Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import pickle
|
4 |
+
import joblib
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import AutoModelForImageClassification
|
9 |
+
from torch import nn
|
10 |
+
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
# Paths in Hugging Face model repository
|
14 |
+
MODEL_PATH = "DeiT_Model_Parameter.pth"
|
15 |
+
ENCODER_PATH = "label_encoder.pkl"
|
16 |
+
|
17 |
+
# Ensure device is set
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
def load_label_encoder():
|
21 |
+
# Load label encoder from Hugging Face repository
|
22 |
+
label_encoder_path = hf_hub_download(repo_id="bobs24/DeiT-Classification-Apparel", filename=ENCODER_PATH)
|
23 |
+
label_encoder = joblib.load(label_encoder_path)
|
24 |
+
return label_encoder
|
25 |
+
|
26 |
+
# Define the model class
|
27 |
+
class CustomModel(nn.Module):
|
28 |
+
def __init__(self, num_classes):
|
29 |
+
super(CustomModel, self).__init__()
|
30 |
+
self.base_model = AutoModelForImageClassification.from_pretrained(
|
31 |
+
"facebook/deit-base-patch16-224",
|
32 |
+
num_labels=num_classes,
|
33 |
+
ignore_mismatched_sizes=True
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return self.base_model(x).logits
|
38 |
+
|
39 |
+
def load_model():
|
40 |
+
# Load the model from Hugging Face repository
|
41 |
+
model_path = hf_hub_download(repo_id="bobs24/DeiT-Classification-Apparel", filename=MODEL_PATH)
|
42 |
+
label_encoder = load_label_encoder()
|
43 |
+
model = CustomModel(num_classes=len(label_encoder.classes_)).to(device)
|
44 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
45 |
+
model.device = device
|
46 |
+
model.eval()
|
47 |
+
|
48 |
+
return model, label_encoder
|
49 |
+
|
50 |
+
# Load the model and label encoder
|
51 |
+
model, label_encoder = load_model()
|
52 |
+
|
53 |
+
# Preprocessing as per your training setup
|
54 |
+
preprocess = transforms.Compose([
|
55 |
+
transforms.Resize(256), # Resize to 256x256 (a bit larger than 224)
|
56 |
+
transforms.CenterCrop(224), # Crop the center to 224x224
|
57 |
+
transforms.ToTensor(), # Convert to tensor
|
58 |
+
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) # Normalize as per DeiT
|
59 |
+
])
|
60 |
+
|
61 |
+
# Function to perform predictions and show probabilities
|
62 |
+
def predict(image):
|
63 |
+
# Apply preprocessing to the input image
|
64 |
+
image = Image.fromarray(image).convert("RGB")
|
65 |
+
input_tensor = preprocess(image).unsqueeze(0).to(device)
|
66 |
+
|
67 |
+
# Perform inference
|
68 |
+
with torch.no_grad():
|
69 |
+
output = model(input_tensor)
|
70 |
+
|
71 |
+
# Apply softmax to get probabilities
|
72 |
+
probabilities = F.softmax(output, dim=1)
|
73 |
+
|
74 |
+
# Get the predicted label and confidence
|
75 |
+
predicted_label = torch.argmax(probabilities, dim=1).item()
|
76 |
+
confidence = probabilities[0, predicted_label].item()
|
77 |
+
|
78 |
+
# Get the class name using label encoder
|
79 |
+
class_name = label_encoder.inverse_transform([predicted_label])[0]
|
80 |
+
|
81 |
+
return f"Predicted class: {class_name}, Confidence: {confidence:.4f}"
|
82 |
+
|
83 |
+
# Create Gradio interface
|
84 |
+
iface = gr.Interface(fn=predict, inputs=gr.Image(type="numpy"), outputs="text", live=True)
|
85 |
+
|
86 |
+
# Launch the interface
|
87 |
+
iface.launch()
|