from huggingface_hub import InferenceClient import gradio as gr import random import prompts clients = [ {'type':'image','name':'black-forest-labs/FLUX.1-dev','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'deepseek-ai/DeepSeek-V2.5-1210','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'Qwen/Qwen2.5-Coder-32B-Instruct','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'meta-llama/Meta-Llama-3-8B','rank':'op','max_tokens':32768,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'Snowflake/snowflake-arctic-embed-l-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'Snowflake/snowflake-arctic-embed-m-v2.0','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'HuggingFaceTB/SmolLM2-1.7B-Instruct','rank':'op','max_tokens':4096,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'Qwen/QwQ-32B-Preview','rank':'op','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'meta-llama/Llama-3.3-70B-Instruct','rank':'pro','max_tokens':16384,'schema':{'bos':'<|im_start|>','eos':'<|im_end|>'}}, {'type':'text','name':'mistralai/Mixtral-8x7B-Instruct-v0.1','rank':'op','max_tokens':40000,'schema':{'bos':'','eos':''}}, ] def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV", "CODE_REVIEW_ASSISTANT", "CONTENT_WRITER_EDITOR", "SOCIAL_MEDIA_MANAGER", "MEME_GENERATOR", "QUESTION_GENERATOR", "IMAGE_GENERATOR", "HUGGINGFACE_FILE_DEV", ] def generate( prompt, history, mod, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): seed = random.randint(1,1111111111111111) client=InferenceClient(clients[int(mod)]['name']) agent=prompts.WEB_DEV if agent_name == "WEB_DEV": agent = prompts.WEB_DEV_SYSTEM_PROMPT if agent_name == "CODE_REVIEW_ASSISTANT": agent = prompts.CODE_REVIEW_ASSISTANT if agent_name == "CONTENT_WRITER_EDITOR": agent = prompts.CONTENT_WRITER_EDITOR if agent_name == "SOCIAL_MEDIA_MANAGER": agent = prompts.SOCIAL_MEDIA_MANAGER if agent_name == "AI_SYSTEM_PROMPT": agent = prompts.AI_SYSTEM_PROMPT if agent_name == "PYTHON_CODE_DEV": agent = prompts.PYTHON_CODE_DEV if agent_name == "MEME_GENERATOR": agent = prompts.MEME_GENERATOR if agent_name == "QUESTION_GENERATOR": agent = prompts.QUESTION_GENERATOR if agent_name == "IMAGE_GENERATOR": agent = prompts.IMAGE_GENERATOR if agent_name == "HUGGINGFACE_FILE_DEV": agent = prompts.HUGGINGFACE_FILE_DEV system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield [prompt,output] return [prompt,output] additional_inputs=[ gr.Dropdown( label="Model", choices=[sn['name'] for sn in clients], value=clients[2]['name'], interactive=True, type='index', ), gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples=[["Write a simple working game in HTML5", agents[0], None, None, None, None, ], ["Choose 3 useful types of AI agents, and create a detailed System Prompt to align each of them.", agents[1], None, None, None, None, ], ["Create 3 of the funniest memes", agents[6], None, None, None, None, ], ["Explain it to me in a childrens story how Nuclear Fission works", agents[4], None, None, None, None, ], ["Show a bunch of examples of catchy ways to post, 'I had a ham sandwich for lunch today'", agents[5], None, None, None, None, ], ["Write high quality personal website to show off my adventure sports hobby", agents[0], None, None, None, None, ], ["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", agents[4], None, None, None, None, ], ["Can you write a short story about a time-traveling detective who solves historical mysteries?", agents[4], None, None, None, None,], ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", agents[4], None, None, None, None,], ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", agents[4], None, None, None, None,], ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", agents[2], None, None, None, None,], ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", agents[3], None, None, None, None,], ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, layout="panel"), additional_inputs=additional_inputs, title="Mixtral 46.7B", examples=examples, concurrency_limit=20, ).queue(default_concurrency_limit=20).launch(max_threads=40)