{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "\n", "import matplotlib\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import seml\n", "from matplotlib import pyplot as plt\n", "\n", "matplotlib.style.use(\"fivethirtyeight\")\n", "matplotlib.style.use(\"seaborn-talk\")\n", "matplotlib.rcParams[\"font.family\"] = \"monospace\"\n", "plt.rcParams[\"savefig.facecolor\"] = \"white\"\n", "sns.set_context(\"poster\")\n", "pd.set_option(\"display.max_columns\", 100)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "25549216d24841e1bc5e9b237d614bef", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/90 [00:00\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
_idconfig_hashseml.executableseml.nameseml.output_dirseml.conda_environmentseml.working_dirseml.source_filesseml.output_fileseml.commandseml.temp_dirconfig.overwriteconfig.db_collectionconfig.dataset.data_params.covariate_keysconfig.dataset.data_params.dataset_pathconfig.dataset.data_params.degs_keyconfig.dataset.data_params.dose_keyconfig.dataset.data_params.pert_categoryconfig.dataset.data_params.perturbation_keyconfig.dataset.data_params.smiles_keyconfig.dataset.data_params.split_keyconfig.dataset.data_params.use_drugs_idxconfig.dataset.dataset_typeconfig.model.additional_params.decoder_activationconfig.model.additional_params.doser_typeconfig.model.additional_params.patienceconfig.model.additional_params.seedconfig.model.append_ae_layerconfig.model.embedding.directoryconfig.model.embedding.modelconfig.model.enable_cpa_modeconfig.model.hparams.adversary_depthconfig.model.hparams.adversary_lrconfig.model.hparams.adversary_stepsconfig.model.hparams.adversary_wdconfig.model.hparams.adversary_widthconfig.model.hparams.autoencoder_depthconfig.model.hparams.autoencoder_lrconfig.model.hparams.autoencoder_wdconfig.model.hparams.autoencoder_widthconfig.model.hparams.batch_sizeconfig.model.hparams.dimconfig.model.hparams.dosers_lrconfig.model.hparams.dosers_wdconfig.model.hparams.dropoutconfig.model.hparams.penalty_adversaryconfig.model.hparams.reg_adversaryconfig.model.hparams.reg_adversary_covconfig.model.hparams.reg_multi_taskconfig.model.hparams.step_size_lrconfig.model.load_pretrainedconfig.model.pretrained_model_hashes.grover_baseconfig.model.pretrained_model_hashes.jtvaeconfig.model.pretrained_model_hashes.rdkitconfig.model.pretrained_model_pathconfig.profiling.outdirconfig.profiling.run_profilerconfig.training.checkpoint_freqconfig.training.full_eval_during_trainconfig.training.max_minutesconfig.training.num_epochsconfig.training.run_eval_disentangleconfig.training.run_eval_logfoldconfig.training.run_eval_r2config.training.run_eval_r2_scconfig.training.save_checkpointsconfig.training.save_dirconfig.seedresult.epochresult.stats_epochresult.loss_reconstructionresult.loss_adv_drugsresult.loss_adv_covariatesresult.penalty_adv_drugsresult.penalty_adv_covariatesresult.loss_multi_taskresult.elapsed_time_minresult.perturbation disentanglementresult.optimal for perturbationsresult.covariate disentanglementresult.optimal for covariatesresult.trainingresult.testresult.oodresult.total_epochsconfig.model.hparams.dosers_depthconfig.model.hparams.dosers_widthconfig.model.hparams.embedding_encoder_depthconfig.model.hparams.embedding_encoder_width
0121343b475af8111dbf99e03a97bfa546cbchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1121baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue20.00036427.459343e-0712840.0005611.329292e-0725632320.0005611.329292e-070.2623780.1990703.9813998.605035050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints633631420[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3612.1250748652965, -4404.025819726288, -456...[16743.648698329926, 16650.181357383728, 16627...[3565.2551429867744, 3514.6954230070114, 3455....[19.383947187998274, 0.21128761193540413, 0.21...[4.457751702488167, 1.1393359339490416, 0.1101...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...214.742422[0.1179213896393776][0.09427048634243837][[0.7538307905197144]][[0.5531312227249146]][[0.894983643520549, 0.8292395011699352, 0.845...[[0.7011336828407801, 0.6790618055181907, 0.51...[[0.6922795044051276, 0.5382340351740519, 0.60...200NaNNaNNaNNaN
11224f5a9a00cb34fff872d9e650545f8d49chemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1122baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue30.00770235.669850e-0425640.0079697.114476e-0625632320.0079697.114476e-060.2623781.66752133.35042443.526159050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints785708499[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3015.6840969249606, -4258.411025434732, -451...[16747.717359542847, 16588.1752948761, 16575.5...[3657.765406548977, 3482.871282696724, 3488.26...[21.653557068414557, 0.01693590308169668, 0.00...[0.10074355859187276, 1.6497430284824943e-05, ...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...230.555345[0.09785143285989761][0.09427048634243837][[0.5867754817008972]][[0.5531312227249146]][[0.8779092754512863, 0.8201843837644573, 0.84...[[0.6879080172786094, 0.6737331918944742, 0.51...[[0.6768552528487312, 0.5380959510803223, 0.61...200NaNNaNNaNNaN
