bluenevus's picture
Update app.py
483671e verified
raw
history blame
11 kB
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
import google.generativeai as genai
import re
import logging
import numpy as np
from pydub import AudioSegment
import io
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
model_name = "canopylabs/orpheus-3b-0.1-ft"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")
# Available voices
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
@spaces.GPU()
def generate_podcast_script(api_key, prompt, uploaded_file, duration, num_hosts):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = prompt or ""
if uploaded_file:
file_content = uploaded_file.read().decode('utf-8')
combined_content += "\n" + file_content if combined_content else file_content
num_hosts = int(num_hosts) # Convert to integer
prompt = f"""
Create a podcast script for {num_hosts} {'person' if num_hosts == 1 else 'people'} discussing:
{combined_content}
Duration: {duration} minutes. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
only provide the dialog for text to speech
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration} minutes.
{'Make sure the script is a monologue for one person.' if num_hosts == 1 else 'Ensure the dialogue alternates between two distinct voices, with one speaking on odd-numbered lines and the other on even-numbered lines.'}
"""
response = model.generate_content(prompt)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
@spaces.GPU()
def generate_speech(text, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts, progress=gr.Progress()):
if not text.strip():
return None
try:
# Load the intro/outro music
music = AudioSegment.from_mp3("Maiko-intro-outro.mp3")
progress(0.1, "Processing text...")
lines = text.split('\n')
audio_samples = []
for i, line in enumerate(lines):
if not line.strip():
continue
if num_hosts == "2":
voice = voice1 if i % 2 == 0 else voice2
else:
voice = voice1
input_ids, attention_mask = process_prompt(line, voice, tokenizer, device)
progress(0.3, f"Generating speech tokens for line {i+1}...")
with torch.no_grad():
generated_ids = model.generate(
input_ids,
attention_mask=attention_mask,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
eos_token_id=128258,
)
progress(0.6, f"Processing speech tokens for line {i+1}...")
code_list = parse_output(generated_ids)
progress(0.8, f"Converting line {i+1} to audio...")
line_audio = redistribute_codes(code_list, snac_model)
audio_samples.append(line_audio)
# Concatenate all audio samples
final_audio = np.concatenate(audio_samples)
# Convert numpy array to AudioSegment
speech_audio = AudioSegment(
final_audio.tobytes(),
frame_rate=24000,
sample_width=final_audio.dtype.itemsize,
channels=1
)
# Adjust the volume of the intro/outro music (reduce by 6dB)
music = music - 6
# Combine intro, speech, and outro
combined_audio = music[:5000] + speech_audio + music[-5000:]
# Convert back to numpy array
combined_numpy = np.array(combined_audio.get_array_of_samples())
# Ensure the audio is in the correct data type
combined_numpy = combined_numpy.astype(np.int16)
return (combined_audio.frame_rate, combined_numpy)
except Exception as e:
print(f"Error generating speech: {e}")
return None
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
with gr.Row():
with gr.Column(scale=1):
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
prompt = gr.Textbox(label="Prompt", lines=8, placeholder="Enter your text here...")
uploaded_file = gr.File(label="Upload File")
with gr.Column(scale=2):
script_output = gr.Textbox(label="Generated Script", lines=10)
audio_output = gr.Audio(label="Generated Audio", type="numpy")
generate_script_btn = gr.Button("Generate Podcast Script")
with gr.Column(scale=2):
duration = gr.Slider(minimum=1, maximum=60, value=5, step=1, label="Duration (minutes)")
num_hosts = gr.Radio(["1", "2"], label="Number of Hosts", value="1")
voice1 = gr.Dropdown(
choices=VOICES,
value="tara",
label="Voice 1",
info="Select the first voice for speech generation"
)
voice2 = gr.Dropdown(
choices=VOICES,
value="dan",
label="Voice 2",
info="Select the second voice for speech generation"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="Temperature",
info="Higher values (0.7-1.0) create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05,
label="Top P",
info="Higher values produce more diverse outputs"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.2, step=0.1,
label="Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="Max Length",
info="Maximum length of generated audio (in tokens)"
)
with gr.Row():
submit_btn = gr.Button("Generate Audio", variant="primary")
clear_btn = gr.Button("Clear")
generate_script_btn.click(
fn=generate_podcast_script,
inputs=[gemini_api_key, prompt, uploaded_file, duration, num_hosts],
outputs=script_output
)
submit_btn.click(
fn=generate_speech,
inputs=[script_output, voice1, voice2, temperature, top_p, repetition_penalty, max_new_tokens, num_hosts],
outputs=audio_output
)
clear_btn.click(
fn=lambda: (None, None, None),
inputs=[],
outputs=[prompt, script_output, audio_output]
)
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False)