File size: 6,698 Bytes
1b58b25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0003aa2
 
 
 
 
1b58b25
 
 
0003aa2
 
 
 
1b58b25
 
 
 
0003aa2
1b58b25
0003aa2
 
 
 
 
 
 
 
 
 
 
 
 
1b58b25
 
 
 
 
0003aa2
1b58b25
0003aa2
1b58b25
 
 
 
 
0003aa2
 
 
 
1b58b25
 
 
0003aa2
1b58b25
 
 
 
 
 
0003aa2
 
 
 
 
 
 
 
 
761c492
1b58b25
d6d075e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b836f5
1b58b25
5b836f5
 
 
 
 
 
1b58b25
 
 
 
 
 
 
 
5b836f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b58b25
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# coding=utf8
from gpt_index import SimpleDirectoryReader, GPTListIndex, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
import gradio as gr
import random
import time
import sys
import os
from transformers import pipeline
p = pipeline("automatic-speech-recognition")


os.environ["OPENAI_API_KEY"] = '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'

css = """
#component-2 {position: absolute; bottom: 0;    width: 100%;
}
div.float.svelte-1frtwj3 {
    position: absolute;
    opacity: 0;
    top: var(--block-label-margin);
    left: var(--block-label-margin);}
    
.wrap.svelte-6roggh.svelte-6roggh {
    padding: var(--block-padding);
    height: 100%;
    max-height: 100%;
    overflow-y: auto;
    }
.bot.svelte-6roggh.svelte-6roggh, .pending.svelte-6roggh.svelte-6roggh {
    border-color: #759ce9;
    background: #ffffff;
}
div.svelte-1frtwj3 {
    display: inline-flex;
    align-items: center;
    z-index: var(--layer-2);
    box-shadow: var(--block-shadow);
    border: var(--block-label-border-width) solid #ffffff;
    border-top: none;
    border-left: none;
    border-radius: var(--block-label-radius);
    background: #eff6ff;
    padding: var(--block-label-padding);
    pointer-events: none;
    color: var(--block-label-text-color);
    font-weight: var(--block-label-text-weight);
    width: 100%;
    line-height: var(--line-sm);
    }
div.svelte-awbtu4 {
    display: flex;
    flex-direction: inherit;
    flex-wrap: wrap;
    gap: var(--form-gap-width);
    box-shadow: var(--block-shadow);
    border: var(--block-border-width) solid var(--border-color-primary);
    border-radius: var(--radius-lg);
    background: var(--border-color-primary);
    overflow: hidden;
    position: fixed;
    bottom: 0;
    margin-left: -16px;
}
img.svelte-ms5bsk {
    width: var(--size-full);
    height: 90px;
    object-fit: contain;
}
.app.svelte-ac4rv4.svelte-ac4rv4 {
    max-width: none;
    background-color: #ffffff;
}
.app.svelte-ac4rv4.svelte-ac4rv4{max-width:none}
.wrap.svelte-1o68geq.svelte-1o68geq {max-height: none}
.block.svelte-mppz8v {
    position: relative;
    margin: 0;
    box-shadow: var(--block-shadow);
    border-width: var(--block-border-width);
    border-color: #dbeafe;
    border-radius: var(--block-radius);
    background: #dbeafe;
    width: 100%;
    line-height: var(--line-sm);
}

"""

def transcribe(audio):
    text = p(audio)["text"]
    return text
def construct_index(directory_path):
    max_input_size = 10000
    num_outputs = 10000
    max_chunk_overlap = 20000
    chunk_size_limit = 600000

    prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)

    llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.0, model_name="text-davinci-003", max_tokens=num_outputs))

    documents = SimpleDirectoryReader(directory_path).load_data()

    index = GPTSimpleVectorIndex.from_documents(documents)
    index.save_to_disk('index.json')

    return index


def chatbot(input_text):

    index = GPTSimpleVectorIndex.load_from_disk('index.json')
    response = index.query(input_text)
    return str(response.response)