2123fa0d1d0cb3f0fb762cb7b86717c265bfchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c123baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue30.00241734.570563e-056440.0029111.570297e-0625632320.0029111.570297e-060.2623780.74416314.88326523.523782050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints265863942[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3103.6756750843488, -3997.364077932667, -421...[16745.280101776123, 16632.498584747314, 16595...[3612.7785443663597, 3519.0313788056374, 3528....[11.70924133083463, 0.08866506138838304, 0.068...[0.38809096050771075, 0.002621283691138565, 0....[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...219.842617[0.14781811833381653][0.09427048634243837][[0.964024007320404]][[0.5531312227249146]][[0.8885318681246139, 0.8238044218878564, 0.84...[[0.6944840129771435, 0.6757455790726621, 0.51...[[0.6832679973708259, 0.5239443447854784, 0.60...200NaNNaNNaNNaN
31241f7a7c7f991cc1758df954c935c55c93chemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c124baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue30.00119329.846739e-066440.0015756.251374e-0725632320.0015756.251374e-070.2623780.4550489.10095216.165583050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints836859251[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3164.6480776499957, -4117.536705642939, -441...[16705.996699810028, 16600.16117286682, 16576....[3396.620738953352, 3465.884160220623, 3488.98...[10.563939020610633, 0.13839950135843537, 0.13...[1.8068002152499503, 0.1811026665591271, 0.056...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...223.990424[0.12624916434288025][0.09427048634243837][[0.7513324618339539]][[0.5531312227249146]][[0.892137276498895, 0.8261171476594333, 0.842...[[0.697727657018457, 0.6758148670196533, 0.510...[[0.6916353040271335, 0.5308450327979194, 0.57...200NaNNaNNaNNaN
4125a8d8f9dfb023f7015add9f7adaf279dachemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/7dc77895-971c-4894-9680-01bffacc265b125baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue40.00011426.026889e-0825640.0002052.938028e-0825632320.0002052.938028e-080.2623780.0889041.7780804.653208050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints903215166[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-4074.531649325858, -4416.398121247068, -4512...[16829.74653148651, 16618.519855976105, 16584....[2938.816438138485, 3098.5407883524895, 3461.6...[95.64959524141159, 0.568151389452396, 0.46298...[19.739791638217866, 1.196424510446377, 0.3738...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...177.911729[0.10801132768392563][0.09427048634243837][[0.7604097723960876]][[0.5531312227249146]][[0.8067039461187788, 0.7766260079593278, 0.84...[[0.6378693109438603, 0.649653359690212, 0.508...[[0.6208917631043328, 0.5134070714314779, 0.54...200NaNNaNNaNNaN
..............................................................................................................................................................................................................................................................................
85206aa173e4744edb454922df1b0eeb5bbc4chemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with overwri.../tmp/a47139b0-212d-4f9a-ab7c-fb8171b13588206baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_MCF7TruetrapnellReLUamortized501337Falseproject_folder/embeddingsrdkitFalse30.00011426.025216e-0825640.0002052.937538e-0825632320.0002052.937538e-080.2623780.0888961.7779214.652892050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints68054828[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3928.107380900532, -4360.742132589221, -4571...[16689.560056209564, 16487.667051792145, 16466...[3311.913051187992, 3038.192951053381, 3360.16...[84.0516434317251, 0.65314612855218, 0.2982176...[14.973322750767693, 10.860019343323074, 3.794...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...160.029760[0.12368512898683548][0.09922861150070127][[0.8065392374992371]][[0.49500349164009094]][[0.8167659193547797, 0.8163067097023481, 0.85...[[0.6551213228880469, 0.6940624836962022, 0.52...[[0.668321344587538, 0.5470332503318787, 0.562...2003.064.04.0128.0
