Bryan Bimantaka (Monash University)
commited on
Commit
·
d774ace
1
Parent(s):
d1161d3
add cache
Browse files- .ipynb_checkpoints/app-checkpoint.py +66 -49
- .ipynb_checkpoints/main-checkpoint.py +128 -0
- app.py +62 -52
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
2 |
-
from langchain_community.document_loaders import TextLoader
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
import transformers
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from datasets import Dataset, Features, Value, Sequence
|
@@ -11,14 +11,27 @@ import torch
|
|
11 |
import gradio as gr
|
12 |
|
13 |
ST_MODEL = "LazarusNLP/all-indo-e5-small-v4"
|
14 |
-
BASE_MODEL = "meta-llama/
|
15 |
DOMAIN_DATA_DIR = "./data"
|
|
|
16 |
SYS_MSG = """
|
17 |
Kamu adalah asisten dalam sebuah perusahaan penyedia listrik (PLN) yang membantu menjawab pertanyaan seputar 'sexual harassment' dalam Bahasa Indonesia.
|
18 |
Jawab dengan singkat menggunakan konteks untuk menjawab pertanyaan dalam Bahasa Indonesia.
|
19 |
"""
|
20 |
-
TOP_K = 3
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
domain_data = [os.path.join(DOMAIN_DATA_DIR, f) for f in os.listdir(DOMAIN_DATA_DIR) if f.endswith('.txt')]
|
23 |
pages = []
|
24 |
|
@@ -57,58 +70,62 @@ def retrieve(query, top_k=3):
|
|
57 |
|
58 |
return scores, retrieved_examples['text']
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
def respond(
|
63 |
-
message,
|
64 |
-
history: list[tuple[str, str]],
|
65 |
-
# system_message,
|
66 |
-
max_tokens=256,
|
67 |
-
temperature=0.6,
|
68 |
-
top_p=0.9,
|
69 |
-
):
|
70 |
-
# Retrieve top 3 relevant documents based on the user's query
|
71 |
-
_, retrieved_docs = retrieve(message, top_k=TOP_K)
|
72 |
-
|
73 |
-
# Prepare the retrieved context
|
74 |
-
context = "\n".join([f"Dokumen {i+1}: {doc}" for i, doc in enumerate(retrieved_docs)])
|
75 |
-
|
76 |
-
messages = [{"role": "system", "content": SYS_MSG}]
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
messages,
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
107 |
demo = gr.ChatInterface(
|
108 |
-
|
109 |
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
|
|
110 |
)
|
111 |
|
112 |
-
|
113 |
if __name__ == "__main__":
|
114 |
-
demo.launch()
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
2 |
+
from langchain_community.document_loaders import TextLoader
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
import transformers
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from datasets import Dataset, Features, Value, Sequence
|
|
|
11 |
import gradio as gr
|
12 |
|
13 |
ST_MODEL = "LazarusNLP/all-indo-e5-small-v4"
|
14 |
+
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
15 |
DOMAIN_DATA_DIR = "./data"
|
16 |
+
CACHE_DIR = "./cache"
|
17 |
SYS_MSG = """
|
18 |
Kamu adalah asisten dalam sebuah perusahaan penyedia listrik (PLN) yang membantu menjawab pertanyaan seputar 'sexual harassment' dalam Bahasa Indonesia.
|
19 |
Jawab dengan singkat menggunakan konteks untuk menjawab pertanyaan dalam Bahasa Indonesia.
