banao-tech commited on
Commit
70f32bc
·
verified ·
1 Parent(s): b7016df

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +32 -43
main.py CHANGED
@@ -6,7 +6,6 @@ import os
6
  import logging
7
  from PIL import Image
8
  import torch
9
- import asyncio # Import asyncio for asynchronous operations
10
 
11
  # Existing imports
12
  from utils import (
@@ -59,17 +58,11 @@ class ProcessResponse(BaseModel):
59
  parsed_content_list: str
60
  label_coordinates: str
61
 
62
- async def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
63
  image_save_path = "imgs/saved_image_demo.png"
64
  os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
65
-
66
- # Save the image asynchronously
67
- loop = asyncio.get_event_loop()
68
- await loop.run_in_executor(None, image_input.save, image_save_path)
69
-
70
- logger.info(f"Saved image for processing: {image_save_path}")
71
-
72
- # Open image and prepare it for further processing
73
  image = Image.open(image_save_path)
74
  box_overlay_ratio = image.size[0] / 3200
75
  draw_bbox_config = {
@@ -79,46 +72,40 @@ async def process(image_input: Image.Image, box_threshold: float, iou_threshold:
79
  "thickness": max(int(3 * box_overlay_ratio), 1),
80
  }
81
 
82
- # OCR and YOLO box processing (run in a thread pool to avoid blocking the event loop)
83
- ocr_bbox_rslt, is_goal_filtered = await loop.run_in_executor(
84
- None,
85
- check_ocr_box,
86
  image_save_path,
87
- False, # display_img
88
- "xyxy", # output_bb_format
89
- None, # goal_filtering
90
- {"paragraph": False, "text_threshold": 0.9}, # easyocr_args
91
- True, # use_paddleocr
92
  )
93
  text, ocr_bbox = ocr_bbox_rslt
94
 
95
- # Process image and get result (run in a thread pool)
96
- try:
97
- dino_labled_img, label_coordinates, parsed_content_list = await loop.run_in_executor(
98
- None,
99
- get_som_labeled_img,
100
- image_save_path,
101
- yolo_model,
102
- box_threshold, # BOX_TRESHOLD
103
- True, # output_coord_in_ratio
104
- ocr_bbox, # ocr_bbox
105
- draw_bbox_config, # draw_bbox_config
106
- caption_model_processor, # caption_model_processor
107
- text, # ocr_text
108
- iou_threshold, # iou_threshold
109
- )
110
- except Exception as e:
111
- logger.error(f"Error during labeling and captioning: {e}")
112
- raise
113
 
114
- logger.info("Finished processing image with YOLO and captioning.")
 
 
 
 
115
 
116
- # Convert the image to base64 string
117
  image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
118
- parsed_content_list_str = "\n".join(parsed_content_list)
119
 
 
120
  buffered = io.BytesIO()
121
- await loop.run_in_executor(None, image.save, buffered, "PNG")
122
  img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
123
 
124
  return ProcessResponse(
@@ -127,6 +114,7 @@ async def process(image_input: Image.Image, box_threshold: float, iou_threshold:
127
  label_coordinates=str(label_coordinates),
128
  )
129
 
 
130
  @app.post("/process_image", response_model=ProcessResponse)
131
  async def process_image(
132
  image_file: UploadFile = File(...),
@@ -144,7 +132,7 @@ async def process_image(
144
  if not image_input:
145
  raise ValueError("Image input is empty or invalid.")
146
 
147
- response = await process(image_input, box_threshold, iou_threshold)
148
 
149
  # Ensure the response contains an image
150
  if not response.image:
@@ -157,4 +145,5 @@ async def process_image(
157
  logger.error(f"Error processing image: {e}")
158
  import traceback
159
  traceback.print_exc()
160
- raise HTTPException(status_code=500, detail=str(e))
 
 
6
  import logging
7
  from PIL import Image
8
  import torch
 
9
 
10
  # Existing imports
11
  from utils import (
 
58
  parsed_content_list: str
59
  label_coordinates: str
60
 
61
+ def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
62
  image_save_path = "imgs/saved_image_demo.png"
63
  os.makedirs(os.path.dirname(image_save_path), exist_ok=True)
64
+ image_input.save(image_save_path)
65
+
 
 
 
 
 
 
66
  image = Image.open(image_save_path)
67
  box_overlay_ratio = image.size[0] / 3200
68
  draw_bbox_config = {
 
72
  "thickness": max(int(3 * box_overlay_ratio), 1),
73
  }
74
 
75
+ ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
 
 
 
76
  image_save_path,
77
+ display_img=False,
78
+ output_bb_format="xyxy",
79
+ goal_filtering=None,
80
+ easyocr_args={"paragraph": False, "text_threshold": 0.9},
81
+ use_paddleocr=True,
82
  )
83
  text, ocr_bbox = ocr_bbox_rslt
84
 
85
+ dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
86
+ image_save_path,
87
+ yolo_model,
88
+ BOX_TRESHOLD=box_threshold,
89
+ output_coord_in_ratio=True,
90
+ ocr_bbox=ocr_bbox,
91
+ draw_bbox_config=draw_bbox_config,
92
+ caption_model_processor=caption_model_processor,
93
+ ocr_text=text,
94
+ iou_threshold=iou_threshold,
95
+ )
 
 
 
 
 
 
 
96
 
97
+ # Log parsed_content_list to inspect its structure before joining
98
+ logger.info(f"Parsed content list before join: {parsed_content_list}")
99
+
100
+ # Ensure parsed_content_list is a list of strings, not dictionaries
101
+ parsed_content_list_str = "\n".join([str(item) for item in parsed_content_list])
102
 
 
103
  image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
104
+ print("Finish processing")
105
 
106
+ # Convert the image to base64
107
  buffered = io.BytesIO()
108
+ image.save(buffered, format="PNG")
109
  img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
110
 
111
  return ProcessResponse(
 
114
  label_coordinates=str(label_coordinates),
115
  )
116
 
117
+
118
  @app.post("/process_image", response_model=ProcessResponse)
119
  async def process_image(
120
  image_file: UploadFile = File(...),
 
132
  if not image_input:
133
  raise ValueError("Image input is empty or invalid.")
134
 
135
+ response = process(image_input, box_threshold, iou_threshold)
136
 
137
  # Ensure the response contains an image
138
  if not response.image:
 
145
  logger.error(f"Error processing image: {e}")
146
  import traceback
147
  traceback.print_exc()
148
+ raise HTTPException(status_code=500, detail=str(e))
149
+