File size: 7,733 Bytes
c9b624b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch.nn as nn
import torch
from function import adaptive_mean_normalization as adamean
from function import adaptive_std_normalization as adastd
from function import adaptive_instance_normalization as adain
from function import exact_feature_distribution_matching as efdm
from function import histogram_matching as hm

from function import calc_mean_std
# import ipdb
from skimage.exposure import match_histograms
import numpy as np

decoder = nn.Sequential(
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 256, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 128, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 128, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 64, (3, 3)),
    nn.ReLU(),
    nn.Upsample(scale_factor=2, mode='nearest'),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 64, (3, 3)),
    nn.ReLU(),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 3, (3, 3)),
)

vgg = nn.Sequential(
    nn.Conv2d(3, 3, (1, 1)),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(3, 64, (3, 3)),
    nn.ReLU(),  # relu1-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 64, (3, 3)),
    nn.ReLU(),  # relu1-2
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(64, 128, (3, 3)),
    nn.ReLU(),  # relu2-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 128, (3, 3)),
    nn.ReLU(),  # relu2-2
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(128, 256, (3, 3)),
    nn.ReLU(),  # relu3-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 256, (3, 3)),
    nn.ReLU(),  # relu3-4
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(256, 512, (3, 3)),
    nn.ReLU(),  # relu4-1, this is the last layer used
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu4-4
    nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True),
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-1
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-2
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU(),  # relu5-3
    nn.ReflectionPad2d((1, 1, 1, 1)),
    nn.Conv2d(512, 512, (3, 3)),
    nn.ReLU()  # relu5-4
)


class Net(nn.Module):
    def __init__(self, encoder, decoder, style):
        super(Net, self).__init__()
        enc_layers = list(encoder.children())
        self.enc_1 = nn.Sequential(*enc_layers[:4])  # input -> relu1_1
        self.enc_2 = nn.Sequential(*enc_layers[4:11])  # relu1_1 -> relu2_1
        self.enc_3 = nn.Sequential(*enc_layers[11:18])  # relu2_1 -> relu3_1
        self.enc_4 = nn.Sequential(*enc_layers[18:31])  # relu3_1 -> relu4_1
        self.decoder = decoder
        self.mse_loss = nn.MSELoss()
        self.style = style

        # fix the encoder
        for name in ['enc_1', 'enc_2', 'enc_3', 'enc_4']:
            for param in getattr(self, name).parameters():
                param.requires_grad = False

    # extract relu1_1, relu2_1, relu3_1, relu4_1 from input image
    def encode_with_intermediate(self, input):
        results = [input]
        for i in range(4):
            func = getattr(self, 'enc_{:d}'.format(i + 1))
            results.append(func(results[-1]))
        return results[1:]

    # extract relu4_1 from input image
    def encode(self, input):
        for i in range(4):
            input = getattr(self, 'enc_{:d}'.format(i + 1))(input)
        return input

    def calc_content_loss(self, input, target):
        assert (input.size() == target.size())
        assert (target.requires_grad is False)
        return self.mse_loss(input, target)

    def calc_style_loss(self, input, target):
        # ipdb.set_trace()
        assert (input.size() == target.size())
        assert (target.requires_grad is False)  ## first make sure which one require gradient and which one do not.
        # print(input.requires_grad) ## True
        input_mean, input_std = calc_mean_std(input)
        target_mean, target_std = calc_mean_std(target)
        if self.style == 'adain':
            return self.mse_loss(input_mean, target_mean) + \
                   self.mse_loss(input_std, target_std)
        elif self.style == 'adamean':
            return self.mse_loss(input_mean, target_mean)
        elif self.style == 'adastd':
            return self.mse_loss(input_std, target_std)
        elif self.style == 'efdm':
            B, C, W, H = input.size(0), input.size(1), input.size(2), input.size(3)
            value_content, index_content = torch.sort(input.view(B, C, -1))
            value_style, index_style = torch.sort(target.view(B, C, -1))
            inverse_index = index_content.argsort(-1)
            return self.mse_loss(input.view(B,C,-1), value_style.gather(-1, inverse_index))
        elif self.style == 'hm':
            B, C, W, H = input.size(0), input.size(1), input.size(2), input.size(3)
            x_view = input.view(-1, W, H)
            image1_temp = match_histograms(np.array(x_view.detach().clone().cpu().float().transpose(0, 2)),
                                           np.array(target.view(-1, W, H).detach().clone().cpu().float().transpose(0,2)),
                                           multichannel=True)
            image1_temp = torch.from_numpy(image1_temp).float().to(input.device).transpose(0, 2).view(B, C, W, H)
            return self.mse_loss(input.reshape(B, C, -1), image1_temp.reshape(B, C, -1))
        else:
            raise NotImplementedError

    def forward(self, content, style, alpha=1.0):
        assert 0 <= alpha <= 1
        # ipdb.set_trace()
        style_feats = self.encode_with_intermediate(style)
        content_feat = self.encode(content)
        # print(content_feat.requires_grad) False
        # print(style_feats[-1].requires_grad) False
        if self.style == 'adain':
            t = adain(content_feat, style_feats[-1])
        elif self.style == 'adamean':
            t = adamean(content_feat, style_feats[-1])
        elif self.style == 'adastd':
            t = adastd(content_feat, style_feats[-1])
        elif self.style == 'efdm':
            t = efdm(content_feat, style_feats[-1])
        elif self.style == 'hm':
            t = hm(content_feat, style_feats[-1])
        else:
            raise NotImplementedError
        t = alpha * t + (1 - alpha) * content_feat

        g_t = self.decoder(t)
        g_t_feats = self.encode_with_intermediate(g_t)

        loss_c = self.calc_content_loss(g_t_feats[-1], t) ### final feature should be the same.
        loss_s = self.calc_style_loss(g_t_feats[0], style_feats[0])
        for i in range(1, 4):
            loss_s += self.calc_style_loss(g_t_feats[i], style_feats[i])
        return loss_c, loss_s