|
20 |
"""
|
|
|
21 |
|
22 |
+
# LOGIN HF Auth
|
23 |
+
from huggingface_hub import login
|
24 |
+
|
25 |
+
# Ambil token API dari environment variable (jika disimpan di secrets)
|
26 |
+
import os
|
27 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
28 |
+
|
29 |
+
# Autentikasi secara manual menggunakan token
|
30 |
+
login(token=hf_token)
|
31 |
+
|
32 |
+
# ----------------------------------------------------------------------------------------------------------
|
33 |
+
# RAG PROCESS
|
34 |
+
TOP_K = 1
|
35 |
domain_data = [os.path.join(DOMAIN_DATA_DIR, f) for f in os.listdir(DOMAIN_DATA_DIR) if f.endswith('.txt')]
|
36 |
pages = []
|
37 |
|
|
|
70 |
|
71 |
return scores, retrieved_examples['text']
|
72 |
|
73 |
+
# END RAG
|
74 |
+
# ----------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# LLM
|
77 |
+
# use quantization to lower GPU usage
|
78 |
+
bnb_config = BitsAndBytesConfig(
|
79 |
+
load_in_4bit=True,
|
80 |
+
bnb_4bit_use_double_quant=True,
|
81 |
+
bnb_4bit_quant_type="nf4",
|
82 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
83 |
+
)
|
84 |
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, cache_dir=CACHE_DIR)
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
BASE_MODEL,
|
88 |
+
torch_dtype=torch.bfloat16,
|
89 |
+
# device_map="auto",
|
90 |
+
quantization_config=bnb_config,
|
91 |
+
cache_dir=CACHE_DIR
|
92 |
+
)
|
93 |
|
94 |
+
def format_prompt(prompt, retrieved_documents, k):
|
95 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
96 |
+
PROMPT = f"Pertanyaan:{prompt}\nKonteks:"
|
97 |
+
for idx in range(k) :
|
98 |
+
PROMPT+= f"{retrieved_documents[idx]}\n"
|
99 |
+
return PROMPT
|
100 |
|
101 |
+
def chat_function(message, history, max_new_tokens=256, temperature=0.6):
|
102 |
+
_, retrieved_doc = retrieve(message, TOP_K)
|
103 |
+
formatted_prompt = format_prompt(message, retrieved_doc, TOP_K)
|
104 |
+
|
105 |
+
messages = [{"role":"system","content":SYS_MSG},
|
106 |
+
{"role":"user", "content":formatted_prompt}]
|
107 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
108 |
messages,
|
109 |
+
tokenize=False,
|
110 |
+
add_generation_prompt=True,)
|
111 |
+
print(f"Prompt: {prompt}\n")
|
112 |
+
terminators = [
|
113 |
+
pipeline.tokenizer.eos_token_id,
|
114 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
115 |
+
outputs = pipeline(
|
116 |
+
prompt,
|
117 |
+
max_new_tokens = max_new_tokens,
|
118 |
+
eos_token_id = terminators,
|
119 |
+
do_sample = True,
|
120 |
+
temperature = temperature,
|
121 |
+
top_p = 0.9,)
|
122 |
+
return outputs[0]["generated_text"][len(prompt):]
|
123 |
+
|
124 |
demo = gr.ChatInterface(
|
125 |
+
chat_function,
|
126 |
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
127 |
+
chatbot=gr.Chatbot(height=400),
|
128 |
)
|
129 |
|
|
|
130 |
if __name__ == "__main__":
|
131 |
+
demo.launch(share=True)
|
.ipynb_checkpoints/main-checkpoint.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
2 |
+
from langchain_community.document_loaders import TextLoader
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
import transformers
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from datasets import Dataset, Features, Value, Sequence
|
7 |
+
import pandas as pd
|
8 |
+
import faiss
|
9 |
+
import os
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
ST_MODEL = "LazarusNLP/all-indo-e5-small-v4"
|
14 |
+
BASE_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
|
15 |
+
DOMAIN_DATA_DIR = "./data"
|
16 |
+
SYS_MSG = """
|
17 |
+
Kamu adalah asisten dalam sebuah perusahaan penyedia listrik (PLN) yang membantu menjawab pertanyaan seputar 'sexual harassment' dalam Bahasa Indonesia.
|
18 |
+
Jawab dengan singkat menggunakan konteks untuk menjawab pertanyaan dalam Bahasa Indonesia.
