Spaces:
Sleeping
Sleeping
fix
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Phronesis
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
@@ -8,6 +8,82 @@ sdk_version: 5.4.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: 'REPORT GEN AND CLASSIFICATION MODEL '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Phronesis Medical Report Generator
|
3 |
+
emoji: 🧠
|
4 |
colorFrom: green
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: 'REPORT GEN AND CLASSIFICATION MODEL '
|
11 |
+
|
12 |
+
---
|
13 |
+
|
14 |
+
# 🧠 Phronesis: Medical Image Diagnosis & Report Generator
|
15 |
+
|
16 |
+
**Phronesis** is a multimodal AI tool that classifies medical CT scan images (DICOM or standard formats) and generates diagnostic reports using a combination of video classification and medical language generation.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## 🚀 Demo
|
21 |
+
|
22 |
+
Upload a set of DICOM (`.dcm`, `.ima`) or image (`.png`, `.jpg`) files representing slices of a CT scan. The model will:
|
23 |
+
|
24 |
+
- 🏷️ Predict a class: **acute**, **normal**, **chronic**, or **lacunar**
|
25 |
+
- 📋 Generate a short **radiology report**
|
26 |
+
|
27 |
+
[Live App →](https://huggingface.co/spaces/baliddeki/phronesis-ml-endpoint)
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## 🏗️ Model Architecture
|
32 |
+
|
33 |
+
- **Vision Backbone**: `3D ResNet-18` pretrained on Kinetics-400
|
34 |
+
- **Language Head**: `BioBART v2` (pretrained biomedical seq2seq model)
|
35 |
+
- **Bridge Module**: Custom `ImageToTextProjector` to align visual features with the language model
|
36 |
+
- **CombinedModel**: Unified architecture for classification + report generation
|
37 |
+
|
38 |
+
---
|
39 |
+
|
40 |
+
## 🧪 Tasks
|
41 |
+
|
42 |
+
- **Image Classification**: Categorizes brain CT scans into one of four classes.
|
43 |
+
- **Report Generation**: Produces diagnostic text conditioned on image features.
|
44 |
+
|
45 |
---
|
46 |
|
47 |
+
## 🖼️ Input Format
|
48 |
+
|
49 |
+
- Minimum 1, maximum ~30 image slices per scan.
|
50 |
+
- Acceptable file formats:
|
51 |
+
- DICOM (`.dcm`, `.ima`)
|
52 |
+
- PNG, JPEG
|
53 |
+
|
54 |
+
The model will sample or pad the series to 16 frames for temporal context.
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## 📦 Dependencies
|
59 |
+
|
60 |
+
This app uses:
|
61 |
+
- `torch`
|
62 |
+
- `transformers`
|
63 |
+
- `torchvision`
|
64 |
+
- `huggingface_hub`
|
65 |
+
- `pydicom`
|
66 |
+
- `gradio`
|
67 |
+
- `PIL`, `numpy`
|
68 |
+
|
69 |
+
---
|
70 |
+
|
71 |
+
## 🔐 Notes
|
72 |
+
|
73 |
+
- This demo loads a private model from the Hugging Face Hub. Set your `HF_TOKEN` as a secret for the space if needed.
|
74 |
+
- Do **not use for real clinical decisions** – intended for research/demo only.
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
## 🙋♂️ Credits
|
79 |
+
|
80 |
+
Developed by [@baliddeki](https://huggingface.co/baliddeki)
|
81 |
+
|
82 |
+
Model weights: [`baliddeki/phronesis-ml`](https://huggingface.co/baliddeki/phronesis-ml)
|
83 |
+
Language model: [`GanjinZero/biobart-v2-base`](https://huggingface.co/GanjinZero/biobart-v2-base)
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
## 📄 License
|
88 |
+
|
89 |
+
MIT or Apache 2.0 (add yours here)
|
app.py
CHANGED
@@ -1,129 +1,114 @@
|
|
1 |
-
#app.py
|
2 |
-
import os
|
3 |
-
import io
|
4 |
-
import uvicorn
|
5 |
-
|
6 |
import torch
|
7 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
8 |
-
from fastapi.responses import JSONResponse
|
9 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
10 |
-
from torchvision import models, transforms
|
11 |
-
from PIL import Image
|
12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
13 |
from huggingface_hub import hf_hub_download
|
|
|
14 |
import pydicom
|
|
|
15 |
import gc
|
16 |
-
from model import CombinedModel, ImageToTextProjector
|
17 |
-
from fastapi import FastAPI, Request
|
18 |
-
from fastapi.middleware.cors import CORSMiddleware
|
19 |
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
allow_credentials=True,
|
27 |
-
allow_methods=["*"],
|
28 |
-
allow_headers=["*"],
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
return {"message": "Welcome to Phronesis"}
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
def dicom_to_png(dicom_data):
|
38 |
-
try:
|
39 |
-
dicom_file = pydicom.dcmread(dicom_data)
|
40 |
-
if not hasattr(dicom_file, 'PixelData'):
|
41 |
-
raise HTTPException(status_code=400, detail="No pixel data in DICOM file.")
