Spaces:
Running
Running
File size: 3,963 Bytes
358dcca 33ec7f4 358dcca 33ec7f4 2a42dca 358dcca 33ec7f4 2a42dca 33ec7f4 358dcca 33ec7f4 358dcca 33ec7f4 358dcca 0674733 358dcca 33ec7f4 358dcca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import streamlit as st
from langchain_community.document_loaders import PyPDFLoader
## dockerized streamlit app wants to read from os.getenv(), otherwise use st.secrets
import os
api_key = os.getenv("LITELLM_KEY")
if api_key is None:
api_key = st.secrets["LITELLM_KEY"]
cirrus_key = os.getenv("CIRRUS_KEY")
if cirrus_key is None:
cirrus_key = st.secrets["CIRRUS_KEY"]
st.title("HWC LLM Testing")
'''
(Demo will take a while to load first while processing all data! Will be pre-processed in future...)
'''
# +
import bs4
from langchain import hub
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
import os
import requests
import zipfile
def download_and_unzip(url, output_dir):
response = requests.get(url)
zip_file_path = os.path.basename(url)
with open(zip_file_path, 'wb') as f:
f.write(response.content)
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(output_dir)
os.remove(zip_file_path)
url = "https://minio.carlboettiger.info/public-data/hwc.zip"
output_dir = "hwc"
download_and_unzip(url, "hwc")
import pathlib
@st.cache_data
def pdf_loader(path):
all_documents = []
docs_dir = pathlib.Path(path)
for file in docs_dir.iterdir():
loader = PyPDFLoader(file)
documents = loader.load()
all_documents.extend(documents)
return all_documents
docs = pdf_loader('hwc/')
# Set up the language model
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model = "llama3", api_key = api_key, base_url = "https://llm.nrp-nautilus.io", temperature=0)
## Cirrus instead:
# Build a retrival agent
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=300)
splits = text_splitter.split_documents(docs)
@st.cache_resource
def vector_store(_splits):
embedding = OpenAIEmbeddings(
model = "cirrus",
api_key = cirrus_key,
base_url = "https://llm.cirrus.carlboettiger.info/v1",
)
vectorstore = InMemoryVectorStore.from_documents(documents=_splits, embedding=embedding)
retriever = vectorstore.as_retriever()
return retriever
retriever = vector_store(splits)
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
system_prompt = (
"You are an assistant for question-answering tasks. "
"Use the following scientific articles as the retrieved context to answer "
"the question. If you don't know the answer, say that you "
"don't know. Use up to five sentences maximum and keep the "
"answer concise."
"\n\n"
"{context}"
)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
("human", "{input}"),
]
)
question_answer_chain = create_stuff_documents_chain(llm, prompt)
rag_chain = create_retrieval_chain(retriever, question_answer_chain)
# Place agent inside a streamlit application:
if prompt := st.chat_input("What are the most cost-effective prevention methods for elephants raiding my crops?"):
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
results = rag_chain.invoke({"input": prompt})
st.write(results['answer'])
with st.expander("See context matched"):
st.write(results['context'])
# adapt for memory / multi-question interaction with:
# https://python.langchain.com/docs/tutorials/qa_chat_history/
# Also see structured outputs.
|