File size: 10,991 Bytes
f04f2af
 
 
 
 
 
 
 
5d1455b
 
f04f2af
5d1455b
 
 
f04f2af
5d1455b
 
f04f2af
5d1455b
 
 
f04f2af
5d1455b
 
 
 
 
 
 
 
 
 
 
 
f04f2af
 
 
 
f9a3e45
 
 
 
 
 
 
 
 
f04f2af
f9a3e45
 
 
f04f2af
f9a3e45
f04f2af
 
 
 
 
 
 
f9a3e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04f2af
 
 
 
 
89b4563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04f2af
 
 
 
 
 
 
5d1455b
f04f2af
 
5d1455b
f04f2af
 
 
 
 
 
 
 
 
 
 
 
 
5d1455b
f04f2af
 
 
 
 
 
 
 
 
 
 
 
 
5d1455b
f04f2af
 
 
 
 
 
 
 
 
 
 
 
5d1455b
f04f2af
 
 
 
 
 
 
 
 
5d1455b
 
 
 
 
 
 
 
 
 
 
f04f2af
 
5d1455b
f04f2af
 
 
 
 
 
 
 
 
5d1455b
f04f2af
 
 
 
 
 
 
 
5d1455b
f04f2af
 
 
5d1455b
f04f2af
 
5d1455b
f04f2af
 
5d1455b
89b4563
f04f2af
 
 
89b4563
5d1455b
89b4563
f04f2af
 
89b4563
5d1455b
89b4563
 
f04f2af
 
 
89b4563
 
a567730
89b4563
 
 
 
 
 
 
 
f04f2af
 
 
 
 
5d1455b
f04f2af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os
import openai
import gradio as gr
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity

# OpenAI API Key (Hugging Face Secrets)
openai.api_key = os.getenv("OPENAI_API_KEY", "")

# =============== 0) ๋ชจ๋ธ / df ์ค€๋น„ ===============
# SentenceTransformer
model = SentenceTransformer('jhgan/ko-sroberta-multitask')

# ์ •์‹ ์˜ํ•™์ฑ—๋ด‡ CSV ๋กœ๋“œ
df = pd.read_csv('https://raw.githubusercontent.com/kairess/mental-health-chatbot/master/wellness_dataset_original.csv')
df = df.dropna()
# Unnamed ์ปฌ๋Ÿผ ์ œ๊ฑฐ
if 'Unnamed: 3' in df.columns:
    df = df.drop(columns=['Unnamed: 3'])

# ์ž„๋ฒ ๋”ฉ ํ•„๋“œ
df['embedding'] = df['์œ ์ €'].map(lambda x: model.encode(str(x)))

# ============== 1) ํŒŒ๋ผ๋ฏธํ„ฐ/ํ”„๋กฌํ”„ํŠธ ==============
MAX_TURN = 5  # ์ตœ๋Œ€ ์†Œํฌ๋ผํ…Œ์Šค ์งˆ๋ฌธ ํšŒ์ˆ˜

def set_openai_model():
    """
    GPT-4 ๋Œ€์‹  'gpt-4o' (์‹ค์ œ๋ก  ๋น„์กด์žฌ ๋ชจ๋ธ) 
    => ์‹ค์ œ๋กœ๋Š” 'gpt-3.5-turbo' ๋“ฑ์œผ๋กœ ๊ต์ฒด ๊ถŒ์žฅ
    """
    return "gpt-4o"

EMPATHY_PROMPT = """\
๋‹น์‹ ์€ ์นœ์ ˆํ•œ ์ •์‹ ์˜ํ•™๊ณผ ์ „๋ฌธ์˜์ด๋ฉฐ ์‹ฌ๋ฆฌ์ƒ๋‹ด ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.