862074113c374288159693e1e24b080634b1fchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with overwri.../tmp/76be81f3-bfec-42a4-b94f-7aba4d451b42207baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_MCF7TruetrapnellReLUamortized501337Falseproject_folder/embeddingsrdkitFalse20.00006831.951722e-0812840.0001311.493657e-0825632320.0001311.493657e-080.2623780.0619471.2389493.532569050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints930194830[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-4197.868488155305, -4475.532685916871, -4583...[17060.63821697235, 16632.067096710205, 16612....[4374.603997647762, 4174.811530768871, 3928.21...[188.51864591054618, 14.712723883101717, 2.219...[19.27720962278545, 22.281489896588027, 32.605...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...152.992146[0.18127629160881042][0.09922861150070127][[0.9946528673171997]][[0.49500349164009094]][[0.8268161761133295, 0.8152553533252916, 0.85...[[0.6606194375462793, 0.6902955718597963, 0.53...[[0.6588132845030891, 0.5406467053625319, 0.68...2003.064.04.0128.0
87208e5e1cb20a2d3f7393a6920fef0ea577achemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with overwri.../tmp/76be81f3-bfec-42a4-b94f-7aba4d451b42208baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_MCF7TruetrapnellReLUamortized501337Falseproject_folder/embeddingsrdkitFalse40.00492122.142302e-0425640.0053993.967605e-0625632320.0053993.967605e-060.2623781.22077624.41553034.312906050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints92755728[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-2737.1312712398358, -4169.115693244617, -440...[16587.177933216095, 16451.451241970062, 16441...[3429.402607791126, 3479.383859217167, 3477.30...[39.635207791962785, 0.011837810839072205, 0.0...[0.27361948638956735, 0.00041216805076210034, ...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...180.591161[0.12964585423469543][0.09922861150070127][[0.6553295850753784]][[0.49500349164009094]][[0.8876676318217103, 0.8241324663811284, 0.84...[[0.6938806400073702, 0.6739577627300624, 0.51...[[0.4477141698201497, 0.1976391077041626, 0.46...2003.064.04.0128.0
88209ee9b2904e78e3b952257d13f3db44cbdchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with overwri.../tmp/1cf39964-f2e8-4cc2-84d3-23427a22e435209baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_MCF7TruetrapnellReLUamortized501337Falseproject_folder/embeddingsrdkitFalse20.00120831.012920e-0525640.0015936.358359e-0725632320.0015936.358359e-070.2623780.4591909.18379816.277694050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints720218878[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3541.048702847678, -4122.302563448437, -4303...[16753.814338684082, 16619.73931121826, 16557....[4074.214691400528, 3540.7648383378983, 3557.1...[9.068377614676137, 0.3368288650253817, 0.1803...[0.3855132060361939, 0.00753842080550271, 0.00...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...153.073008[0.12237026542425156][0.09922861150070127][[0.9181275963783264]][[0.49500349164009094]][[0.91285454902372, 0.871467328547566, 0.86190...[[0.7247852542210574, 0.7310491205744483, 0.52...[[0.726290418042077, 0.5543480449252658, 0.643...2003.064.04.0128.0
89210875ad00f965fc90909f8f60e57641f7dchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with overwri.../tmp/1cf39964-f2e8-4cc2-84d3-23427a22e435210baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_MCF7TruetrapnellReLUamortized501337Falseproject_folder/embeddingsrdkitFalse30.00212923.470267e-0525640.0026071.331122e-0625632320.0026071.331122e-060.2623780.68131013.62620021.992715050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints458306566[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3136.0531881402712, -4102.523001439869, -435...[16603.64946746826, 16465.499509334564, 16448....[3362.6479460299015, 3475.0489124059677, 3478....[15.629452769775526, 0.3167679122773279, 0.174...[0.42230633107513427, 0.0012042550457440626, 0...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...163.621413[0.1239481046795845][0.09922861150070127][[0.730189323425293]][[0.49500349164009094]][[0.9115484491017682, 0.8638789025279009, 0.86...[[0.7223709870630236, 0.7194061618835772, 0.54...[[0.7158305446306864, 0.5382094184557596, 0.70...2003.064.04.0128.0
\n", "

90 rows × 89 columns

\n", "" ], "text/plain": [ " _id config_hash seml.executable \\\n", "0 121 343b475af8111dbf99e03a97bfa546cb chemCPA/experiments_run.py \n", "1 122 4f5a9a00cb34fff872d9e650545f8d49 chemCPA/experiments_run.py \n", "2 123 fa0d1d0cb3f0fb762cb7b86717c265bf chemCPA/experiments_run.py \n", "3 124 1f7a7c7f991cc1758df954c935c55c93 chemCPA/experiments_run.py \n", "4 125 a8d8f9dfb023f7015add9f7adaf279da chemCPA/experiments_run.py \n", ".. ... ... ... \n", "85 206 aa173e4744edb454922df1b0eeb5bbc4 chemCPA/experiments_run.py \n", "86 207 4113c374288159693e1e24b080634b1f chemCPA/experiments_run.py \n", "87 208 e5e1cb20a2d3f7393a6920fef0ea577a chemCPA/experiments_run.py \n", "88 209 ee9b2904e78e3b952257d13f3db44cbd chemCPA/experiments_run.py \n", "89 210 875ad00f965fc90909f8f60e57641f7d chemCPA/experiments_run.py \n", "\n", " seml.name seml.output_dir \\\n", "0 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "1 