|
42 |
-
|
43 |
-
pixel_array = dicom_file.pixel_array.astype(np.float32)
|
44 |
-
pixel_array = ((pixel_array - pixel_array.min()) / (pixel_array.ptp())) * 255.0
|
45 |
-
pixel_array = pixel_array.astype(np.uint8)
|
46 |
-
|
47 |
-
img = Image.fromarray(pixel_array).convert("L")
|
48 |
-
return img
|
49 |
-
except Exception as e:
|
50 |
-
raise HTTPException(status_code=500, detail=f"Error converting DICOM to PNG: {e}")
|
51 |
-
|
52 |
-
# Set up secure model initialization
|
53 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
54 |
-
if not HF_TOKEN:
|
55 |
-
raise ValueError("Missing Hugging Face token in environment variables.")
|
56 |
-
|
57 |
-
try:
|
58 |
-
report_generator_tokenizer = AutoTokenizer.from_pretrained(
|
59 |
-
"baliddeki/phronesis-ml",
|
60 |
-
token=HF_TOKEN if HF_TOKEN else None
|
61 |
-
)
|
62 |
-
video_model = models.video.r3d_18(weights="KINETICS400_V1")
|
63 |
-
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
|
64 |
-
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base")
|
65 |
-
projector = ImageToTextProjector(512, report_generator.config.d_model)
|
66 |
-
num_classes = 4
|
67 |
-
combined_model = CombinedModel(video_model, report_generator, num_classes, projector, report_generator_tokenizer)
|
68 |
-
model_file = hf_hub_download("baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN)
|
69 |
-
state_dict = torch.load(model_file, map_location=device)
|
70 |
-
combined_model.load_state_dict(state_dict)
|
71 |
-
combined_model.eval()
|
72 |
-
except Exception as e:
|
73 |
-
raise SystemExit(f"Error loading models: {e}")
|
74 |
-
|
75 |
-
image_transform = transforms.Compose([
|
76 |
-
transforms.Resize((112, 112)),
|
77 |
-
transforms.ToTensor(),
|
78 |
-
transforms.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989])
|
79 |
-
])
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
@app.post("/predict/")
|
84 |
-
async def predict(files: list[UploadFile]):
|
85 |
-
print(f"Received {len(files)} files")
|
86 |
-
n_frames = 16
|
87 |
-
images = []
|
88 |
-
|
89 |
-
for file in files:
|
90 |
-
ext = file.filename.split('.')[-1].lower()
|
91 |
-
try:
|
92 |
-
if ext in ['dcm', 'ima']:
|
93 |
-
dicom_img = dicom_to_png(await file.read())
|
94 |
-
images.append(dicom_img.convert("RGB"))
|
95 |
-
elif ext in ['png', 'jpeg', 'jpg']:
|
96 |
-
img = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
97 |
-
images.append(img)
|
98 |
-
else:
|
99 |
-
raise HTTPException(status_code=400, detail="Unsupported file type.")