์‚ฌ์šฉ์ž์˜ ๋ฌธ์žฅ์„ ๊ฑฐ์˜ ๊ทธ๋Œ€๋กœ ์š”์•ฝํ•˜๋˜, ๋์— '๋Š”๊ตฐ์š”.' ๊ฐ™์€ ๊ณต๊ฐ ์–ด๋ฏธ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์‘๋‹ตํ•˜๊ณ ,
๊ทธ ๋‹ค์Œ ์ค„์— ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์งˆ๋ฌธ์„ ์ž‘์„ฑํ•˜์„ธ์š”.

์œ ์˜์‚ฌํ•ญ:
1) ์ฒซ ๋ฌธ์žฅ์€ ๊ณต๊ฐํ˜• ์š”์•ฝ (์˜ˆ: "์‹œํ—˜์„ ์•ž๋‘๊ณ  ๋ถˆ์•ˆํ•ด์„œ ๋ฉฐ์น ์งธ ์ž ์„ ๋ชป ์ž๊ณ  ๊ณ„์‹œ๋Š”๊ตฐ์š”.")
2) ๋‘ ๋ฒˆ์งธ ๋ฌธ์žฅ์€ ํƒ์ƒ‰/์œ ๋„ ์งˆ๋ฌธ 
   - ์˜ˆ: "์–ด๋–ค ๊ณ ๋ฏผ๋“ค์ด ๋ฐค์— ๊ฐ€์žฅ ๋งŽ์ด ๋– ์˜ค๋ฅด์‹œ๋‚˜์š”?"

(์˜ˆ์‹œ)
์‚ฌ์šฉ์ž: "์‹œํ—˜์„ ์•ž๋‘๊ณ  ๋ถˆ์•ˆํ•ด์„œ ๋ฉฐ์น ์งธ ์ž ์ด ์•ˆ ์™€์š”."
์ฑ—๋ด‡:
"์‹œํ—˜์„ ์•ž๋‘๊ณ  ๋ถˆ์•ˆํ•ด์„œ ๋ฉฐ์น ์งธ ์ž ์„ ๋ชป ์ž๊ณ  ๊ณ„์‹œ๋Š”๊ตฐ์š”.
์‹œํ—˜ ๊ธฐ๊ฐ„์ด ๋‹ค๊ฐ€์˜ฌ ๋•Œ ๊ฐ€์žฅ ํž˜๋“œ์‹  ๋ถ€๋ถ„์€ ๋ฌด์—‡์ธ๊ฐ€์š”?"

์ด์ œ ์‚ฌ์šฉ์ž ๋ฐœํ™”๋ฅผ ์•„๋ž˜์— ์ฃผ๊ฒ ์Šต๋‹ˆ๋‹ค:
์‚ฌ์šฉ์ž ๋ฐœํ™”: "{sentence}"
์ฑ—๋ด‡:
"""

SOCRATIC_PROMPT = """\
๋‹น์‹ ์€ ์ •์‹ ์˜ํ•™๊ณผ ์ „๋ฌธ์˜์ด๋ฉฐ Socratic CBT ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ์‹ฌ๋ฆฌ์ƒ๋‹ด ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.

์•„๋ž˜ '๋Œ€ํ™” ํžŒํŠธ'์—๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ง์ „๊นŒ์ง€ ์ด์•ผ๊ธฐํ•œ ์ƒํ™ฉ์ด๋‚˜ ๊ณ ๋ฏผ์ด ์š”์•ฝ๋˜์–ด ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค.  
์ด ๋‚ด์šฉ์— **๊ณต๊ฐ**์„ ํ‘œ์‹œํ•œ ๋’ค, ๊ทธ ํ๋ฆ„์„ ์ด์–ด๋ฐ›์•„ **์ž์—ฐ์Šค๋Ÿฝ๊ณ  ๊ตฌ์ฒด์ ์ธ ํ›„์† ์งˆ๋ฌธ**์„ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑํ•˜์„ธ์š”.

