File size: 4,616 Bytes
c9b624b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
from skimage.exposure import match_histograms
import numpy as np

def calc_mean_std(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std


def adaptive_instance_normalization(content_feat, style_feat):
    assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)

    normalized_feat = (content_feat - content_mean.expand(
        size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)

## AdaMean
def adaptive_mean_normalization(content_feat, style_feat):
    assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)

    normalized_feat = (content_feat - content_mean.expand(
        size))
    return normalized_feat + style_mean.expand(size)

## AdaStd
def adaptive_std_normalization(content_feat, style_feat):
    assert (content_feat.size()[:2] == style_feat.size()[:2])
    size = content_feat.size()
    style_mean, style_std = calc_mean_std(style_feat)
    content_mean, content_std = calc_mean_std(content_feat)

    normalized_feat = (content_feat) / content_std.expand(size)
    return normalized_feat * style_std.expand(size)

## EFDM
def exact_feature_distribution_matching(content_feat, style_feat):
    assert (content_feat.size() == style_feat.size())
    B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3)
    value_content, index_content = torch.sort(content_feat.view(B,C,-1))  # sort conduct a deep copy here.
    value_style, _ = torch.sort(style_feat.view(B,C,-1))  # sort conduct a deep copy here.
    inverse_index = index_content.argsort(-1)
    new_content = content_feat.view(B,C,-1) + (value_style.gather(-1, inverse_index) - content_feat.view(B,C,-1).detach())

    return new_content.view(B, C, W, H)

## HM
def histogram_matching(content_feat, style_feat):
    assert (content_feat.size() == style_feat.size())
    B, C, W, H = content_feat.size(0), content_feat.size(1), content_feat.size(2), content_feat.size(3)
    x_view = content_feat.view(-1, W,H)
    image1_temp = match_histograms(np.array(x_view.detach().clone().cpu().float().transpose(0, 2)),
                                   np.array(style_feat.view(-1, W, H).detach().clone().cpu().float().transpose(0, 2)),
                                   multichannel=True)
    image1_temp = torch.from_numpy(image1_temp).float().to(content_feat.device).transpose(0, 2).view(B, C, W, H)
    return content_feat + (image1_temp - content_feat).detach()



def _calc_feat_flatten_mean_std(feat):
    # takes 3D feat (C, H, W), return mean and std of array within channels
    assert (feat.size()[0] == 3)
    assert (isinstance(feat, torch.FloatTensor))
    feat_flatten = feat.view(3, -1)
    mean = feat_flatten.mean(dim=-1, keepdim=True)
    std = feat_flatten.std(dim=-1, keepdim=True)
    return feat_flatten, mean, std


def _mat_sqrt(x):
    U, D, V = torch.svd(x)
    return torch.mm(torch.mm(U, D.pow(0.5).diag()), V.t())


def coral(source, target):
    # assume both source and target are 3D array (C, H, W)
    # Note: flatten -> f

    source_f, source_f_mean, source_f_std = _calc_feat_flatten_mean_std(source)
    source_f_norm = (source_f - source_f_mean.expand_as(
        source_f)) / source_f_std.expand_as(source_f)
    source_f_cov_eye = \
        torch.mm(source_f_norm, source_f_norm.t()) + torch.eye(3)

    target_f, target_f_mean, target_f_std = _calc_feat_flatten_mean_std(target)
    target_f_norm = (target_f - target_f_mean.expand_as(
        target_f)) / target_f_std.expand_as(target_f)
    target_f_cov_eye = \
        torch.mm(target_f_norm, target_f_norm.t()) + torch.eye(3)

    source_f_norm_transfer = torch.mm(
        _mat_sqrt(target_f_cov_eye),
        torch.mm(torch.inverse(_mat_sqrt(source_f_cov_eye)),
                 source_f_norm)
    )

    source_f_transfer = source_f_norm_transfer * \
                        target_f_std.expand_as(source_f_norm) + \
                        target_f_mean.expand_as(source_f_norm)

    return source_f_transfer.view(source.size())