Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,23 +14,6 @@ from langchain_core.output_parsers import StrOutputParser
|
|
14 |
from langchain_core.runnables import RunnableLambda
|
15 |
from datetime import date
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
17 |
-
# from setup import download_olmo_model, OLMO_MODEL
|
18 |
-
|
19 |
-
# Ensure model is downloaded before proceeding
|
20 |
-
# @st.cache_resource
|
21 |
-
# def load_model():
|
22 |
-
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
23 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
25 |
-
# return model, tokenizer
|
26 |
-
|
27 |
-
# model, tokenizer = load_model()
|
28 |
-
|
29 |
-
# # Define the path to your bash script
|
30 |
-
# script_path = "./start.sh"
|
31 |
-
|
32 |
-
# # Run the bash script
|
33 |
-
# subprocess.run([script_path], shell=True, check=True)
|
34 |
|
35 |
# Environment variables
|
36 |
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
@@ -38,15 +21,7 @@ os.environ['LANGCHAIN_ENDPOINT'] = 'https://api.smith.langchain.com'
|
|
38 |
os.environ['LANGCHAIN_API_KEY'] = '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'
|
39 |
|
40 |
|
41 |
-
# Load model and tokenizer
|
42 |
-
# @st.cache_resource
|
43 |
-
# def load_model():
|
44 |
-
# model_name = "allenai/OLMo-7B-Instruct"
|
45 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
47 |
-
# return model, tokenizer
|
48 |
|
49 |
-
# model, tokenizer = load_model()
|
50 |
def load_from_pickle(filename):
|
51 |
with open(filename, "rb") as file:
|
52 |
return pickle.load(file)
|
@@ -185,13 +160,12 @@ if prompt := st.chat_input("How may I assist you today?"):
|
|
185 |
query=st.session_state.messages[-1]['content']
|
186 |
tab1, tab2 = st.tabs(["Answer", "Sources"])
|
187 |
with tab1:
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
full_answer += chunk
|
193 |
-
placeholder.markdown(full_answer,unsafe_allow_html=True)
|
194 |
|
|
|
|
|
195 |
with tab2:
|
196 |
for i, source in enumerate(st.session_state.context_sources):
|
197 |
name = f'{source}'
|
|
|
14 |
from langchain_core.runnables import RunnableLambda
|
15 |
from datetime import date
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Environment variables
|
19 |
os.environ['LANGCHAIN_TRACING_V2'] = 'true'
|
|
|
21 |
os.environ['LANGCHAIN_API_KEY'] = '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'
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
def load_from_pickle(filename):
|
26 |
with open(filename, "rb") as file:
|
27 |
return pickle.load(file)
|
|
|
160 |
query=st.session_state.messages[-1]['content']
|
161 |
tab1, tab2 = st.tabs(["Answer", "Sources"])
|
162 |
with tab1:
|
163 |
+
with st.spinner("Generating answer..."):
|
164 |
+
# Generate the full answer at once
|
165 |
+
full_answer = chain.invoke({"question": query, "chat_history": st.session_state.messages})
|
|
|
|
|
|
|
166 |
|
167 |
+
# Display the full answer
|
168 |
+
st.markdown(full_answer, unsafe_allow_html=True)
|
169 |
with tab2:
|
170 |
for i, source in enumerate(st.session_state.context_sources):
|
171 |
name = f'{source}'
|