post-processing failed: 'probabilities' key not found in output.")
return {name: 0.0 for name in class_names}