import os import random import uuid import json import time import asyncio import re from threading import Thread import gradio as gr import spaces import torch import numpy as np from PIL import Image import cv2 import translators as ts from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, Qwen2VLForConditionalGeneration, AutoProcessor, ) from transformers.image_utils import load_image # Constants MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) MAX_SEED = np.iinfo(np.int32).max device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Helper function to return a progress bar HTML snippet. def progress_bar_html(label: str) -> str: return f'''
{label}
''' # TEXT MODEL - Utiliser Napoleon 4B au lieu de FastThink model_id = "baconnier/Napoleon_4B_V0.0" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() # MULTIMODAL (OCR) MODELS - Garder Qwen2-VL pour OCR MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True) model_m = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID_VL, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() def clean_chat_history(chat_history): cleaned = [] for msg in chat_history: if isinstance(msg, dict) and isinstance(msg.get("content"), str): cleaned.append(msg) return cleaned bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) default_negative = os.getenv("default_negative", "") def check_text(prompt, negative=""): for i in bad_words: if i in prompt: return True for i in bad_words_negative: if i in negative: return True return False def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" dtype = torch.float16 if device.type == "cuda" else torch.float32 # NAPOLEON 4B MULTIMODAL MODEL - Remplacer Gemma3 par Napoleon napoleon_model_id = "baconnier/Napoleon_4B_V0.0" napoleon_model = AutoModelForCausalLM.from_pretrained( napoleon_model_id, device_map="auto", torch_dtype=torch.bfloat16 ).eval() napoleon_processor = AutoProcessor.from_pretrained(napoleon_model_id) # Fonction de traduction def translate_text(text, target_lang="fr", source_lang="auto"): try: return ts.deepl(text, from_language=source_lang, to_language=target_lang) except: try: return ts.google(text, from_language=source_lang, to_language=target_lang) except: return text # Retourner le texte original en cas d'échec # VIDEO PROCESSING HELPER def downsample_video(video_path): vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] # Sample 10 evenly spaced frames. frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: # Convert from BGR to RGB and then to PIL Image. image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames # MAIN GENERATION FUNCTION @spaces.GPU def generate( input_dict: dict, chat_history: list[dict], max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ): text = input_dict["text"] files = input_dict.get("files", []) lower_text = text.lower().strip() # NAPOLEON 4B TEXT & MULTIMODAL (image) Branch if lower_text.startswith("@napoleon"): # Remove the napoleon flag from the prompt. prompt_clean = re.sub(r"@napoleon", "", text, flags=re.IGNORECASE).strip().strip('"') # Traduire en français si le texte n'est pas déjà en français prompt_clean_fr = translate_text(prompt_clean, target_lang="fr") if files: # If image files are provided, load them. images = [load_image(f) for f in files] messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": prompt_clean_fr}, ] }] else: messages = [ {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, {"role": "user", "content": [{"type": "text", "text": prompt_clean_fr}]} ] inputs = napoleon_processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(napoleon_model.device, dtype=torch.bfloat16) streamer = TextIteratorStreamer( napoleon_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, } thread = Thread(target=napoleon_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Traitement avec Napoleon 4B") for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer return # NAPOLEON 4B VIDEO Branch if lower_text.startswith("@video"): # Remove the video flag from the prompt. prompt_clean = re.sub(r"@video", "", text, flags=re.IGNORECASE).strip().strip('"') # Traduire en français si le texte n'est pas déjà en français prompt_clean_fr = translate_text(prompt_clean, target_lang="fr") if files: # Assume the first file is a video. video_path = files[0] frames = downsample_video(video_path) messages = [ {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, {"role": "user", "content": [{"type": "text", "text": prompt_clean_fr}]} ] # Append each frame as an image with a timestamp label. for frame in frames: image, timestamp = frame image_path = f"video_frame_{uuid.uuid4().hex}.png" image.save(image_path) messages[1]["content"].append({"type": "text", "text": f"Image à {timestamp}s:"}) messages[1]["content"].append({"type": "image", "url": image_path}) else: messages = [ {"role": "system", "content": [{"type": "text", "text": "Vous êtes un assistant utile qui parle français."