Spaces:
Running
Running
File size: 2,407 Bytes
2a18073 0017a72 96d1185 ccd3d82 0017a72 ccd3d82 0017a72 ccd3d82 23dd76e ccd3d82 0017a72 ccd3d82 c5561b1 ccd3d82 c5561b1 ccd3d82 0017a72 c5561b1 ccd3d82 c5561b1 23dd76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import os
os.environ["HF_HOME"] = "/tmp/huggingface"
from fastapi import FastAPI, UploadFile, File
from transformers import SiglipForImageClassification, AutoImageProcessor
from PIL import Image
import torch
import torch.nn.functional as F
import io
from typing import List
app = FastAPI()
model_name = "prithivMLmods/Gender-Classifier-Mini"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
@app.get("/")
async def root():
return {"message": "Gender classifier API is running. Use POST /classify/ with an image file."}
@app.post("/classify/")
async def classify_gender(image: UploadFile = File(...)):
contents = await image.read()
try:
img = Image.open(io.BytesIO(contents)).convert("RGB")
except Exception:
return {"error": "Invalid image file"}
inputs = processor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).squeeze().tolist()
labels = ["Female β", "Male β"]
predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
max_idx = probs.index(max(probs))
return {
"predictions": predictions,
"most_likely": labels[max_idx],
"confidence": round(probs[max_idx], 3)
}
@app.post("/classify_batch/")
async def classify_gender_batch(images: List[UploadFile] = File(...)):
pil_images = []
for image in images:
contents = await image.read()
try:
img = Image.open(io.BytesIO(contents)).convert("RGB")
pil_images.append(img)
except Exception:
return {"error": f"Invalid image file: {image.filename}"}
# Batch process
inputs = processor(images=pil_images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = F.softmax(logits, dim=1).tolist() # shape: [batch_size, 2]
labels = ["Female β", "Male β"]
results = []
for p in probs:
predictions = {labels[i]: round(p[i], 3) for i in range(len(p))}
max_idx = p.index(max(p))
results.append({
"predictions": predictions,
"most_likely": labels[max_idx],
"confidence": round(p[max_idx], 3)
})
return {"results": results}
|