**์„ธ๋ถ€ ์ง€์นจ**:
1) ์ฒซ ๋ฌธ์žฅ์€ ์‚ฌ์šฉ์ž์˜ ์ƒํ™ฉ์„ ๊ฐ„๋‹จํžˆ ๊ณต๊ฐํ•ด ์ฃผ๋˜, ๋์— '๋Š”๊ตฐ์š”.' ๋“ฑ์˜ ์–ด๋ฏธ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋งˆ๋ฌด๋ฆฌํ•˜์„ธ์š”.  
   - ์˜ˆ: "์‹œํ—˜ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ •๋ง ๋งŽ์€ ๋ถ€๋‹ด์„ ๋А๋ผ๊ณ  ๊ณ„์‹œ๋Š”๊ตฐ์š”."
2) ๋‘ ๋ฒˆ์งธ ๋ฌธ์žฅ์€ ํƒ์ƒ‰/์œ ๋„ ์งˆ๋ฌธ์„ ๋”ฑ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑํ•˜์„ธ์š”.  
   - '์งˆ๋ฌธ:' ๊ฐ™์€ ์ ‘๋‘์–ด๋Š” ์“ฐ์ง€ ๋ง๊ณ , ๋ฐ”๋กœ ๋ฌธ์žฅ์œผ๋กœ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
   - ๋ฐ˜๋“œ์‹œ ๋ฌผ์Œํ‘œ๋กœ ๋๋‚˜์•ผ ํ•ฉ๋‹ˆ๋‹ค (์˜ˆ: "...์–ด๋–ค ๊ฒƒ๋“ค์ด ๊ฐ€์žฅ ํž˜๋“œ์…จ๋‚˜์š”?").
3) ์งˆ๋ฌธ์€ ์‚ฌ์šฉ์ž์˜ ํ˜„์žฌ ๊ณ ๋ฏผ๊ณผ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜์–ด, ์‹ฌ์ธต์ ์ธ ์ž๊ธฐ ํƒ์ƒ‰์„ ์œ ๋„ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
   - ์˜ˆ: "๋ฐค์— ๋“ค๋ ค์˜ค๋Š” ์–ด๋–ค ์ƒ๊ฐ๋“ค์ด ์ž ์„ ๋” ์„ค์น˜๊ฒŒ ๋งŒ๋“œ๋Š”์ง€ ํ˜น์‹œ ๋– ์˜ค๋ฅด์‹œ๋‚˜์š”?"
4) Bullet Point๋‚˜ ๋ชฉ๋ก ๋Œ€์‹ , ๊ฐ„๋‹จํžˆ ๋‘ ์ค„(๊ณต๊ฐ + ์งˆ๋ฌธ) ๊ตฌ์กฐ๋กœ ์ž‘์„ฑํ•˜๋˜, ๋„ˆ๋ฌด ๊ธธ๊ฒŒ ์“ฐ์ง€ ๋ง๊ณ  ๋ถ€๋“œ๋Ÿฌ์šด ํ†ค์„ ์œ ์ง€ํ•˜์„ธ์š”.

(์˜ˆ์‹œ)
์‚ฌ์šฉ์ž ๋ฐœํ™”: "๋‚จํŽธ์ด ๋น„ํŠธ์ฝ”์ธ ํˆฌ์ž๋กœ ์†์„ ์ฉ์ด๋„ค"
์ฑ—๋ด‡:
"๋‚จํŽธ๋ถ„์˜ ํˆฌ์ž ๋ฌธ์ œ๋กœ ์†์ด ๋งŽ์ด ์ƒํ•˜์‹œ๋Š”๊ตฐ์š”.
ํ˜น์‹œ ๊ทธ๋กœ ์ธํ•ด ๊ฐ€์žฅ ํž˜๋“ค๋‹ค๊ณ  ๋А๋ผ๋Š” ๋ถ€๋ถ„์€ ๋ฌด์—‡์ธ๊ฐ€์š”?"

