Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import pipeline | |
import os | |
import numpy as np | |
import torch | |
# Load the model | |
print("Loading model...") | |
model_id = "badrex/mms-300m-arabic-dialect-identifier" | |
classifier = pipeline("audio-classification", model=model_id) | |
print("Model loaded successfully") | |
# Define dialect mapping | |
dialect_mapping = { | |
"MSA": "Modern Standard Arabic", | |
"Egyptian": "Egyptian Arabic", | |
"Gulf": "Gulf Arabic", | |
"Levantine": "Levantine Arabic", | |
"Maghrebi": "Maghrebi Arabic" | |
} | |
def predict_dialect(audio): | |
if audio is None: | |
return {"Error": 1.0} | |
# The audio input from Gradio is a tuple of (sample_rate, audio_array) | |
sr, audio_array = audio | |
# Process the audio input | |
if len(audio_array.shape) > 1: | |
audio_array = audio_array.mean(axis=1) # Convert stereo to mono | |
# Convert audio to float32 if it's not already (fix for Chrome recording issue) | |
if audio_array.dtype != np.float32: | |
# Normalize to [-1, 1] range as expected by the model | |
if audio_array.dtype == np.int16: | |
audio_array = audio_array.astype(np.float32) / 32768.0 | |
else: | |
audio_array = audio_array.astype(np.float32) | |
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}") | |
# Classify the dialect | |
predictions = classifier({"sampling_rate": sr, "raw": audio_array}) | |
# Format results for display | |
results = {} | |
for pred in predictions: | |
dialect_name = dialect_mapping.get(pred['label'], pred['label']) | |
results[dialect_name] = float(pred['score']) | |
return results | |
# Manually prepare example file paths without metadata | |
examples = [] | |
examples_dir = "examples" | |
if os.path.exists(examples_dir): | |
for filename in os.listdir(examples_dir): | |
if filename.endswith((".wav", ".mp3", ".ogg")): | |
examples.append([os.path.join(examples_dir, filename)]) | |
print(f"Found {len(examples)} example files") | |
else: | |
print("Examples directory not found") | |
# Custom CSS for better styling | |
custom_css = """ | |
<style> | |
.centered-content { | |
text-align: center; | |
max-width: 800px; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
.logo-image { | |
width: 200px; | |
height: auto; | |
margin: 20px auto; | |
display: block; | |
} | |
.description-text { | |
font-size: 16px; | |
line-height: 1.6; | |
margin-bottom: 20px; | |
} | |
.dialect-list { | |
font-size: 15px; | |
line-height: 1.8; | |
text-align: left; | |
max-width: 600px; | |
margin: 0 auto; | |
} | |
.highlight-text { | |
font-size: 16px; | |
color: #2563eb; | |
margin: 20px 0; | |
} | |
.footer-text { | |
font-size: 13px; | |
color: #6b7280; | |
margin-top: 20px; | |
} | |
</style> | |
""" | |
""" | |
<p style="font-size: 15px; line-height: 1.8;"> | |
<strong>The following Arabic language varieties are supported:</strong> | |
<br><br> | |
✦ <strong>Modern Standard Arabic (MSA)</strong> - The formal language of media and education | |
<br> | |
✦ <strong>Egyptian Arabic</strong> - The dialect of Cairo, Alexandria, and popular Arabic cinema | |
<br> | |
✦ <strong>Gulf Arabic</strong> - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman | |
<br> | |
✦ <strong>Levantine Arabic</strong> - The dialect of Syria, Lebanon, Jordan, and Palestine | |
<br> | |
✦ <strong>Maghrebi Arabic</strong> - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya | |
</p> | |
<br> | |
""" | |
# Create the Gradio interface | |
demo = gr.Interface( | |
fn=predict_dialect, | |
inputs=gr.Audio(), | |
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"), | |
title="Tamyïz 🍉 Arabic Dialect Identification in Speech", | |
description=""" | |
<div class="centered-content"> | |
<div> | |
<p> | |
By <a href="https://badrex.github.io/" style="color: #2563eb;">Badr Alabsi</a> with ❤️🤍💚 | |
</p> | |
<br> | |
<p> | |
This is a demo for the accurate and robust Transformer-based <a href="https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier" style="color: #FF5349;">model</a> for Spoken Arabic Dialect Identification (ADI). | |
From just a short audio clip (5-10 seconds), the model can identify Modern Standard Arabic (<strong>MSA</strong>) as well as four major regional Arabic varieties: <strong>Egyptian</strong> Arabic, <strong>Gulf</strong> Arabic, <strong>Levantine</strong> Arabic, and <strong>Maghrebi</strong> Arabic. | |
<br> | |
<p> | |
Simply <strong>upload an audio file</strong> 📀 or <strong>record yourself speaking</strong> ⏯️⏺️ to try out the model! | |
</p> | |
</div> | |
</div> | |
""", | |
examples=examples if examples else None, | |
cache_examples=False, # Disable caching to avoid issues | |
flagging_mode=None | |
) | |
# Launch the app | |
demo.launch(share=True) |