Spaces:
Runtime error
Runtime error
File size: 21,944 Bytes
55cc64a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import cv2
import os
import pathlib
import numpy as np
import random
from PIL import Image, ImageChops, ImageOps, ImageEnhance
from .video_audio_utilities import vid2frames, get_quick_vid_info, get_frame_name, get_next_frame
from .human_masking import video2humanmasks
def delete_all_imgs_in_folder(folder_path):
files = list(pathlib.Path(folder_path).glob('*.jpg'))
files.extend(list(pathlib.Path(folder_path).glob('*.png')))
for f in files: os.remove(f)
def hybrid_generation(args, anim_args, root):
video_in_frame_path = os.path.join(args.outdir, 'inputframes')
hybrid_frame_path = os.path.join(args.outdir, 'hybridframes')
human_masks_path = os.path.join(args.outdir, 'human_masks')
if anim_args.hybrid_generate_inputframes:
# create folders for the video input frames and optional hybrid frames to live in
os.makedirs(video_in_frame_path, exist_ok=True)
os.makedirs(hybrid_frame_path, exist_ok=True)
# delete frames if overwrite = true
if anim_args.overwrite_extracted_frames:
delete_all_imgs_in_folder(hybrid_frame_path)
# save the video frames from input video
print(f"Video to extract: {anim_args.video_init_path}")
print(f"Extracting video (1 every {anim_args.extract_nth_frame}) frames to {video_in_frame_path}...")
video_fps = vid2frames(video_path=anim_args.video_init_path, video_in_frame_path=video_in_frame_path, n=anim_args.extract_nth_frame, overwrite=anim_args.overwrite_extracted_frames, extract_from_frame=anim_args.extract_from_frame, extract_to_frame=anim_args.extract_to_frame)
# extract alpha masks of humans from the extracted input video imgs
if anim_args.hybrid_generate_human_masks != "None":
# create a folder for the human masks imgs to live in
print(f"Checking /creating a folder for the human masks")
os.makedirs(human_masks_path, exist_ok=True)
# delete frames if overwrite = true
if anim_args.overwrite_extracted_frames:
delete_all_imgs_in_folder(human_masks_path)
# in case that generate_input_frames isn't selected, we won't get the video fps rate as vid2frames isn't called, So we'll check the video fps in here instead
if not anim_args.hybrid_generate_inputframes:
_, video_fps, _ = get_quick_vid_info(anim_args.video_init_path)
# calculate the correct fps of the masked video according to the original video fps and 'extract_nth_frame'
output_fps = video_fps/anim_args.extract_nth_frame
# generate the actual alpha masks from the input imgs
print(f"Extracting alpha humans masks from the input frames")
video2humanmasks(video_in_frame_path, human_masks_path, anim_args.hybrid_generate_human_masks, output_fps)
# determine max frames from length of input frames
anim_args.max_frames = len([f for f in pathlib.Path(video_in_frame_path).glob('*.jpg')])
print(f"Using {anim_args.max_frames} input frames from {video_in_frame_path}...")