์ด์ œ ์•„๋ž˜ '๋Œ€ํ™” ํžŒํŠธ'๋ฅผ ์ฐธ์กฐํ•˜์—ฌ, 1์ค„ ๊ณต๊ฐ + 1์ค„ ์งˆ๋ฌธ ๋‘ ์ค„๋กœ ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.

๋Œ€ํ™” ํžŒํŠธ:
{context}
"""

ADVICE_PROMPT = """\
๋‹น์‹ ์€ ์ •์‹ ์˜ํ•™๊ณผ ์ „๋ฌธ์˜์ด๋ฉฐ Socratic CBT ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ์‹ฌ๋ฆฌ์ƒ๋‹ด ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.

์•„๋ž˜ ํžŒํŠธ(๋Œ€ํ™” ์š”์•ฝ)์™€ ํ•จ๊ป˜, ๋‹ค์Œ์— ์ œ์‹œ๋œ 5๊ฐ€์ง€ CBT ๊ธฐ๋ฒ•์„ ์ ์ ˆํžˆ ์ฐธ๊ณ ํ•˜์—ฌ,
์‚ฌ์šฉ์ž ๋งž์ถคํ˜•์œผ๋กœ ๊ตฌ์ฒด์ ์ด๊ณ  ๊ณต๊ฐ ์–ด๋ฆฐ ์กฐ์–ธ์„ ํ•œ๊ตญ์–ด๋กœ ์ž‘์„ฑํ•˜์„ธ์š”:

(1) ์ˆ˜๋ฉด ์ œํ•œ ์š”๋ฒ• (Sleep Restriction):
   "์ˆ˜๋ฉด ์ œํ•œ ์š”๋ฒ•์€ ์นจ๋Œ€์— ๋จธ๋ฌด๋Š” ์‹œ๊ฐ„์„ ์˜๋„์ ์œผ๋กœ ์ค„์—ฌ, ์นจ๋Œ€์™€ ์ˆ˜๋ฉด ์‚ฌ์ด์˜ ์˜ฌ๋ฐ”๋ฅธ ์—ฐ๊ฒฐ๊ณ ๋ฆฌ๋ฅผ ์žฌ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
    ์˜ˆ๋ฅผ ๋“ค์–ด, ์นจ๋Œ€์— 10์‹œ๊ฐ„ ๋จธ๋ฌผ์ง€๋งŒ ์‹ค์ œ ์ˆ˜๋ฉด ์‹œ๊ฐ„์ด 5์‹œ๊ฐ„์ธ ๊ฒฝ์šฐ, ์ฒ˜์Œ์—๋Š” 5์‹œ๊ฐ„๋งŒ ์นจ๋Œ€์—์„œ ์ž๊ณ  ์ ์ฐจ ์‹œ๊ฐ„์„ ๋Š˜๋ ค๊ฐ€๋ฉฐ
    '์นจ๋Œ€๋Š” ์ˆ˜๋ฉด์„ ์œ„ํ•œ ์žฅ์†Œ'๋กœ ์ธ์‹ํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค."

(2) ์ž๊ทน ์กฐ์ ˆ ์š”๋ฒ• (Stimulus Control):
   "์ž๊ทน ์กฐ์ ˆ ์š”๋ฒ•์€ ์นจ๋Œ€์™€ ์ˆ˜๋ฉด์˜ ํ™˜๊ฒฝ์„ ์žฌ์ •๋ฆฝํ•˜๋ฉฐ, ์นจ๋Œ€๋ฅผ ์˜ค์ง ์ˆ˜๋ฉด๋งŒ์„ ์œ„ํ•œ ์žฅ์†Œ๋กœ ์ธ์‹ํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ์น˜๋ฃŒ๋ฒ•์ž…๋‹ˆ๋‹ค.
    ์˜ˆ๋ฅผ ๋“ค์–ด, ์นจ๋Œ€์— ๋ˆ„์›Œ ์žˆ์„ ๋•Œ๋Š” ์ฆ‰์‹œ ์ž ๋“ค์ง€ ๋ชปํ•˜๋”๋ผ๋„, ์นจ๋Œ€์—์„œ๋Š” ์˜ค์ง ์ˆ˜๋ฉด์„ ์ทจํ•˜๋Š” ์Šต๊ด€์„ ๊ธฐ๋ฅด๋Š” ๊ฒƒ์ด ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค."