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "2 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "3 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "4 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", ".. ... ... \n", "85 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "86 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "87 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "88 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "89 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "\n", " seml.conda_environment seml.working_dir \\\n", "0 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "1 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "2 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "3 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "4 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", ".. ... ... \n", "85 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "86 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "87 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "88 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "89 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "\n", " seml.source_files \\\n", "0 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "1 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "2 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "3 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "4 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", ".. ... \n", "85 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "86 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "87 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "88 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "89 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "\n", " seml.output_file \\\n", "0 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "1 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "2 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "3 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "4 /storage/groups/ml01/projects/2021_chemicalCPA... \n", ".. ... \n", "85 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "86 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "87 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "88 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "89 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "\n", " seml.command \\\n", "0 python chemCPA/experiments_run.py with 'datase... \n", "1 python chemCPA/experiments_run.py with 'datase... \n", "2 python chemCPA/experiments_run.py with 'datase... \n", "3 python chemCPA/experiments_run.py with 'datase... \n", "4 python chemCPA/experiments_run.py with 'datase... \n", ".. ... \n", "85 python chemCPA/experiments_run.py with overwri... \n", "86 python chemCPA/experiments_run.py with overwri... \n", "87 python chemCPA/experiments_run.py with overwri... \n", "88 python chemCPA/experiments_run.py with overwri... \n", "89 python chemCPA/experiments_run.py with overwri... \n", "\n", " seml.temp_dir config.overwrite \\\n", "0 /tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1 121 \n", "1 /tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1 122 \n", "2 /tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c 123 \n", "3 /tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c 124 \n", "4 /tmp/7dc77895-971c-4894-9680-01bffacc265b 125 \n", ".. ... ... \n", "85 /tmp/a47139b0-212d-4f9a-ab7c-fb8171b13588 206 \n", "86 /tmp/76be81f3-bfec-42a4-b94f-7aba4d451b42 207 \n", "87 /tmp/76be81f3-bfec-42a4-b94f-7aba4d451b42 208 \n", "88 /tmp/1cf39964-f2e8-4cc2-84d3-23427a22e435 209 \n", "89 /tmp/1cf39964-f2e8-4cc2-84d3-23427a22e435 210 \n", "\n", " config.db_collection config.dataset.data_params.covariate_keys \\\n", "0 baseline_comparison cell_type \n", "1 baseline_comparison cell_type \n", "2 baseline_comparison cell_type \n", "3 baseline_comparison cell_type \n", "4 baseline_comparison cell_type \n", ".. ... ... \n", "85 baseline_comparison cell_type \n", "86 baseline_comparison cell_type \n", "87 baseline_comparison cell_type \n", "88 baseline_comparison cell_type \n", "89 baseline_comparison cell_type \n", "\n", " config.dataset.data_params.dataset_path \\\n", "0 project_folder/datasets/adata_baseline_high_do... \n", "1 project_folder/datasets/adata_baseline_high_do... \n", "2 project_folder/datasets/adata_baseline_high_do... \n", "3 project_folder/datasets/adata_baseline_high_do... \n", "4 project_folder/datasets/adata_baseline_high_do... \n", ".. ... \n", "85 project_folder/datasets/adata_baseline_high_do... \n", "86 project_folder/datasets/adata_baseline_high_do... \n", "87 project_folder/datasets/adata_baseline_high_do... \n", "88 project_folder/datasets/adata_baseline_high_do... \n", "89 project_folder/datasets/adata_baseline_high_do... \n", "\n", " config.dataset.data_params.degs_key