Spaces:
Runtime error
Runtime error
import base64 | |
import math | |
import re | |
from io import BytesIO | |
import matplotlib.cm | |
import numpy as np | |
import torch | |
import torch.nn | |
from PIL import Image | |
class RunningAverage: | |
def __init__(self): | |
self.avg = 0 | |
self.count = 0 | |
def append(self, value): | |
self.avg = (value + self.count * self.avg) / (self.count + 1) | |
self.count += 1 | |
def get_value(self): | |
return self.avg | |
def denormalize(x, device='cpu'): | |
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) | |
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) | |
return x * std + mean | |
class RunningAverageDict: | |
def __init__(self): | |
self._dict = None | |
def update(self, new_dict): | |
if self._dict is None: | |
self._dict = dict() | |
for key, value in new_dict.items(): | |
self._dict[key] = RunningAverage() | |
for key, value in new_dict.items(): | |
self._dict[key].append(value) | |
def get_value(self): | |
return {key: value.get_value() for key, value in self._dict.items()} | |
def colorize(value, vmin=10, vmax=1000, cmap='magma_r'): | |
value = value.cpu().numpy()[0, :, :] | |
invalid_mask = value == -1 | |
# normalize | |
vmin = value.min() if vmin is None else vmin | |
vmax = value.max() if vmax is None else vmax | |
if vmin != vmax: | |
value = (value - vmin) / (vmax - vmin) # vmin..vmax | |
else: | |
# Avoid 0-division | |
value = value * 0. | |
# squeeze last dim if it exists | |
# value = value.squeeze(axis=0) | |
cmapper = matplotlib.cm.get_cmap(cmap) | |
value = cmapper(value, bytes=True) # (nxmx4) | |
value[invalid_mask] = 255 | |
img = value[:, :, :3] | |
# return img.transpose((2, 0, 1)) | |
return img | |
def count_parameters(model): | |
return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
def compute_errors(gt, pred): | |
thresh = np.maximum((gt / pred), (pred / gt)) | |
a1 = (thresh < 1.25).mean() | |
a2 = (thresh < 1.25 ** 2).mean() | |
a3 = (thresh < 1.25 ** 3).mean() | |
abs_rel = np.mean(np.abs(gt - pred) / gt) | |
sq_rel = np.mean(((gt - pred) ** 2) / gt) | |
rmse = (gt - pred) ** 2 | |
rmse = np.sqrt(rmse.mean()) | |
rmse_log = (np.log(gt) - np.log(pred)) ** 2 | |
rmse_log = np.sqrt(rmse_log.mean()) | |
err = np.log(pred) - np.log(gt) | |
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100 | |
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean() | |
return dict(a1=a1, a2=a2, a3=a3, abs_rel=abs_rel, rmse=rmse, log_10=log_10, rmse_log=rmse_log, | |
silog=silog, sq_rel=sq_rel) | |
##################################### Demo Utilities ############################################ | |
def b64_to_pil(b64string): | |
image_data = re.sub('^data:image/.+;base64,', '', b64string) | |
# image = Image.open(cStringIO.StringIO(image_data)) | |
return Image.open(BytesIO(base64.b64decode(image_data))) | |
# Compute edge magnitudes | |
from scipy import ndimage | |
def edges(d): | |
dx = ndimage.sobel(d, 0) # horizontal derivative | |
dy = ndimage.sobel(d, 1) # vertical derivative | |
return np.abs(dx) + np.abs(dy) | |
class PointCloudHelper(): | |
def __init__(self, width=640, height=480): | |
self.xx, self.yy = self.worldCoords(width, height) | |
def worldCoords(self, width=640, height=480): | |
hfov_degrees, vfov_degrees = 57, 43 | |
hFov = math.radians(hfov_degrees) | |
vFov = math.radians(vfov_degrees) | |
cx, cy = width / 2, height / 2 | |
fx = width / (2 * math.tan(hFov / 2)) | |
fy = height / (2 * math.tan(vFov / 2)) | |
xx, yy = np.tile(range(width), height), np.repeat(range(height), width) | |
xx = (xx - cx) / fx | |
yy = (yy - cy) / fy | |
return xx, yy | |
def depth_to_points(self, depth): | |
depth[edges(depth) > 0.3] = np.nan # Hide depth edges | |
length = depth.shape[0] * depth.shape[1] | |
# depth[edges(depth) > 0.3] = 1e6 # Hide depth edges | |
z = depth.reshape(length) | |
return np.dstack((self.xx * z, self.yy * z, z)).reshape((length, 3)) | |
##################################################################################################### | |