(3) ์ˆ˜๋ฉด ์œ„์ƒ ๊ต์œก (Sleep Hygiene):
   "์ˆ˜๋ฉด ์œ„์ƒ ๊ต์œก์€ ๊ฑด๊ฐ•ํ•œ ์ˆ˜๋ฉด์„ ์œ„ํ•ด ์ƒํ™œ ์Šต๊ด€์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
    ์นดํŽ˜์ธ ์„ญ์ทจ๋ฅผ ์ค„์ด๊ฑฐ๋‚˜ ๋Šฆ์€ ์‹œ๊ฐ„์˜ ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉยท๋ฐ์€ ์กฐ๋ช… ๋“ฑ์„ ํ”ผํ•˜๊ณ , ๋‚ฎ์—๋Š” ๊ฐ€๋ฒผ์šด ์šด๋™์„ ํ•ด๋‘๋Š” ๋“ฑ์˜ ์Šต๊ด€์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค."

(4) ์ด์™„ ๊ธฐ๋ฒ• (Relaxation Techniques):
   "์ด์™„ ๊ธฐ๋ฒ•์€ ์‹ฌํ˜ธํก, ์ ์ง„์  ๊ทผ์œก์ด์™„, ๋ช…์ƒ ๊ฐ™์€ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ž์—ฐ์Šค๋Ÿฌ์šด ์ˆ˜๋ฉด์„ ์œ ๋„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.
    ๋ชธ์„ ์Šค์บ”ํ•˜๊ณ , ๊ฑฐ๋ถํ•œ ์ŠคํŠธ๋ ˆ์นญ์„ ํ’€๊ณ , ๊ทผ์œก ์ด์™„์„ ์—ฐ์Šตํ•˜๋ฉฐ ๊ธด์žฅ์„ ๋‚ฎ์ถ”๋Š” ๊ฒƒ์ด ์ฃผ๋œ ๋ชฉํ‘œ์ž…๋‹ˆ๋‹ค."

(5) ์ธ์ง€ ์žฌ๊ตฌ์„ฑ (Cognitive Restructuring):
   "์ธ์ง€ ์žฌ๊ตฌ์„ฑ์€ โ€˜์šฐ๋ฆฌ๊ฐ€ ์ƒํ™ฉ์„ ์–ด๋–ป๊ฒŒ ๋ฐ”๋ผ๋ณด๋А๋ƒ์— ๋”ฐ๋ผ ๋ชธ์˜ ๋ฐ˜์‘๋„ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ๋‹คโ€™๋Š” ๊ธ์ •์  ๊ด€์ ์œผ๋กœ ์ „ํ™˜์‹œํ‚ค๋ฉฐ,
    ๊ฑฑ์ •์ด๋‚˜ ๋ถˆ์•ˆ, ๋ถ€์ •์ ์ธ ์‚ฌ๊ณ  ํŒจํ„ด์„ ์ ๊ฒ€ยท์กฐ์ ˆํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž์˜ ๊ฑฑ์ •์„ ์™„ํ™”ํ•˜๊ณ 
    ์ž๊ธฐํšจ๋Šฅ๊ฐ์„ ๋†’์ด๋„๋ก ๋•์Šต๋‹ˆ๋‹ค."