config.dataset.data_params.dose_key \\\n", "0 lincs_DEGs dose \n", "1 lincs_DEGs dose \n", "2 lincs_DEGs dose \n", "3 lincs_DEGs dose \n", "4 lincs_DEGs dose \n", ".. ... ... \n", "85 lincs_DEGs dose \n", "86 lincs_DEGs dose \n", "87 lincs_DEGs dose \n", "88 lincs_DEGs dose \n", "89 lincs_DEGs dose \n", "\n", " config.dataset.data_params.pert_category \\\n", "0 cov_drug_dose_name \n", "1 cov_drug_dose_name \n", "2 cov_drug_dose_name \n", "3 cov_drug_dose_name \n", "4 cov_drug_dose_name \n", ".. ... \n", "85 cov_drug_dose_name \n", "86 cov_drug_dose_name \n", "87 cov_drug_dose_name \n", "88 cov_drug_dose_name \n", "89 cov_drug_dose_name \n", "\n", " config.dataset.data_params.perturbation_key \\\n", "0 condition \n", "1 condition \n", "2 condition \n", "3 condition \n", "4 condition \n", ".. ... \n", "85 condition \n", "86 condition \n", "87 condition \n", "88 condition \n", "89 condition \n", "\n", " config.dataset.data_params.smiles_key config.dataset.data_params.split_key \\\n", "0 SMILES split_baseline_A549 \n", "1 SMILES split_baseline_A549 \n", "2 SMILES split_baseline_A549 \n", "3 SMILES split_baseline_A549 \n", "4 SMILES split_baseline_A549 \n", ".. ... ... \n", "85 SMILES split_baseline_MCF7 \n", "86 SMILES split_baseline_MCF7 \n", "87 SMILES split_baseline_MCF7 \n", "88 SMILES split_baseline_MCF7 \n", "89 SMILES split_baseline_MCF7 \n", "\n", " config.dataset.data_params.use_drugs_idx config.dataset.dataset_type \\\n", "0 True trapnell \n", "1 True trapnell \n", "2 True trapnell \n", "3 True trapnell \n", "4 True trapnell \n", ".. ... ... \n", "85 True trapnell \n", "86 True trapnell \n", "87 True trapnell \n", "88 True trapnell \n", "89 True trapnell \n", "\n", " config.model.additional_params.decoder_activation \\\n", "0 ReLU \n", "1 ReLU \n", "2 ReLU \n", "3 ReLU \n", "4 ReLU \n", ".. ... \n", "85 ReLU \n", "86 ReLU \n", "87 ReLU \n", "88 ReLU \n", "89 ReLU \n", "\n", " config.model.additional_params.doser_type \\\n", "0 sigm \n", "1 sigm \n", "2 sigm \n", "3 sigm \n", "4 sigm \n", ".. ... \n", "85 amortized \n", "86 amortized \n", "87 amortized \n", "88 amortized \n", "89 amortized \n", "\n", " config.model.additional_params.patience \\\n", "0 50 \n", "1 50 \n", "2 50 \n", "3 50 \n", "4 50 \n", ".. ... \n", "85 50 \n", "86 50 \n", "87 50 \n", "88 50 \n", "89 50 \n", "\n", " config.model.additional_params.seed config.model.append_ae_layer \\\n", "0 1337 False \n", "1 1337 False \n", "2 1337 False \n", "3 1337 False \n", "4 1337 False \n", ".. ... ... \n", "85 1337 False \n", "86 1337 False \n", "87 1337 False \n", "88 1337 False \n", "89 1337 False \n", "\n", " config.model.embedding.directory config.model.embedding.model \\\n", "0 project_folder/embeddings vanilla \n", "1 project_folder/embeddings vanilla \n", "2 project_folder/embeddings vanilla \n", "3 project_folder/embeddings vanilla \n", "4 project_folder/embeddings vanilla \n", ".. ... ... \n", "85 project_folder/embeddings rdkit \n", "86 project_folder/embeddings rdkit \n", "87 project_folder/embeddings rdkit \n", "88 project_folder/embeddings rdkit \n", "89 project_folder/embeddings rdkit \n", "\n", " config.model.enable_cpa_mode config.model.hparams.adversary_depth \\\n", "0 True 2 \n", "1 True 3 \n", "2 True 3 \n", "3 True 3 \n", "4 True 4 \n", ".. ... ... \n", "85 False 3 \n", "86 False 2 \n", "87 False 4 \n", "88 False 2 \n", "89 False 3 \n", "\n", " config.model.hparams.adversary_lr config.model.hparams.adversary_steps \\\n", "0 0.000364 2 \n", "1 0.007702 3 \n", "2 0.002417 3 \n", "3 0.001193 2 \n", "4 0.000114 2 \n", ".. ... ... \n", "85 0.000114 2 \n", "86 0.000068 3 \n", "87 0.004921 2 \n", "88 0.001208 3 \n", "89 0.002129 2 \n", "\n", " config.model.hparams.adversary_wd config.model.hparams.adversary_width \\\n", "0 7.459343e-07 128 \n", "1 5.669850e-04 256 \n", "2 4.570563e-05 64 \n", "3 9.846739e-06 64 \n", "4 6.026889e-08 256 \n", ".. ... ... \n", "85 6.025216e-08 256 \n", "86 1.951722e-08 128 \n", "87 2.142302e-04 256 \n", "88 1.012920e-05 256 \n", "89 3.470267e-05 256 \n", "\n", " config.model.hparams.autoencoder_depth \\\n", "0 4 \n", "1 4 \n", "2 4 \n", "3 4 \n", "4 4 \n", ".. ... \n", "85 4 \n", "86 4 \n", "87 4 \n", "88 4 \n", "89 4 \n", "\n", " config.model.hparams.autoencoder_lr config.model.hparams.autoencoder_wd \\\n", "0 0.000561 1.329292e-07 \n", "1 0.007969 7.114476e-06 \n", "2 0.002911 1.570297e-06 \n", "3 0.001575 6.251374e-07 \n", "4 0.000205 2.938028e-08 \n", ".. ... ... \n", "85 0.000205 2.937538e-08 \n", "86 0.000131 1.493657e-08 \n", "87 0.005399 3.967605e-06 \n", "88 0.001593 6.358359e-07 \n", "89 0.002607 1.331122e-06 \n", "\n", " config.model.hparams.autoencoder_width config.model.hparams.batch_size \\\n", "0 256 32 \n", "1 256 32 \n", "2 256 32 \n", "3 256 32 \n", "4 256 32 \n", ".. ... ... \n", "85 256 32 \n", "86 256 32 \n", "87 256 32 \n", "88 256 32 \n", "89 256 32 \n", "\n", " config.model.hparams.dim config.model.hparams.dosers_lr \\\n", "0 32 0.000561 \n", "1 32 0.007969 \n", "2 32 0.002911 \n", "3 32 0.001575 \n", "4 32 0.000205 \n", ".. ... ... \n", "85 32 0.000205 \n", "86 32 0.000131 \n", "87 32 0.005399 \n", "88 32 0.001593 \n", "89 32 0.002607 \n", "\n", " config.model.hparams.dosers_wd config.model.hparams.dropout \\\n", "0 1.329292e-07 0.262378 \n", "1 7.114476e-06 0.262378 \n", "2 1.570297e-06 0.262378 \n", "3 6.251374e-07 0.262378 \n", "4 2.938028e-08 0.262378 \n", ".. ... ... \n", "85 2.937538e-08 0.262378 \n", "86 1.493657e-08 0.262378 \n", "87 3.967605e-06 0.262378 \n", "88 6.358359e-07 0.262378 \n", "89 1.331122e-06 0.262378 \n", "\n", " config.model.hparams.penalty_adversary \\\n", "0 0.199070 \n", "1 1.667521 \n", "2 0.744163 \n", "3 0.455048 \n", "4 0.088904 \n", ".. ... \n", "85 0.088896 \n", "86 0.061947 \n", "87 1.220776 \n", "88 0.459190 \n", "89 0.681310 \n", "\n", " config.model.hparams.reg_adversary \\\n", "0 3.981399 \n", "1 33.350424 \n", "2 14.883265 \n", "3 9.100952 \n", "4 1.778080 \n", ".. ... \n", "85 1.777921 \n", "86 1.238949 \n", "87 24.415530 \n", "88 9.183798 \n", "89 13.626200 \n", "\n", " config.model.hparams.reg_adversary_cov \\\n", "0 8.605035 \n", "1 43.526159 \n", "2 23.523782 \n", "3 16.165583 \n", "4 4.653208 \n", ".. ... \n", "85 4.652892 \n", "86 3.532569 \n", "87 34.312906 \n", "88 16.277694 \n", "89 21.992715 \n", "\n", " config.model.hparams.reg_multi_task config.model.hparams.step_size_lr \\\n", "0 0 50 \n", "1 0 50 \n", "2 0 50 \n", "3 0 50 \n", "4 0 50 \n", ".. ... ... \n", "85 0 50 \n", "86 0 50 \n", "87 0 50 \n", "88 0 50 \n", "89 0 50 \n", "\n", " config.model.load_pretrained \\\n", "0 False \n", "1 False \n", "2 False \n", "3 False \n", "4 False \n", ".. ... \n", "85 False \n", "86 False \n", "87 False \n", "88 False \n", "89 False \n", "\n", " config.model.pretrained_model_hashes.grover_base \\\n", "0 ff420aea264fca7668ecb147f60762a1 \n", "1 ff420aea264fca7668ecb147f60762a1 \n", "2 ff420aea264fca7668ecb147f60762a1 \n", "3 ff420aea264fca7668ecb147f60762a1 \n", "4 ff420aea264fca7668ecb147f60762a1 \n", ".. ... \n", "85 ff420aea264fca7668ecb147f60762a1 \n", "86 ff420aea264fca7668ecb147f60762a1 \n", "87 ff420aea264fca7668ecb147f60762a1 \n", "88 ff420aea264fca7668ecb147f60762a1 \n", "89 ff420aea264fca7668ecb147f60762a1 \n", "\n", " config.model.pretrained_model_hashes.jtvae \\\n", "0 a7060ac4e2c6154e64a13acd414cbba2 \n", "1 a7060ac4e2c6154e64a13acd414cbba2 \n", "2 a7060ac4e2c6154e64a13acd414cbba2 \n", "3 a7060ac4e2c6154e64a13acd414cbba2 \n", "4 a7060ac4e2c6154e64a13acd414cbba2 \n", ".. ... \n", "85 a7060ac4e2c6154e64a13acd414cbba2 \n", "86 a7060ac4e2c6154e64a13acd414cbba2 \n", "87 a7060ac4e2c6154e64a13acd414cbba2 \n", "88 a7060ac4e2c6154e64a13acd414cbba2 \n", "89 a7060ac4e2c6154e64a13acd414cbba2 \n", "\n", " config.model.pretrained_model_hashes.rdkit \\\n", "0 4f061dbfc7af05cf84f06a724b0c8563 \n", "1 4f061dbfc7af05cf84f06a724b0c8563 \n", "2 4f061dbfc7af05cf84f06a724b0c8563 \n", "3 4f061dbfc7af05cf84f06a724b0c8563 \n", "4 4f061dbfc7af05cf84f06a724b0c8563 \n", ".. ... \n", "85 4f061dbfc7af05cf84f06a724b0c8563 \n", "86 4f061dbfc7af05cf84f06a724b0c8563 \n", "87 4f061dbfc7af05cf84f06a724b0c8563 \n", "88 4f061dbfc7af05cf84f06a724b0c8563 \n", "89 4f061dbfc7af05cf84f06a724b0c8563 \n", "\n", " config.model.pretrained_model_path config.profiling.outdir \\\n", "0 project_folder/checkpoints ./ \n", "1 project_folder/checkpoints ./ \n", "2 project_folder/checkpoints ./ \n", "3 project_folder/checkpoints ./ \n", "4 project_folder/checkpoints ./ \n", ".. ... ... \n", "85 project_folder/checkpoints ./ \n", "86 project_folder/checkpoints ./ \n", "87 project_folder/checkpoints ./ \n", "88 project_folder/checkpoints ./ \n", "89 project_folder/checkpoints ./ \n", "\n", " config.profiling.run_profiler config.training.checkpoint_freq \\\n", "0 False 25 \n", "1 False 25 \n", "2 False 25 \n", "3 False 25 \n", "4 False 25 \n", ".. ... ... \n", "85 False 25 \n", "86 False 25 \n", "87 False 25 \n", "88 False 25 \n", "89 False 25 \n", "\n", " config.training.full_eval_during_train config.training.max_minutes \\\n", "0 False 1200 \n", "1 False 1200 \n", "2 False 1200 \n", "3 False 1200 \n", "4 False 1200 \n", ".. ... ... \n", "85 False 1200 \n", "86 False 1200 \n", "87 False 1200 \n", "88 False 1200 \n", "89 False 1200 \n", "\n", " config.training.num_epochs config.training.run_eval_disentangle \\\n", "0 201 True \n", "1 201 True \n", "2 201 True \n", "3 201 True \n", "4 201 True \n", ".. ... ... \n", "85 201 True \n", "86 201 True \n", "87 201 True \n", "88 201 True \n", "89 201 True \n", "\n", " config.training.run_eval_logfold config.training.run_eval_r2 \\\n", "0 False True \n", "1 False True \n", "2 False True \n", "3 False True \n", "4 False True \n", ".. ... ... \n", "85 