|
19 |
+
"""
|
20 |
+
TOP_K = 1
|
21 |
+
|
22 |
+
from huggingface_hub import login
|
23 |
+
|
24 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
25 |
+
|
26 |
+
# Autentikasi secara manual menggunakan token
|
27 |
+
login(token=hf_token)
|
28 |
+
|
29 |
+
domain_data = [os.path.join(DOMAIN_DATA_DIR, f) for f in os.listdir(DOMAIN_DATA_DIR) if f.endswith('.txt')]
|
30 |
+
pages = []
|
31 |
+
|
32 |
+
for file in domain_data:
|
33 |
+
text_loader = TextLoader(file)
|
34 |
+
file_pages = text_loader.load()
|
35 |
+
pages.extend(file_pages)
|
36 |
+
|
37 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
38 |
+
|
39 |
+
splitter = RecursiveCharacterTextSplitter(
|
40 |
+
chunk_size=300,
|
41 |
+
chunk_overlap=64,
|
42 |
+
separators=["\n\n"]
|
43 |
+
)
|
44 |
+
|
45 |
+
documents = splitter.split_documents(pages)
|
46 |
+
content = [doc.page_content.strip() for doc in documents]
|
47 |
+
|
48 |
+
ST = SentenceTransformer(ST_MODEL)
|
49 |
+
embeddings = ST.encode(content)
|
50 |
+
|
51 |
+
features = Features({
|
52 |
+
'text': Value('string'),
|
53 |
+
'embeddings': Sequence(Value('float32'))
|
54 |
+
})
|
55 |
+
|
56 |
+
data = {'text': content, 'embeddings': [embedding.tolist() for embedding in embeddings]}
|
57 |
+
dataset = Dataset.from_dict(data, features=features)
|
58 |
+
|
59 |
+
dataset.add_faiss_index(column='embeddings')
|
60 |
+
|
61 |
+
def retrieve(query, top_k=3):
|
62 |
+
query_embedding = ST.encode([query])
|
63 |
+
scores, retrieved_examples = dataset.get_nearest_examples('embeddings', query_embedding, k=top_k)
|
64 |
+
|
65 |
+
return scores, retrieved_examples['text']
|
66 |
+
|
67 |
+
# use quantization to lower GPU usage
|
68 |
+
bnb_config = BitsAndBytesConfig(
|
69 |
+
load_in_4bit=True,
|
70 |
+
bnb_4bit_use_double_quant=True,
|
71 |
+
bnb_4bit_quant_type="nf4",
|
72 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
73 |
+
)
|
74 |
+
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
76 |
+
model = AutoModelForCausalLM.from_pretrained(
|
77 |
+
BASE_MODEL,
|
78 |
+
torch_dtype=torch.bfloat16,
|
79 |
+
device_map="auto",
|
80 |
+
quantization_config=bnb_config,
|
81 |
+
)
|
82 |
+
|
83 |
+
def format_prompt(prompt, retrieved_documents, k):
|
84 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
85 |
+
PROMPT = f"Pertanyaan:{prompt}\nKonteks:"
|
86 |
+
for idx in range(k) :
|
87 |
+
PROMPT+= f"{retrieved_documents[idx]}\n"
|
88 |
+
|
89 |
+
return PROMPT
|
90 |
+
|
91 |
+
def chat_function(message, history, max_new_tokens=256, temperature=0.6):
|
92 |
+
scores, retrieved_doc = retrieve(message, TOP_K)
|
93 |
+
formatted_prompt = format_prompt(message, retrieved_doc, TOP_K)
|
94 |
+
|
95 |
+
messages = [{"role":"system","content":SYS_MSG},
|
96 |
+
{"role":"user", "content":formatted_prompt}]
|
97 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
98 |
+
messages,
|
99 |
+
tokenize=False,
|
100 |
+
add_generation_prompt=True,)
|
101 |
+
terminators = [
|
102 |
+
pipeline.tokenizer.eos_token_id,
|
103 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
104 |
+
outputs = pipeline(