์•„๋ž˜ ์‚ฌํ•ญ์„ ๊ผญ ๋ฐ˜์˜ํ•ด ์ฃผ์„ธ์š”:
- ๋ถˆ์•ˆ์„ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์œ„ ๊ธฐ๋ฒ•๋“ค์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ๋…น์ด๋˜, ์‚ฌ์šฉ์ž์˜ ํ˜„์žฌ ์ƒํ™ฉ(ํžŒํŠธ์— ๋‹ด๊ธด ๊ณ ๋ฏผ)๊ณผ ์—ฐ๊ฒฐํ•ด ์ด์•ผ๊ธฐํ•˜์„ธ์š”.
- ๋„ˆ๋ฌด ๋”ฑ๋”ฑํ•˜์ง€ ์•Š๊ฒŒ, ๋ถ€๋“œ๋Ÿฝ๊ณ  ์นœ์ ˆํ•œ ๋งํˆฌ๋ฅผ ์‚ฌ์šฉํ•˜์„ธ์š”.

ํžŒํŠธ:
{hints}

์กฐ์–ธ:
"""

# ============== 2) OpenAI ํ˜ธ์ถœ ํ•จ์ˆ˜๋“ค ==============

def call_empathy(user_input: str) -> str:
    """ ๊ณต๊ฐ ์š”์•ฝ ์ƒ์„ฑ """
    prompt = EMPATHY_PROMPT.format(sentence=user_input)
    resp = openai.ChatCompletion.create(
        model=set_openai_model(),
        messages=[
            {"role":"system","content":"๋‹น์‹ ์€ ์นœ์ ˆํ•œ ์‹ฌ๋ฆฌ์ƒ๋‹ด ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค."},
            {"role":"user","content":prompt}
        ],
        max_tokens=150,
        temperature=0.7
    )
    return resp.choices[0].message.content.strip()

def call_socratic_question(context: str) -> str:
    """ ์†Œํฌ๋ผํ…Œ์Šค ํ›„์†์งˆ๋ฌธ 1๋ฌธ์žฅ ์ƒ์„ฑ """
    prompt = f"{SOCRATIC_PROMPT}\n\n๋Œ€ํ™” ํžŒํŠธ:\n{context}"
    resp = openai.ChatCompletion.create(
        model=set_openai_model(),
        messages=[
            {"role":"system","content":"๋‹น์‹ ์€ Socratic CBT ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค."},
            {"role":"user","content":prompt}
        ],
        max_tokens=200,
        temperature=0.7
    )
    return resp.choices[0].message.content.strip()

def call_advice(hints: str) -> str:
    """ ์ตœ์ข… CBT ์กฐ์–ธ """
    final_prompt = ADVICE_PROMPT.format(hints=hints)
    resp = openai.ChatCompletion.create(
        model=set_openai_model(),
        messages=[
            {"role":"system","content":"๋‹น์‹ ์€ Socratic CBT ๊ธฐ๋ฒ• ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค."},
            {"role":"user","content":final_prompt}
        ],
        max_tokens=700,
        temperature=0.8
    )
    return resp.choices[0].message.content.strip()

# ============== 3) predict ํ•จ์ˆ˜: EMPATHYโ†’SQโ†’ADVICE ==============
def predict(user_input: str, state: dict):
    history = state.get("history", [])
    stage = state.get("stage", "EMPATHY")
    turn = state.get("turn", 0)
    hints = state.get("hints", [])

    # 1) ์‚ฌ์šฉ์ž ๋ฐœํ™” ๊ธฐ๋ก
    history.append(("User", user_input))

    # 2) ์œ ์‚ฌ๋„ ๊ณ„์‚ฐ โ†’ df['์ฑ—๋ด‡']
    query_emb = model.encode(user_input)
    df["sim"] = df["embedding"].map(lambda emb: cosine_similarity([query_emb],[emb]).squeeze())

