Spaces:
Running
Running
File size: 1,430 Bytes
a6ce4c7 7118d20 8fc5ab1 b2c004c 8153ec5 8fc5ab1 73104aa a6ce4c7 dbecd1e 8fc5ab1 7118d20 9ea9854 447b53a 9ea9854 19cb192 602bd91 a6ce4c7 dbecd1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import random
_TITLE = '''
# Direct3D-S2 Gigascale 3D Generation Made Easy with Spatial Sparse Attention
'''
_DESCRIPTION = '''
### [GitHub](https://github.com/DreamTechAI/Direct3D-S2) | [Arxiv](https://arxiv.org/pdf/2505.17412) | [Project Page](https://www.neural4d.com/research/direct3d-s2)
### Please switch to the [Backup Space](https://huggingface.co/spaces/wushuang98/Direct3D-S2-v1.0-demo-backup) if the queue becomes too long
'''
_CITE_ = r"""
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{wu2025direct3ds2gigascale3dgeneration,
title={Direct3D-S2: Gigascale 3D Generation Made Easy with Spatial Sparse Attention},
author={Shuang Wu and Youtian Lin and Feihu Zhang and Yifei Zeng and Yikang Yang and Yajie Bao and Jiachen Qian and Siyu Zhu and Philip Torr and Xun Cao and Yao Yao},
journal={arXiv preprint arXiv:2505.17412},
year={2025}
}
```
📧 **Contact**
If you have any questions, feel free to contact us at <b>wushuang9811@outlook.com</b>.
"""
src_list = ['https://api1.zmkj.site/']
with gr.Blocks() as demo:
gr.Markdown(_TITLE)
gr.Markdown(_DESCRIPTION)
gr.HTML(f"""
<iframe
src="{random.choice(src_list)}"
width="100%"
height="1000"
frameborder="0"
allow="fullscreen"
></iframe>
""")
gr.Markdown(_CITE_)
demo.launch() |