Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer, AutoModel | |
# load the pre-trained model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/distiluse-base-multilingual-cased-v1') | |
model = AutoModel.from_pretrained('sentence-transformers/distiluse-base-multilingual-cased-v1') | |
# set the app title | |
st.title("Brazilian Portuguese Sentence Similarity Checker") | |
# get the input sentences from the user | |
sentence1 = st.text_input("Enter the first sentence:") | |
sentence2 = st.text_input("Enter the second sentence:") | |
# check if both sentences are not empty | |
if sentence1 and sentence2: | |
# tokenize the sentences and get their IDs | |
input_ids = tokenizer.encode_plus(sentence1, sentence2, padding='max_length', truncation=True, return_tensors='pt') | |
# pass the IDs through the model to get the embeddings | |
with torch.no_grad(): | |
embeddings = model(input_ids['input_ids'], attention_mask=input_ids['attention_mask'])[0] | |
# calculate the cosine similarity between the embeddings | |
similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1]).item() | |
# display the predicted similarity to the user | |
st.write("Similarity score between the sentences:", similarity) | |