False True \n", "86 False True \n", "87 False True \n", "88 False True \n", "89 False True \n", "\n", " config.training.run_eval_r2_sc config.training.save_checkpoints \\\n", "0 False True \n", "1 False True \n", "2 False True \n", "3 False True \n", "4 False True \n", ".. ... ... \n", "85 False True \n", "86 False True \n", "87 False True \n", "88 False True \n", "89 False True \n", "\n", " config.training.save_dir config.seed \\\n", "0 project_folder/checkpoints 633631420 \n", "1 project_folder/checkpoints 785708499 \n", "2 project_folder/checkpoints 265863942 \n", "3 project_folder/checkpoints 836859251 \n", "4 project_folder/checkpoints 903215166 \n", ".. ... ... \n", "85 project_folder/checkpoints 68054828 \n", "86 project_folder/checkpoints 930194830 \n", "87 project_folder/checkpoints 92755728 \n", "88 project_folder/checkpoints 720218878 \n", "89 project_folder/checkpoints 458306566 \n", "\n", " result.epoch result.stats_epoch \\\n", "0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "3 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "4 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", ".. ... ... \n", "85 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "86 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "87 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "88 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "89 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "\n", " result.loss_reconstruction \\\n", "0 [-3612.1250748652965, -4404.025819726288, -456... \n", "1 [-3015.6840969249606, -4258.411025434732, -451... \n", "2 [-3103.6756750843488, -3997.364077932667, -421... \n", "3 [-3164.6480776499957, -4117.536705642939, -441... \n", "4 [-4074.531649325858, -4416.398121247068, -4512... \n", ".. ... \n", "85 [-3928.107380900532, -4360.742132589221, -4571... \n", "86 [-4197.868488155305, -4475.532685916871, -4583... \n", "87 [-2737.1312712398358, -4169.115693244617, -440... \n", "88 [-3541.048702847678, -4122.302563448437, -4303... \n", "89 [-3136.0531881402712, -4102.523001439869, -435... \n", "\n", " result.loss_adv_drugs \\\n", "0 [16743.648698329926, 16650.181357383728, 16627... \n", "1 [16747.717359542847, 16588.1752948761, 16575.5... \n", "2 [16745.280101776123, 16632.498584747314, 16595... \n", "3 [16705.996699810028, 16600.16117286682, 16576.... \n", "4 [16829.74653148651, 16618.519855976105, 16584.... \n", ".. ... \n", "85 [16689.560056209564, 16487.667051792145, 16466... \n", "86 [17060.63821697235, 16632.067096710205, 16612.... \n", "87 [16587.177933216095, 16451.451241970062, 16441... \n", "88 [16753.814338684082, 16619.73931121826, 16557.... \n", "89 [16603.64946746826, 16465.499509334564, 16448.... \n", "\n", " result.loss_adv_covariates \\\n", "0 [3565.2551429867744, 3514.6954230070114, 3455.... \n", "1 [3657.765406548977, 3482.871282696724, 3488.26... \n", "2 [3612.7785443663597, 3519.0313788056374, 3528.... \n", "3 [3396.620738953352, 3465.884160220623, 3488.98... \n", "4 [2938.816438138485, 3098.5407883524895, 3461.6... \n", ".. ... \n", "85 [3311.913051187992, 3038.192951053381, 3360.16... \n", "86 [4374.603997647762, 4174.811530768871, 3928.21... \n", "87 [3429.402607791126, 3479.383859217167, 3477.30... \n", "88 [4074.214691400528, 3540.7648383378983, 3557.1... \n", "89 [3362.6479460299015, 3475.0489124059677, 3478.... \n", "\n", " result.penalty_adv_drugs \\\n", "0 [19.383947187998274, 0.21128761193540413, 0.21... \n", "1 [21.653557068414557, 0.01693590308169668, 0.00... \n", "2 [11.70924133083463, 0.08866506138838304, 0.068... \n", "3 [10.563939020610633, 0.13839950135843537, 0.13... \n", "4 [95.64959524141159, 0.568151389452396, 0.46298... \n", ".. ... \n", "85 [84.0516434317251, 0.65314612855218, 0.2982176... \n", "86 [188.51864591054618, 14.712723883101717, 2.219... \n", "87 [39.635207791962785, 0.011837810839072205, 0.0... \n", "88 [9.068377614676137, 0.3368288650253817, 0.1803... \n", "89 [15.629452769775526, 0.3167679122773279, 0.174... \n", "\n", " result.penalty_adv_covariates \\\n", "0 [4.457751702488167, 1.1393359339490416, 0.1101... \n", "1 [0.10074355859187276, 1.6497430284824943e-05, ... \n", "2 [0.38809096050771075, 0.002621283691138565, 0.... \n", "3 [1.8068002152499503, 0.1811026665591271, 0.056... \n", "4 [19.739791638217866, 1.196424510446377, 0.3738... \n", ".. ... \n", "85 [14.973322750767693, 10.860019343323074, 3.794... \n", "86 [19.27720962278545, 22.281489896588027, 32.605... \n", "87 [0.27361948638956735, 0.00041216805076210034, ... \n", "88 [0.3855132060361939, 0.00753842080550271, 0.00... \n", "89 [0.42230633107513427, 0.0012042550457440626, 0... \n", "\n", " result.loss_multi_task \\\n", "0 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "2 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "3 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "4 