|
105 |
+
prompt,
|
106 |
+
max_new_tokens = max_new_tokens,
|
107 |
+
eos_token_id = terminators,
|
108 |
+
do_sample = True,
|
109 |
+
temperature = temperature + 0.1,
|
110 |
+
top_p = 0.9,)
|
111 |
+
return outputs[0]["generated_text"][len(prompt):]
|
112 |
+
|
113 |
+
"""
|
114 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
115 |
+
"""
|
116 |
+
# demo = gr.ChatInterface(
|
117 |
+
# respond,
|
118 |
+
# textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
119 |
+
# )
|
120 |
+
|
121 |
+
demo = gr.ChatInterface(
|
122 |
+
chat_function,
|
123 |
+
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
124 |
+
chatbot=gr.Chatbot(height=400),
|
125 |
+
)
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
demo.launch(share=True)
|
app.py
CHANGED
@@ -12,16 +12,26 @@ import gradio as gr
|
|
12 |
|
13 |
ST_MODEL = "LazarusNLP/all-indo-e5-small-v4"
|
14 |
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
15 |
-
# BASE_MODEL = "HuggingFaceH4/zephyr-7b-beta"
|
16 |
-
# BASE_MODEL = "HuggingFaceH4/mistral-7b-sft-beta"
|
17 |
-
# BASE_MODEL = "openai-community/gpt2"
|
18 |
DOMAIN_DATA_DIR = "./data"
|
|
|
19 |
SYS_MSG = """
|
20 |
Kamu adalah asisten dalam sebuah perusahaan penyedia listrik (PLN) yang membantu menjawab pertanyaan seputar 'sexual harassment' dalam Bahasa Indonesia.
|
21 |
Jawab dengan singkat menggunakan konteks untuk menjawab pertanyaan dalam Bahasa Indonesia.
|
22 |
"""
|
23 |
-
TOP_K = 1
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
domain_data = [os.path.join(DOMAIN_DATA_DIR, f) for f in os.listdir(DOMAIN_DATA_DIR) if f.endswith('.txt')]
|
26 |
pages = []
|
27 |
|
@@ -60,62 +70,62 @@ def retrieve(query, top_k=3):
|
|
60 |
|
61 |
return scores, retrieved_examples['text']
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
def respond(
|
66 |
-
message,
|
67 |
-
history: list[tuple[str, str]],
|
68 |
-
max_tokens=256,
|
69 |
-
temperature=0.4,
|
70 |
-
top_p=0.9,
|
71 |
-
):
|
72 |
-
# Retrieve top 3 relevant documents based on the user's query
|
73 |
-
_, retrieved_docs = retrieve(message, top_k=TOP_K)
|
74 |
-
|
75 |
-
# Prepare the retrieved context
|
76 |
-
context = "\n".join([f"Dokumen {i+1}: {doc}" for i, doc in enumerate(retrieved_docs)])
|
77 |
-
|
78 |
-
print(f"Feed:\n{context}")
|
79 |
-
|
80 |
-
messages = [{"role": "system", "content": SYS_MSG}]
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
messages,
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
""
|
112 |
-
|
113 |
-
"""
|
114 |
demo = gr.ChatInterface(
|
115 |
-
|
116 |
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
|
|
117 |
)
|
118 |
|
119 |
-
|
120 |
if __name__ == "__main__":
|
121 |
demo.launch(share=True)
|
|
|
12 |
|
13 |
ST_MODEL = "LazarusNLP/all-indo-e5-small-v4"
|
14 |
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
|
|
|
|
|
|
15 |
DOMAIN_DATA_DIR = "./data"
|
16 |
+
CACHE_DIR = "./cache"
|
17 |
SYS_MSG = """
|
18 |
Kamu adalah asisten dalam sebuah perusahaan penyedia listrik (PLN) yang membantu menjawab pertanyaan seputar 'sexual harassment' dalam Bahasa Indonesia.