}]}, {"role": "user", "content": [{"type": "text", "text": prompt_clean_fr}]} ] inputs = napoleon_processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(napoleon_model.device, dtype=torch.bfloat16) streamer = TextIteratorStreamer( napoleon_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, } thread = Thread(target=napoleon_model.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Traitement vidéo avec Napoleon 4B") for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer return # Otherwise, handle text/chat generation. conversation = clean_chat_history(chat_history) conversation.append({"role": "user", "content": text}) if files: images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])] messages = [{ "role": "user", "content": [ *[{"type": "image", "image": image} for image in images], {"type": "text", "text": text}, ] }] prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_m.generate, kwargs=generation_kwargs) thread.start() buffer = "" yield progress_bar_html("Traitement avec Qwen2VL OCR") for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer else: # Traduire le texte en français pour Napoleon text_fr = translate_text(text, target_lang="fr") conversation_fr = clean_chat_history(chat_history) conversation_fr.append({"role": "user", "content": text_fr}) input_ids = tokenizer.apply_chat_template(conversation_fr, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Texte d'entrée tronqué car plus long que {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { "input_ids": input_ids, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "top_p": top_p, "top_k": top_k, "temperature": temperature, "num_beams": 1, "repetition_penalty": repetition_penalty, } t = Thread(target=model.generate, kwargs=generation_kwargs) t.start() outputs = [] for new_text in streamer: outputs.append(new_text) yield "".join(outputs) final_response = "".join(outputs) yield final_response demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Nombre maximum de tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), gr.Slider(label="Température", minimum=0.1, maximum=4.0, step=0.1, value=0.6), gr.Slider(label="Top-p (échantillonnage nucleus)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), gr.Slider(label="Pénalité de répétition", minimum=1.0, maximum=2.0, step=0.05, value=1.2), ], examples=[ [ { "text": "@napoleon Créez une histoire courte basée sur les images.", "files": [ "examples/1111.jpg", "examples/2222.jpg", "examples/3333.jpg", ], } ], [{"text": "@napoleon Expliquez cette image", "files": ["examples/3.jpg"]}], [{"text": "@video Expliquez le contenu de cette publicité", "files": ["examples/videoplayback.mp4"]}], [{"text": "@napoleon Quel personnage de film est-ce?", "files": ["examples/9999.jpg"]}], ["@napoleon Expliquez la température critique d'une substance"], [{"text": "@napoleon Transcription de cette lettre", "files": ["examples/222.png"]}], [{"text": "@video Expliquez le contenu de la vidéo en détail", "files": ["examples/breakfast.mp4"]}], [{"text": "@video Décrivez la vidéo", "files": ["examples/Missing.mp4"]}], [{"text": "@video Expliquez ce qui se passe dans cette vidéo", "files": ["examples/oreo.mp4"]}], [{"text": "@video Résumez les événements de cette vidéo", "files": ["examples/sky.mp4"]}], [{"text": "@video Qu'y a-t-il dans cette vidéo?", "files": ["examples/redlight.mp4"]}], ["Programme Python pour la rotation de tableau"], ["@napoleon Expliquez la température critique d'une substance"] ], cache_examples=False, type="messages", description="# **Napoleon 4B `@napoleon pour le multimodal, @video pour la compréhension vidéo`**", fill_height=True, textbox=gr.MultimodalTextbox(label="Saisir votre question", file_types=["image", "video"], file_count="multiple", placeholder="Utilisez @napoleon pour le multimodal, @video pour l'analyse vidéo !"), stop_btn="Arrêter la génération", multimodal=True, ) if __name__ == "__main__": demo.queue(max_size=20).launch(share=True)