# get sorted list of inputfiles
inputfiles = sorted(pathlib.Path(video_in_frame_path).glob('*.jpg'))
# use first frame as init
if anim_args.hybrid_use_first_frame_as_init_image:
for f in inputfiles:
args.init_image = str(f)
args.use_init = True
print(f"Using init_image from video: {args.init_image}")
break
return args, anim_args, inputfiles
def hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root):
video_frame = os.path.join(args.outdir, 'inputframes', get_frame_name(anim_args.video_init_path) + f"{frame_idx:05}.jpg")
video_depth_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_vid_depth{frame_idx:05}.jpg")
depth_frame = os.path.join(args.outdir, f"{args.timestring}_depth_{frame_idx-1:05}.png")
mask_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_mask{frame_idx:05}.jpg")
comp_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_comp{frame_idx:05}.jpg")
prev_frame = os.path.join(args.outdir, 'hybridframes', get_frame_name(anim_args.video_init_path) + f"_prev{frame_idx:05}.jpg")
prev_img = cv2.cvtColor(prev_img, cv2.COLOR_BGR2RGB)
prev_img_hybrid = Image.fromarray(prev_img)
video_image = Image.open(video_frame)
video_image = video_image.resize((args.W, args.H), Image.Resampling.LANCZOS)
hybrid_mask = None
# composite mask types
if anim_args.hybrid_comp_mask_type == 'Depth': # get depth from last generation
hybrid_mask = Image.open(depth_frame)
elif anim_args.hybrid_comp_mask_type == 'Video Depth': # get video depth
video_depth = depth_model.predict(np.array(video_image), anim_args, root.half_precision)
depth_model.save(video_depth_frame, video_depth)
hybrid_mask = Image.open(video_depth_frame)
elif anim_args.hybrid_comp_mask_type == 'Blend': # create blend mask image
hybrid_mask = Image.blend(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image), hybrid_comp_schedules['mask_blend_alpha'])
elif anim_args.hybrid_comp_mask_type == 'Difference': # create difference mask image
hybrid_mask = ImageChops.difference(ImageOps.grayscale(prev_img_hybrid), ImageOps.grayscale(video_image))
# optionally invert mask, if mask type is defined
if anim_args.hybrid_comp_mask_inverse and anim_args.hybrid_comp_mask_type != "None":
hybrid_mask = ImageOps.invert(hybrid_mask)
# if a mask type is selected, make composition
if hybrid_mask == None:
hybrid_comp = video_image
else:
# ensure grayscale
hybrid_mask = ImageOps.grayscale(hybrid_mask)
# equalization before
if anim_args.hybrid_comp_mask_equalize in ['Before', 'Both']:
hybrid_mask = ImageOps.equalize(hybrid_mask)
# contrast
hybrid_mask = ImageEnhance.Contrast(hybrid_mask).enhance(hybrid_comp_schedules['mask_contrast'])
# auto contrast with cutoffs lo/hi
if anim_args.hybrid_comp_mask_auto_contrast:
hybrid_mask = autocontrast_grayscale(np.array(hybrid_mask), hybrid_comp_schedules['mask_auto_contrast_cutoff_low'], hybrid_comp_schedules['mask_auto_contrast_cutoff_high'])
hybrid_mask = Image.fromarray(hybrid_mask)
hybrid_mask = ImageOps.grayscale(hybrid_mask)
if anim_args.hybrid_comp_save_extra_frames:
hybrid_mask.save(mask_frame)
# equalization after
if anim_args.hybrid_comp_mask_equalize in ['After', 'Both']:
hybrid_mask = ImageOps.equalize(hybrid_mask)
# do compositing and save
hybrid_comp = Image.composite(prev_img_hybrid, video_image, hybrid_mask)
if anim_args.hybrid_comp_save_extra_frames:
hybrid_comp.save(comp_frame)
# final blend of composite with prev_img, or just a blend if no composite is selected
hybrid_blend = Image.blend(prev_img_hybrid, hybrid_comp, hybrid_comp_schedules['alpha'])
if anim_args.hybrid_comp_save_extra_frames:
hybrid_blend.save(prev_frame)
prev_img = cv2.cvtColor(np.array(hybrid_blend), cv2.COLOR_RGB2BGR)
# restore to np array and return
return args, prev_img
def get_matrix_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_motion):
img1 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx-1]), dimensions), cv2.COLOR_BGR2GRAY)
img2 = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions), cv2.COLOR_BGR2GRAY)
matrix = get_transformation_matrix_from_images(img1, img2, hybrid_motion)