|
100 |
-
except Exception as e:
|
101 |
-
raise HTTPException(status_code=500, detail=f"Error processing file {file.filename}: {e}")
|
102 |
|
|
|
103 |
if not images:
|
104 |
-
return
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
else:
|
109 |
-
images_sampled =
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
|
114 |
with torch.no_grad():
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
gc.collect()
|
120 |
if torch.cuda.is_available():
|
121 |
torch.cuda.empty_cache()
|
122 |
-
|
123 |
-
return
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
|
|
|
|
|
|
|
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import gradio as gr
|
7 |
+
from torchvision import models, transforms
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
+
from model import CombinedModel, ImageToTextProjector
|
11 |
import pydicom
|
12 |
+
import os
|
13 |
import gc
|
|
|
|
|
|
|
14 |
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# Load tokenizer and models
|
18 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("baliddeki/phronesis-ml", token=HF_TOKEN)
|
21 |
+
video_model = models.video.r3d_18(weights="KINETICS400_V1")
|
22 |
+
video_model.fc = torch.nn.Linear(video_model.fc.in_features, 512)
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
report_generator = AutoModelForSeq2SeqLM.from_pretrained("GanjinZero/biobart-v2-base")
|
25 |
+
projector = ImageToTextProjector(512, report_generator.config.d_model)
|
|
|
26 |
|
27 |
+
num_classes = 4
|
28 |
+
class_names = ["acute", "normal", "chronic", "lacunar"]
|
29 |
+
combined_model = CombinedModel(
|
30 |
+
video_model, report_generator, num_classes, projector, tokenizer
|
31 |
+
)
|
32 |
+
model_file = hf_hub_download(
|
33 |
+
"baliddeki/phronesis-ml", "pytorch_model.bin", token=HF_TOKEN
|
34 |
+
)
|
35 |
+
state_dict = torch.load(model_file, map_location=device)
|
36 |
+
combined_model.load_state_dict(state_dict)
|
37 |
+
combined_model.eval()
|
38 |
+
|
39 |
+
# Image transforms
|
40 |
+
image_transform = transforms.Compose(
|
41 |
+
[
|
42 |
+
transforms.Resize((112, 112)),
|
43 |
+
transforms.ToTensor(),
|
44 |
+
transforms.Normalize(
|
45 |
+
mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]
|
46 |
+
),
|
47 |
+
]
|
48 |
+
)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def dicom_to_image(file_bytes):
|
52 |
+
dicom_file = pydicom.dcmread(io.BytesIO(file_bytes))
|
53 |
+
pixel_array = dicom_file.pixel_array.astype(np.float32)
|
54 |
+
pixel_array = ((pixel_array - pixel_array.min()) / pixel_array.ptp()) * 255.0
|
55 |
+
pixel_array = pixel_array.astype(np.uint8)
|
56 |
+
return Image.fromarray(pixel_array).convert("RGB")
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def predict(images):
|
60 |
if not images:
|
61 |
+
return "No image uploaded.", ""
|
62 |
+
|
63 |
+
# Convert images
|
64 |
+
processed_imgs = []
|
65 |
+
for img in images:
|
66 |
+
filename = img.name.lower()
|
67 |
+
if filename.endswith((".dcm", ".ima")):
|
68 |
+
dicom_img = dicom_to_image(img.read())
|
69 |
+
processed_imgs.append(dicom_img)
|
70 |
+
else:
|
71 |
+
pil_img = Image.open(img).convert("RGB")
|
72 |
+
processed_imgs.append(pil_img)
|
73 |
+
|
74 |
+
# Sample or pad
|
75 |
+
n_frames = 16
|
76 |
+
if len(processed_imgs) >= n_frames:
|
77 |
+
images_sampled = [
|
78 |
+
processed_imgs[i]
|
79 |
+
for i in np.linspace(0, len(processed_imgs) - 1, n_frames, dtype=int)
|
80 |
+
]
|
81 |
else:
|
82 |
+
images_sampled = processed_imgs + [processed_imgs[-1]] * (
|
83 |
+
n_frames - len(processed_imgs)
|
84 |
+
)
|
85 |
|
86 |
+
tensor_imgs = [image_transform(i) for i in images_sampled]
|
87 |
+
input_tensor = torch.stack(tensor_imgs).permute(1, 0, 2, 3).unsqueeze(0).to(device)
|
88 |
|
89 |
with torch.no_grad():
|
90 |
+
class_logits, report, _ = combined_model(input_tensor)
|
91 |
+
class_pred = torch.argmax(class_logits, dim=1).item()
|
92 |
+
class_name = class_names[class_pred]
|
93 |
|
94 |
gc.collect()
|
95 |
if torch.cuda.is_available():
|
96 |
torch.cuda.empty_cache()
|
97 |
+
|
98 |
+
return class_name, report[0] if report else "No report generated."
|
99 |
+
|
100 |
+
|
101 |
+
# Gradio interface
|
102 |
+
demo = gr.Interface(
|
103 |
+
fn=predict,
|
104 |
+
inputs=gr.File(
|
105 |
+
file_types=[".dcm", ".jpg", ".jpeg", ".png"],
|
106 |
+
file_count="multiple",
|
107 |
+
label="Upload CT Scan Images",
|
108 |
+
),
|
109 |
+
outputs=[gr.Textbox(label="Predicted Class"), gr.Textbox(label="Generated Report")],
|
110 |
+
title="Phronesis Medical Report Generator",
|
111 |
+
description="Upload CT scan DICOM or image files. Returns diagnosis classification and generated report.",
|
112 |
+
)
|
113 |
+
|
114 |
+
demo.launch()
|