File size: 1,430 Bytes
a6ce4c7
7118d20
 
8fc5ab1
 
 
 
 
b2c004c
8153ec5
 
8fc5ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73104aa
a6ce4c7
dbecd1e
8fc5ab1
 
7118d20
9ea9854
 
 
447b53a
9ea9854
 
 
19cb192
602bd91
a6ce4c7
dbecd1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import random

_TITLE = '''
# Direct3D-S2 Gigascale 3D Generation Made Easy with Spatial Sparse Attention
'''

_DESCRIPTION = '''
### [GitHub](https://github.com/DreamTechAI/Direct3D-S2) | [Arxiv](https://arxiv.org/pdf/2505.17412) | [Project Page](https://www.neural4d.com/research/direct3d-s2)

### Please switch to the [Backup Space](https://huggingface.co/spaces/wushuang98/Direct3D-S2-v1.0-demo-backup) if the queue becomes too long
'''

_CITE_ = r"""
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{wu2025direct3ds2gigascale3dgeneration,
  title={Direct3D-S2: Gigascale 3D Generation Made Easy with Spatial Sparse Attention}, 
  author={Shuang Wu and Youtian Lin and Feihu Zhang and Yifei Zeng and Yikang Yang and Yajie Bao and Jiachen Qian and Siyu Zhu and Philip Torr and Xun Cao and Yao Yao},
  journal={arXiv preprint arXiv:2505.17412},
  year={2025}
}
```
📧 **Contact**
If you have any questions, feel free to contact us at <b>wushuang9811@outlook.com</b>.
"""

src_list = ['https://api1.zmkj.site/']

with gr.Blocks() as demo:
    gr.Markdown(_TITLE)
    gr.Markdown(_DESCRIPTION)
    gr.HTML(f"""
    <iframe 
        src="{random.choice(src_list)}" 
        width="100%" 
        height="1000"
        frameborder="0"
        allow="fullscreen"
    ></iframe>
    """)
    gr.Markdown(_CITE_)

demo.launch()