print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
return matrix
def get_matrix_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, prev_img, hybrid_motion):
# first handle invalid images from cadence by returning default matrix
height, width = prev_img.shape[:2]
if height == 0 or width == 0 or prev_img != np.uint8:
return get_hybrid_motion_default_matrix(hybrid_motion)
else:
prev_img_gray = cv2.cvtColor(prev_img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions), cv2.COLOR_BGR2GRAY)
matrix = get_transformation_matrix_from_images(prev_img_gray, img, hybrid_motion)
print(f"Calculating {hybrid_motion} RANSAC matrix for frames {frame_idx} to {frame_idx+1}")
return matrix
def get_flow_for_hybrid_motion(frame_idx, dimensions, inputfiles, hybrid_frame_path, method, do_flow_visualization=False):
print(f"Calculating {method} optical flow for frames {frame_idx} to {frame_idx+1}")
i1 = get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions)
i2 = get_resized_image_from_filename(str(inputfiles[frame_idx+1]), dimensions)
flow = get_flow_from_images(i1, i2, method)
if do_flow_visualization:
save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
return flow
def get_flow_for_hybrid_motion_prev(frame_idx, dimensions, inputfiles, hybrid_frame_path, prev_img, method, do_flow_visualization=False):
print(f"Calculating {method} optical flow for frames {frame_idx} to {frame_idx+1}")
# first handle invalid images from cadence by returning default matrix
height, width = prev_img.shape[:2]
if height == 0 or width == 0:
flow = get_hybrid_motion_default_flow(dimensions)
else:
i1 = prev_img.astype(np.uint8)
i2 = get_resized_image_from_filename(str(inputfiles[frame_idx]), dimensions)
flow = get_flow_from_images(i1, i2, method)
if do_flow_visualization:
save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path)
return flow
def image_transform_ransac(image_cv2, xform, hybrid_motion, border_mode=cv2.BORDER_REPLICATE):
if hybrid_motion == "Perspective":
return image_transform_perspective(image_cv2, xform, border_mode=border_mode)
else: # Affine
return image_transform_affine(image_cv2, xform, border_mode=border_mode)
def image_transform_optical_flow(img, flow, border_mode=cv2.BORDER_REPLICATE, flow_reverse=False):
if not flow_reverse:
flow = -flow
h, w = img.shape[:2]
flow[:, :, 0] += np.arange(w)
flow[:, :, 1] += np.arange(h)[:,np.newaxis]
return remap(img, flow, border_mode)
def image_transform_affine(image_cv2, xform, border_mode=cv2.BORDER_REPLICATE):
return cv2.warpAffine(
image_cv2,
xform,
(image_cv2.shape[1],image_cv2.shape[0]),
borderMode=border_mode
)
def image_transform_perspective(image_cv2, xform, border_mode=cv2.BORDER_REPLICATE):
return cv2.warpPerspective(
image_cv2,
xform,
(image_cv2.shape[1], image_cv2.shape[0]),
borderMode=border_mode
)
def get_hybrid_motion_default_matrix(hybrid_motion):
if hybrid_motion == "Perspective":
arr = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
else:
arr = np.array([[1., 0., 0.], [0., 1., 0.]])
return arr
def get_hybrid_motion_default_flow(dimensions):
cols, rows = dimensions
flow = np.zeros((rows, cols, 2), np.float32)
return flow
def get_transformation_matrix_from_images(img1, img2, hybrid_motion, max_corners=200, quality_level=0.01, min_distance=30, block_size=3):
# Detect feature points in previous frame
prev_pts = cv2.goodFeaturesToTrack(img1,
maxCorners=max_corners,
qualityLevel=quality_level,
minDistance=min_distance,
blockSize=block_size)
if prev_pts is None or len(prev_pts) < 8 or img1 is None or img2 is None:
return get_hybrid_motion_default_matrix(hybrid_motion)
# Get optical flow
curr_pts, status, err = cv2.calcOpticalFlowPyrLK(img1, img2, prev_pts, None)
# Filter only valid points
idx = np.where(status==1)[0]
prev_pts = prev_pts[idx]
curr_pts = curr_pts[idx]
if len(prev_pts) < 8 or len(curr_pts) < 8:
return get_hybrid_motion_default_matrix(hybrid_motion)
if hybrid_motion == "Perspective": # Perspective - Find the transformation between points
transformation_matrix, mask = cv2.findHomography(prev_pts, curr_pts, cv2.RANSAC, 5.0)