with gr.Blocks(css=css) as demo:
    realPath = str(os.path.dirname(os.path.realpath(__file__)))
    img1 = gr.Image("images/1024x150_cabeçalho.hippo.png", elem_classes=".img.svelte-ms5bsk", elem_id="img.svelte-ms5bsk").style(container=False)
    gpt = gr.Chatbot(elem_classes=".wrap.svelte-1o68geq.svelte-1o68geq", elem_id="chatbot").style(container=True)
    msg = gr.Textbox(elem_id="div.svelte-awbtu4",elem_classes="textBoxBot", show_label=False,
                placeholder="Bem vindo ao Hippo Supermercados, em que posso ajuda-lo?",
            ).style(container=False)
    #clear = gr.Button("Limpar Conversa")
   # gr.Audio(source="microphone", type="filepath",label="ESTÁ COM DIFICULDADES EM ESCREVER? CLIQUE E ME DIGA O QUE DESEJA")
    def respond(message, chat_history):
        chat_history.append((message, chatbot(message)))
        time.sleep(1)
        vetor = []
        realPath = str(os.path.dirname(os.path.realpath(__file__)))

        if str(message).upper()=="OLA" or str(message).upper()=="OLÁ" or str(message).upper()=="OI":
            vetor = vetor + [((realPath + "\\images\\hippo-apresentacao.mp4",), "")]
        elif str(message).upper() == "VINHO CASA DEL RONCO PINOT GRIGIO" :
                vetor = vetor + [((realPath + "\\images\\casa-del-ronco-branco.png",), "")]
        elif str(message).upper() == "SURVIVOR CHENIN BLANC" :
                vetor = vetor + [((realPath + "\\images\\survivor-branco.png",), "")]
                vetor = vetor + [((realPath + "\\images\\survivor.mp4",), "")]

        elif str(message).upper() == "VINHO PORTO NOVA VERDE" :
                vetor = vetor + [((realPath + "\\images\\porta-nova-branco.jpg",), "")]
                vetor = vetor + [((realPath + "\\images\\porta-nova-verde.mp4",), "")]

        elif str(message).upper() == "VINHO QUINTA DO PINTO ARINTO BRANCO" :
                vetor = vetor + [((realPath + "\\images\\quinta-pinto-arinto-branco.png",), "")]
        elif str(message).upper() == "VINHO 1492 CHARDONNAY" :
                vetor = vetor + [((realPath + "\\images\\chardonay-branco.jpg",), "")]
        elif str(message).upper() == "ME SUGIRA UM VINHO TINTO BOM COM QUEIJO" :
                vetor = vetor + [((realPath + "\\images\\TNT-CABERNET.png",), "")]
                vetor = vetor + [((realPath + "\\images\\vinho-queijo.mp4",), "")]

        elif str(message).upper() == "VINHO BOM COM CHOCOLATE" :
                vetor = vetor + [((realPath + "\\images\\TNT-CABERNET.png",), "")]
        elif str(message).upper() == "VINHO BOM COM PEIXE" :
                vetor = vetor + [((realPath + "\\images\\luson-branco.png",), "")]
                vetor = vetor + [((realPath + "\\images\\vinho-peixe.mp4",), "")]

        elif str(message).upper() == "VINHAS DO LASSO COLHEITA SELECIONADA" :
                vetor = vetor + [((realPath + "\\images\\lasso-colheita-rose.png",), "")]
        elif str(message).upper() == "DOM CAMPOS MOSCATEL" :
                vetor = vetor + [((realPath + "\\images\\dom-campos-rose.png",), "")]
        elif str(message).upper() == "BECAS ROSE MEIO SECO" :
                vetor = vetor + [((realPath + "\\images\\becas-rose.png",), "")]
        elif str(message).upper() == "PORTA DA RAVESSA" :
                vetor = vetor + [((realPath + "\\images\\luson-branco.png",), "")]
               

        return "", chat_history+vetor

   # clear.click(lambda:None, None, gpt, queue=False,)
    msg.submit(respond, [msg, gpt], [msg,gpt])

index = construct_index("docs")
demo.launch()