    # idxmax() ์—๋Ÿฌ ๋ฐฉ์ง€: df๊ฐ€ ๋น„์—ˆ๊ฑฐ๋‚˜ sim์ด NaN์ธ ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
    if df["sim"].count() == 0:
        # fallback: ๊ทธ๋ƒฅ "์ง€์‹๋ฒ ์ด์Šค๊ฐ€ ๋น„์–ด ์žˆ์Šต๋‹ˆ๋‹ค" ๋“ฑ
        kb_answer = "์ ํ•ฉํ•œ ์ง€์‹๋ฒ ์ด์Šค ์‘๋‹ต์„ ์ฐพ์ง€ ๋ชปํ–ˆ์–ด์š”."
    else:
        kb_answer = df.loc[df["sim"].idxmax(), "์ฑ—๋ด‡"]

    hints.append(f"[KB] {kb_answer}")

    # 3) ๋‹จ๊ณ„๋ณ„ ๋ถ„๊ธฐ
    if stage == "EMPATHY":
        empathic = call_empathy(user_input)
        history.append(("Chatbot", empathic))
        hints.append(empathic)
        stage = "SQ"
        turn = 0
        return history, {"history": history, "stage": stage, "turn": turn, "hints": hints}

    if stage == "SQ" and turn < MAX_TURN:
        # ์ „์ฒด ๋Œ€ํ™” + hints โ†’ ์†Œํฌ๋ผํ…Œ์Šค ์งˆ๋ฌธ
        context_text = "\n".join([f"{r}: {c}" for (r,c) in history]) + "\n" + "\n".join(hints)
        sq = call_socratic_question(context_text)
        history.append(("Chatbot", sq))
        hints.append(sq)
        turn += 1
        return history, {"history": history, "stage": stage, "turn": turn, "hints": hints}

    # ADVICE ๋‹จ๊ณ„
    stage = "END"
    combined_hints = "\n".join(hints)
    advice = call_advice(combined_hints)
    history.append(("Chatbot", advice))

    return history, {"history":history, "stage":stage, "turn":turn, "hints":hints}

# ============== 4) Gradio UI ==============
def gradio_predict(user_input, chat_state):
    new_history, new_state = predict(user_input, chat_state)

    # display_history: list of [์‚ฌ์šฉ์ž๋ฌธ์ž์—ด, ์ฑ—๋ด‡๋ฌธ์ž์—ด]
    display_history = []
    for (role, txt) in new_history:
        if role == "User":
            display_history.append([txt, ""])
        else:
            if len(display_history) == 0:
                display_history.append(["", txt])
            else:
                display_history[-1][1] = txt

    # ์„ธ ๋ฒˆ์งธ ๊ฐ’์œผ๋กœ "" ๋ฐ˜ํ™˜ํ•˜๋ฉด, textbox๊ฐ€ ์ž๋™์œผ๋กœ ๋น„์›Œ์ง
    return display_history, new_state, ""

def create_app():
    with gr.Blocks() as demo:
        chatbot = gr.Chatbot()
        chat_state = gr.State({"history": [], "stage": "EMPATHY", "turn": 0, "hints": []})
        txt = gr.Textbox(show_label=False, placeholder="ํ˜น์‹œ ์ž ์„ ์ด๋ฃจ์ง€ ๋ชปํ•˜๊ณ  ๊ณ„์‹ ๊ฐ€์š”? ๋‹น์‹ ์˜ ์ด์•ผ๊ธฐ๋ฅผ ๋“ฃ๊ณ  ์‹ถ์–ด์š”! ๊ฑฑ์ •์ด ์žˆ์œผ์‹œ๋ฉด ํŽธํ•˜๊ฒŒ ๋ง์”€ํ•ด์ฃผ์„ธ์š” :D")

        # outputs์— txt๋ฅผ ์ถ”๊ฐ€ + ์ฝœ๋ฐฑ์—์„œ ์„ธ ๋ฒˆ์งธ ๊ฐ’์„ ""๋กœ ๋ฆฌํ„ด
        txt.submit(
            fn=gradio_predict,
            inputs=[txt, chat_state],
            outputs=[chatbot, chat_state, txt]
        )

    return demo

app = create_app()

if __name__ == "__main__":
    # ์‹ค์ œ ๋ฐฐํฌ/์‹คํ–‰
    app.launch(debug=True, share=True)