return transformation_matrix
else: # Affine - Compute a rigid transformation (without depth, only scale + rotation + translation)
transformation_rigid_matrix, rigid_mask = cv2.estimateAffinePartial2D(prev_pts, curr_pts)
return transformation_rigid_matrix
def get_flow_from_images(i1, i2, method):
if method =="DIS Medium":
r = get_flow_from_images_DIS(i1, i2, cv2.DISOPTICAL_FLOW_PRESET_MEDIUM)
elif method =="DIS Fast":
r = get_flow_from_images_DIS(i1, i2, cv2.DISOPTICAL_FLOW_PRESET_FAST)
elif method =="DIS UltraFast":
r = get_flow_from_images_DIS(i1, i2, cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
elif method == "DenseRLOF": # requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
r = get_flow_from_images_Dense_RLOF(i1, i2)
elif method == "SF": # requires running opencv-contrib-python (full opencv) INSTEAD of opencv-python
r = get_flow_from_images_SF(i1, i2)
elif method =="Farneback Fine":
r = get_flow_from_images_Farneback(i1, i2, 'fine')
else: # Farneback Normal:
r = get_flow_from_images_Farneback(i1, i2)
return r
def get_flow_from_images_DIS(i1, i2, preset):
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
dis=cv2.DISOpticalFlow_create(preset)
return dis.calc(i1, i2, None)
def get_flow_from_images_Dense_RLOF(i1, i2, last_flow=None):
return cv2.optflow.calcOpticalFlowDenseRLOF(i1, i2, flow = last_flow)
def get_flow_from_images_SF(i1, i2, last_flow=None, layers = 3, averaging_block_size = 2, max_flow = 4):
return cv2.optflow.calcOpticalFlowSF(i1, i2, layers, averaging_block_size, max_flow)
def get_flow_from_images_Farneback(i1, i2, preset="normal", last_flow=None, pyr_scale = 0.5, levels = 3, winsize = 15, iterations = 3, poly_n = 5, poly_sigma = 1.2, flags = 0):
flags = cv2.OPTFLOW_FARNEBACK_GAUSSIAN # Specify the operation flags
pyr_scale = 0.5 # The image scale (<1) to build pyramids for each image
if preset == "fine":
levels = 13 # The number of pyramid layers, including the initial image
winsize = 77 # The averaging window size
iterations = 13 # The number of iterations at each pyramid level
poly_n = 15 # The size of the pixel neighborhood used to find polynomial expansion in each pixel
poly_sigma = 0.8 # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
else: # "normal"
levels = 5 # The number of pyramid layers, including the initial image
winsize = 21 # The averaging window size
iterations = 5 # The number of iterations at each pyramid level
poly_n = 7 # The size of the pixel neighborhood used to find polynomial expansion in each pixel
poly_sigma = 1.2 # The standard deviation of the Gaussian used to smooth derivatives used as a basis for the polynomial expansion
i1 = cv2.cvtColor(i1, cv2.COLOR_BGR2GRAY)
i2 = cv2.cvtColor(i2, cv2.COLOR_BGR2GRAY)
flags = 0 # flags = cv2.OPTFLOW_USE_INITIAL_FLOW
flow = cv2.calcOpticalFlowFarneback(i1, i2, last_flow, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags)
return flow
def save_flow_visualization(frame_idx, dimensions, flow, inputfiles, hybrid_frame_path):
flow_img_file = os.path.join(hybrid_frame_path, f"flow{frame_idx:05}.jpg")
flow_img = cv2.imread(str(inputfiles[frame_idx]))
flow_img = cv2.resize(flow_img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_RGB2GRAY)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_GRAY2BGR)
flow_img = draw_flow_lines_in_grid_in_color(flow_img, flow)
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_BGR2RGB)
cv2.imwrite(flow_img_file, flow_img)
print(f"Saved optical flow visualization: {flow_img_file}")
def draw_flow_lines_in_grid_in_color(img, flow, step=8, magnitude_multiplier=1, min_magnitude = 1, max_magnitude = 10000):
flow = flow * magnitude_multiplier
h, w = img.shape[:2]
y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int)
fx, fy = flow[y,x].T
lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2)
lines = np.int32(lines + 0.5)
vis = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR)
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
hsv[...,0] = ang*180/np.pi/2
hsv[...,1] = 255
hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
vis = cv2.add(vis, bgr)
# Iterate through the lines
for (x1, y1), (x2, y2) in lines:
# Calculate the magnitude of the line
magnitude = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
# Only draw the line if it falls within the magnitude range
if min_magnitude <= magnitude <= max_magnitude:
b = int(bgr[y1, x1, 0])
g = int(bgr[y1, x1, 1])
r = int(bgr[y1, x1, 2])
color = (b, g, r)
cv2.arrowedLine(vis, (x1, y1), (x2, y2), color, thickness=1, tipLength=0.1)
return vis
def draw_flow_lines_in_color(img, flow, threshold=3, magnitude_multiplier=1, min_magnitude = 0, max_magnitude = 10000):
# h, w = img.shape[:2]
vis = img.copy() # Create a copy of the input image
# Find the locations in the flow field where the magnitude of the flow is greater than the threshold
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
idx = np.where(mag > threshold)
# Create HSV image
hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)
hsv[...,0] = ang*180/np.pi/2
hsv[...,1] = 255
hsv[...,2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
# Convert HSV image to BGR
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Add color from bgr
vis = cv2.add(vis, bgr)
# Draw an arrow at each of these locations to indicate the direction of the flow
for i, (y, x) in enumerate(zip(idx[0], idx[1])):
# Calculate the magnitude of the line
x2 = x + magnitude_multiplier * int(flow[y, x, 0])
y2 = y + magnitude_multiplier * int(flow[y, x, 1])
magnitude = np.sqrt((x2 - x)**2 + (y2 - y)**2)
# Only draw the line if it falls within the magnitude range
if min_magnitude <= magnitude <= max_magnitude:
if i % random.randint(100, 200) == 0:
b = int(bgr[y, x, 0])
g = int(bgr[y, x, 1])
r = int(bgr[y, x, 2])
color = (b, g, r)
cv2.arrowedLine(vis, (x, y), (x2, y2), color, thickness=1, tipLength=0.25)
return vis
def autocontrast_grayscale(image, low_cutoff=0, high_cutoff=100):
# Perform autocontrast on a grayscale np array image.
# Find the minimum and maximum values in the image
min_val = np.percentile(image, low_cutoff)
max_val = np.percentile(image, high_cutoff)
# Scale the image so that the minimum value is 0 and the maximum value is 255
image = 255 * (image - min_val) / (max_val - min_val)
# Clip values that fall outside the range [0, 255]
image = np.clip(image, 0, 255)
return image
def get_resized_image_from_filename(im, dimensions):
img = cv2.imread(im)
return cv2.resize(img, (dimensions[0], dimensions[1]), cv2.INTER_AREA)
def remap(img, flow, border_mode = cv2.BORDER_REFLECT_101):
# copyMakeBorder doesn't support wrap, but supports replicate. Replaces wrap with reflect101.
if border_mode == cv2.BORDER_WRAP:
border_mode = cv2.BORDER_REFLECT_101
h, w = img.shape[:2]
displacement = int(h * 0.25), int(w * 0.25)
larger_img = cv2.copyMakeBorder(img, displacement[0], displacement[0], displacement[1], displacement[1], border_mode)
lh, lw = larger_img.shape[:2]
larger_flow = extend_flow(flow, lw, lh)
remapped_img = cv2.remap(larger_img, larger_flow, None, cv2.INTER_LINEAR, border_mode)
output_img = center_crop_image(remapped_img, w, h)
return output_img
def center_crop_image(img, w, h):
y, x, _ = img.shape
width_indent = int((x - w) / 2)
height_indent = int((y - h) / 2)
cropped_img = img[height_indent:y-height_indent, width_indent:x-width_indent]
return cropped_img
def extend_flow(flow, w, h):
# Get the shape of the original flow image
flow_h, flow_w = flow.shape[:2]
# Calculate the position of the image in the new image
x_offset = int((w - flow_w) / 2)
y_offset = int((h - flow_h) / 2)
# Generate the X and Y grids
x_grid, y_grid = np.meshgrid(np.arange(w), np.arange(h))
# Create the new flow image and set it to the X and Y grids
new_flow = np.dstack((x_grid, y_grid)).astype(np.float32)
# Shift the values of the original flow by the size of the border
flow[:,:,0] += x_offset
flow[:,:,1] += y_offset
# Overwrite the middle of the grid with the original flow
new_flow[y_offset:y_offset+flow_h, x_offset:x_offset+flow_w, :] = flow
# Return the extended image
return new_flow
|