Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
from PIL import Image
|
4 |
-
import pytesseract
|
5 |
-
import PyPDF2
|
6 |
-
import pdfplumber
|
7 |
import torch
|
|
|
|
|
|
|
8 |
|
9 |
-
# Load
|
|
|
|
|
|
|
10 |
@st.cache_resource
|
11 |
-
def
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
# OCR
|
17 |
def extract_text_from_image(image):
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
def extract_text_from_pdf(pdf_file):
|
22 |
text = ""
|
23 |
-
with
|
24 |
-
for page in pdf
|
25 |
-
text += page.
|
26 |
return text
|
27 |
|
28 |
-
#
|
29 |
def analyze_report(text):
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
interpretation = classifier(text, candidate_labels=["interpretation", "normal", "abnormal"], multi_label=True)
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
38 |
|
39 |
return {
|
40 |
"summary": summary,
|
41 |
-
"interpretation": interpretation
|
42 |
-
"recommendations": recommendations
|
43 |
}
|
44 |
|
45 |
# Streamlit UI
|
46 |
-
st.title("
|
47 |
-
st.write("Upload your medical lab report (PDF/Image)
|
48 |
|
49 |
uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
|
50 |
|
@@ -57,12 +66,11 @@ if uploaded_file:
|
|
57 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
58 |
else:
|
59 |
with st.spinner("Extracting text from Image..."):
|
60 |
-
|
61 |
-
extracted_text = extract_text_from_image(image)
|
62 |
|
63 |
# Analyze the extracted text
|
64 |
if extracted_text:
|
65 |
-
with st.spinner("Analyzing report..."):
|
66 |
result = analyze_report(extracted_text)
|
67 |
|
68 |
# Display the results
|
@@ -70,11 +78,9 @@ if uploaded_file:
|
|
70 |
st.write(result['summary'])
|
71 |
|
72 |
st.subheader("Interpretation of Results")
|
73 |
-
|
74 |
-
st.write(f"- {label.capitalize()}")
|
75 |
|
76 |
st.subheader("Actionable Recommendations")
|
77 |
-
|
78 |
-
st.write(f"- {rec.capitalize()}")
|
79 |
else:
|
80 |
st.error("No text could be extracted. Please try with a different file.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
+
import easyocr
|
5 |
+
from PIL import Image
|
6 |
+
import fitz # PyMuPDF
|
7 |
|
8 |
+
# Load EasyOCR Reader
|
9 |
+
reader = easyocr.Reader(['en'])
|
10 |
+
|
11 |
+
# Load ClinicalBERT Model
|
12 |
@st.cache_resource
|
13 |
+
def load_clinicalbert():
|
14 |
+
model_name = "emilyalsentzer/Bio_ClinicalBERT"
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
17 |
+
return pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
18 |
|
19 |
+
clinicalbert_analyzer = load_clinicalbert()
|
20 |
|
21 |
+
# OCR function using EasyOCR
|
22 |
def extract_text_from_image(image):
|
23 |
+
image = Image.open(image).convert('RGB')
|
24 |
+
result = reader.readtext(image, detail=0)
|
25 |
+
extracted_text = " ".join(result)
|
26 |
+
return extracted_text
|
27 |
|
28 |
+
# PDF text extraction using PyMuPDF
|
29 |
def extract_text_from_pdf(pdf_file):
|
30 |
text = ""
|
31 |
+
with fitz.open(pdf_file) as pdf:
|
32 |
+
for page in pdf:
|
33 |
+
text += page.get_text()
|
34 |
return text
|
35 |
|
36 |
+
# Analysis function using ClinicalBERT
|
37 |
def analyze_report(text):
|
38 |
+
# Define prompts for analysis
|
39 |
+
summary_prompt = f"Summarize the following medical report:\n{text}"
|
40 |
+
interpretation_prompt = f"Interpret the following lab results:\n{text}"
|
41 |
+
recommendation_prompt = f"Provide actionable recommendations based on this medical report:\n{text}"
|
|
|
42 |
|
43 |
+
# Use ClinicalBERT for text analysis
|
44 |
+
summary = clinicalbert_analyzer(summary_prompt)[0]['label']
|
45 |
+
interpretation = clinicalbert_analyzer(interpretation_prompt)[0]['label']
|
46 |
+
recommendations = clinicalbert_analyzer(recommendation_prompt)[0]['label']
|
47 |
|
48 |
return {
|
49 |
"summary": summary,
|
50 |
+
"interpretation": interpretation,
|
51 |
+
"recommendations": recommendations
|
52 |
}
|
53 |
|
54 |
# Streamlit UI
|
55 |
+
st.title("Clinical Lab Report Analyzer")
|
56 |
+
st.write("Upload your medical lab report (PDF/Image) to get a summary, interpretation, and actionable recommendations.")
|
57 |
|
58 |
uploaded_file = st.file_uploader("Choose a PDF/Image file", type=["pdf", "png", "jpg", "jpeg"])
|
59 |
|
|
|
66 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
67 |
else:
|
68 |
with st.spinner("Extracting text from Image..."):
|
69 |
+
extracted_text = extract_text_from_image(uploaded_file)
|
|
|
70 |
|
71 |
# Analyze the extracted text
|
72 |
if extracted_text:
|
73 |
+
with st.spinner("Analyzing the medical report using ClinicalBERT..."):
|
74 |
result = analyze_report(extracted_text)
|
75 |
|
76 |
# Display the results
|
|
|
78 |
st.write(result['summary'])
|
79 |
|
80 |
st.subheader("Interpretation of Results")
|
81 |
+
st.write(result['interpretation'])
|
|
|
82 |
|
83 |
st.subheader("Actionable Recommendations")
|
84 |
+
st.write(result['recommendations'])
|
|
|
85 |
else:
|
86 |
st.error("No text could be extracted. Please try with a different file.")
|