|
19 |
Jawab dengan singkat menggunakan konteks untuk menjawab pertanyaan dalam Bahasa Indonesia.
|
20 |
"""
|
|
|
21 |
|
22 |
+
# LOGIN HF Auth
|
23 |
+
from huggingface_hub import login
|
24 |
+
|
25 |
+
# Ambil token API dari environment variable (jika disimpan di secrets)
|
26 |
+
import os
|
27 |
+
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
28 |
+
|
29 |
+
# Autentikasi secara manual menggunakan token
|
30 |
+
login(token=hf_token)
|
31 |
+
|
32 |
+
# ----------------------------------------------------------------------------------------------------------
|
33 |
+
# RAG PROCESS
|
34 |
+
TOP_K = 1
|
35 |
domain_data = [os.path.join(DOMAIN_DATA_DIR, f) for f in os.listdir(DOMAIN_DATA_DIR) if f.endswith('.txt')]
|
36 |
pages = []
|
37 |
|
|
|
70 |
|
71 |
return scores, retrieved_examples['text']
|
72 |
|
73 |
+
# END RAG
|
74 |
+
# ----------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# LLM
|
77 |
+
# use quantization to lower GPU usage
|
78 |
+
bnb_config = BitsAndBytesConfig(
|
79 |
+
load_in_4bit=True,
|
80 |
+
bnb_4bit_use_double_quant=True,
|
81 |
+
bnb_4bit_quant_type="nf4",
|
82 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
83 |
+
)
|
84 |
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, cache_dir=CACHE_DIR)
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
BASE_MODEL,
|
88 |
+
torch_dtype=torch.bfloat16,
|
89 |
+
# device_map="auto",
|
90 |
+
quantization_config=bnb_config,
|
91 |
+
cache_dir=CACHE_DIR
|
92 |
+
)
|
93 |
|
94 |
+
def format_prompt(prompt, retrieved_documents, k):
|
95 |
+
"""using the retrieved documents we will prompt the model to generate our responses"""
|
96 |
+
PROMPT = f"Pertanyaan:{prompt}\nKonteks:"
|
97 |
+
for idx in range(k) :
|
98 |
+
PROMPT+= f"{retrieved_documents[idx]}\n"
|
99 |
+
return PROMPT
|
100 |
|
101 |
+
def chat_function(message, history, max_new_tokens=256, temperature=0.6):
|
102 |
+
_, retrieved_doc = retrieve(message, TOP_K)
|
103 |
+
formatted_prompt = format_prompt(message, retrieved_doc, TOP_K)
|
104 |
+
|
105 |
+
messages = [{"role":"system","content":SYS_MSG},
|
106 |
+
{"role":"user", "content":formatted_prompt}]
|
107 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
108 |
messages,
|
109 |
+
tokenize=False,
|
110 |
+
add_generation_prompt=True,)
|
111 |
+
print(f"Prompt: {prompt}\n")
|
112 |
+
terminators = [
|
113 |
+
pipeline.tokenizer.eos_token_id,
|
114 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
115 |
+
outputs = pipeline(
|
116 |
+
prompt,
|
117 |
+
max_new_tokens = max_new_tokens,
|
118 |
+
eos_token_id = terminators,
|
119 |
+
do_sample = True,
|
120 |
+
temperature = temperature,
|
121 |
+
top_p = 0.9,)
|
122 |
+
return outputs[0]["generated_text"][len(prompt):]
|
123 |
+
|
|
|
124 |
demo = gr.ChatInterface(
|
125 |
+
chat_function,
|
126 |
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale = 7),
|
127 |
+
chatbot=gr.Chatbot(height=400),
|
128 |
)
|
129 |
|
|
|
130 |
if __name__ == "__main__":
|
131 |
demo.launch(share=True)
|