Spaces:
Sleeping
Sleeping
Delete huggingface_llm.py
Browse files- huggingface_llm.py +0 -60
huggingface_llm.py
DELETED
@@ -1,60 +0,0 @@
|
|
1 |
-
from langchain.llms.base import LLM
|
2 |
-
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
3 |
-
from typing import Any, List, Optional, Dict
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
import torch
|
6 |
-
from pydantic import Field, PrivateAttr
|
7 |
-
|
8 |
-
class HuggingFaceLLM(LLM):
|
9 |
-
model_id: str = Field(..., description="Hugging Face model ID")
|
10 |
-
temperature: float = Field(default=0.7, description="Sampling temperature")
|
11 |
-
max_tokens: int = Field(default=256, description="Maximum number of tokens to generate")
|
12 |
-
device: str = Field(default="cpu", description="Device to run the model on")
|
13 |
-
|
14 |
-
_model: Optional[Any] = PrivateAttr(default=None)
|
15 |
-
_tokenizer: Optional[Any] = PrivateAttr(default=None)
|
16 |
-
|
17 |
-
def __init__(self, **kwargs):
|
18 |
-
super().__init__(**kwargs)
|
19 |
-
self.device = "cuda" if torch.cuda.is_available() and self.device != "cpu" else "cpu"
|
20 |
-
self._load_model()
|
21 |
-
|
22 |
-
def _load_model(self):
|
23 |
-
self._tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
24 |
-
self._model = AutoModelForCausalLM.from_pretrained(self.model_id)
|
25 |
-
self._model = self._model.to(torch.device(self.device))
|
26 |
-
|
27 |
-
@property
|
28 |
-
def _llm_type(self) -> str:
|
29 |
-
return "custom_huggingface"
|
30 |
-
|
31 |
-
def _call(
|
32 |
-
self,
|
33 |
-
prompt: str,
|
34 |
-
stop: Optional[List[str]] = None,
|
35 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
36 |
-
**kwargs: Any,
|
37 |
-
) -> str:
|
38 |
-
input_ids = self._tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
39 |
-
|
40 |
-
with torch.no_grad():
|
41 |
-
output = self._model.generate(
|
42 |
-
input_ids,
|
43 |
-
max_new_tokens=self.max_tokens,
|
44 |
-
temperature=self.temperature,
|
45 |
-
do_sample=True,
|
46 |
-
pad_token_id=self._tokenizer.eos_token_id
|
47 |
-
)
|
48 |
-
|
49 |
-
response = self._tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
-
return response[len(prompt):].strip()
|
51 |
-
|
52 |
-
@property
|
53 |
-
def _identifying_params(self) -> Dict[str, Any]:
|
54 |
-
return {"model_id": self.model_id, "temperature": self.temperature, "max_tokens": self.max_tokens, "device": self.device}
|
55 |
-
|
56 |
-
def __setattr__(self, name, value):
|
57 |
-
if name in ["_model", "_tokenizer"]:
|
58 |
-
object.__setattr__(self, name, value)
|
59 |
-
else:
|
60 |
-
super().__setattr__(name, value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|