Spaces:
Sleeping
Sleeping
Update huggingface_llm.py
Browse files- huggingface_llm.py +9 -7
huggingface_llm.py
CHANGED
@@ -9,18 +9,20 @@ class HuggingFaceLLM(LLM):
|
|
9 |
model_id: str = Field(..., description="Hugging Face model ID")
|
10 |
temperature: float = Field(default=0.7, description="Sampling temperature")
|
11 |
max_tokens: int = Field(default=256, description="Maximum number of tokens to generate")
|
|
|
|
|
12 |
_model: Any = PrivateAttr()
|
13 |
_tokenizer: Any = PrivateAttr()
|
14 |
-
# _device: str = PrivateAttr()
|
15 |
|
16 |
def __init__(self, **kwargs):
|
17 |
super().__init__(**kwargs)
|
18 |
-
|
|
|
19 |
self._load_model()
|
20 |
|
21 |
def _load_model(self):
|
22 |
self._tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
23 |
-
self._model = AutoModelForCausalLM.from_pretrained(self.model_id)
|
24 |
|
25 |
@property
|
26 |
def _llm_type(self) -> str:
|
@@ -33,8 +35,8 @@ class HuggingFaceLLM(LLM):
|
|
33 |
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
34 |
**kwargs: Any,
|
35 |
) -> str:
|
36 |
-
input_ids = self._tokenizer.encode(prompt, return_tensors="pt")
|
37 |
-
|
38 |
with torch.no_grad():
|
39 |
output = self._model.generate(
|
40 |
input_ids,
|
@@ -43,10 +45,10 @@ class HuggingFaceLLM(LLM):
|
|
43 |
do_sample=True,
|
44 |
pad_token_id=self._tokenizer.eos_token_id
|
45 |
)
|
46 |
-
|
47 |
response = self._tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
return response[len(prompt):].strip()
|
49 |
|
50 |
@property
|
51 |
def _identifying_params(self) -> Dict[str, Any]:
|
52 |
-
return {"model_id": self.model_id, "temperature": self.temperature, "max_tokens": self.max_tokens}
|
|
|
9 |
model_id: str = Field(..., description="Hugging Face model ID")
|
10 |
temperature: float = Field(default=0.7, description="Sampling temperature")
|
11 |
max_tokens: int = Field(default=256, description="Maximum number of tokens to generate")
|
12 |
+
device: str = Field(default="cpu", description="Device to run the model on")
|
13 |
+
|
14 |
_model: Any = PrivateAttr()
|
15 |
_tokenizer: Any = PrivateAttr()
|
|
|
16 |
|
17 |
def __init__(self, **kwargs):
|
18 |
super().__init__(**kwargs)
|
19 |
+
if self.device == "cpu":
|
20 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
self._load_model()
|
22 |
|
23 |
def _load_model(self):
|
24 |
self._tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
25 |
+
self._model = AutoModelForCausalLM.from_pretrained(self.model_id).to(self.device)
|
26 |
|
27 |
@property
|
28 |
def _llm_type(self) -> str:
|
|
|
35 |
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
36 |
**kwargs: Any,
|
37 |
) -> str:
|
38 |
+
input_ids = self._tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
39 |
+
|
40 |
with torch.no_grad():
|
41 |
output = self._model.generate(
|
42 |
input_ids,
|
|
|
45 |
do_sample=True,
|
46 |
pad_token_id=self._tokenizer.eos_token_id
|
47 |
)
|
48 |
+
|
49 |
response = self._tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
return response[len(prompt):].strip()
|
51 |
|
52 |
@property
|
53 |
def _identifying_params(self) -> Dict[str, Any]:
|
54 |
+
return {"model_id": self.model_id, "temperature": self.temperature, "max_tokens": self.max_tokens, "device": self.device}
|