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", ".. ... \n", "85 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "86 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "87 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "88 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "89 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... \n", "\n", " result.elapsed_time_min result.perturbation disentanglement \\\n", "0 214.742422 [0.1179213896393776] \n", "1 230.555345 [0.09785143285989761] \n", "2 219.842617 [0.14781811833381653] \n", "3 223.990424 [0.12624916434288025] \n", "4 177.911729 [0.10801132768392563] \n", ".. ... ... \n", "85 160.029760 [0.12368512898683548] \n", "86 152.992146 [0.18127629160881042] \n", "87 180.591161 [0.12964585423469543] \n", "88 153.073008 [0.12237026542425156] \n", "89 163.621413 [0.1239481046795845] \n", "\n", " result.optimal for perturbations result.covariate disentanglement \\\n", "0 [0.09427048634243837] [[0.7538307905197144]] \n", "1 [0.09427048634243837] [[0.5867754817008972]] \n", "2 [0.09427048634243837] [[0.964024007320404]] \n", "3 [0.09427048634243837] [[0.7513324618339539]] \n", "4 [0.09427048634243837] [[0.7604097723960876]] \n", ".. ... ... \n", "85 [0.09922861150070127] [[0.8065392374992371]] \n", "86 [0.09922861150070127] [[0.9946528673171997]] \n", "87 [0.09922861150070127] [[0.6553295850753784]] \n", "88 [0.09922861150070127] [[0.9181275963783264]] \n", "89 [0.09922861150070127] [[0.730189323425293]] \n", "\n", " result.optimal for covariates \\\n", "0 [[0.5531312227249146]] \n", "1 [[0.5531312227249146]] \n", "2 [[0.5531312227249146]] \n", "3 [[0.5531312227249146]] \n", "4 [[0.5531312227249146]] \n", ".. ... \n", "85 [[0.49500349164009094]] \n", "86 [[0.49500349164009094]] \n", "87 [[0.49500349164009094]] \n", "88 [[0.49500349164009094]] \n", "89 [[0.49500349164009094]] \n", "\n", " result.training \\\n", "0 [[0.894983643520549, 0.8292395011699352, 0.845... \n", "1 [[0.8779092754512863, 0.8201843837644573, 0.84... \n", "2 [[0.8885318681246139, 0.8238044218878564, 0.84... \n", "3 [[0.892137276498895, 0.8261171476594333, 0.842... \n", "4 [[0.8067039461187788, 0.7766260079593278, 0.84... \n", ".. ... \n", "85 [[0.8167659193547797, 0.8163067097023481, 0.85... \n", "86 [[0.8268161761133295, 0.8152553533252916, 0.85... \n", "87 [[0.8876676318217103, 0.8241324663811284, 0.84... \n", "88 [[0.91285454902372, 0.871467328547566, 0.86190... \n", "89 [[0.9115484491017682, 0.8638789025279009, 0.86... \n", "\n", " result.test \\\n", "0 [[0.7011336828407801, 0.6790618055181907, 0.51... \n", "1 [[0.6879080172786094, 0.6737331918944742, 0.51... \n", "2 [[0.6944840129771435, 0.6757455790726621, 0.51... \n", "3 [[0.697727657018457, 0.6758148670196533, 0.510... \n", "4 [[0.6378693109438603, 0.649653359690212, 0.508... \n", ".. ... \n", "85 [[0.6551213228880469, 0.6940624836962022, 0.52... \n", "86 [[0.6606194375462793, 0.6902955718597963, 0.53... \n", "87 [[0.6938806400073702, 0.6739577627300624, 0.51... \n", "88 [[0.7247852542210574, 0.7310491205744483, 0.52... \n", "89 [[0.7223709870630236, 0.7194061618835772, 0.54... \n", "\n", " result.ood result.total_epochs \\\n", "0 [[0.6922795044051276, 0.5382340351740519, 0.60... 200 \n", "1 [[0.6768552528487312, 0.5380959510803223, 0.61... 200 \n", "2 [[0.6832679973708259, 0.5239443447854784, 0.60... 200 \n", "3 [[0.6916353040271335, 0.5308450327979194, 0.57... 200 \n", "4 [[0.6208917631043328, 0.5134070714314779, 0.54... 200 \n", ".. ... ... \n", "85 [[0.668321344587538, 0.5470332503318787, 0.562... 200 \n", "86 [[0.6588132845030891, 0.5406467053625319, 0.68... 200 \n", "87 [[0.4477141698201497, 0.1976391077041626, 0.46... 200 \n", "88 [[0.726290418042077, 0.5543480449252658, 0.643... 200 \n", "89 [[0.7158305446306864, 0.5382094184557596, 0.70... 200 \n", "\n", " config.model.hparams.dosers_depth config.model.hparams.dosers_width \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "3 NaN NaN \n", "4 NaN NaN \n", ".. ... ... \n", "85 3.0 64.0 \n", "86 3.0 64.0 \n", "87 3.0 64.0 \n", "88 3.0 64.0 \n", "89 3.0 64.0 \n", "\n", " config.model.hparams.embedding_encoder_depth \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", ".. ... \n", "85 4.0 \n", "86 4.0 \n", "87 4.0 \n", "88 4.0 \n", "89 4.0 \n", "\n", " config.model.hparams.embedding_encoder_width \n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "3 NaN \n", "4 NaN \n", ".. ... \n", "85 128.0 \n", "86 128.0 \n", "87 128.0 \n", "88 128.0 \n", "89 128.0 \n", "\n", "[90 rows x 89 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "rdkit 60\n", "vanilla 30\n", "Name: config.model.embedding.model, dtype: int64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results[\"config.model.embedding.model\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
result.perturbation disentanglementFalse
config.model.embedding.model
rdkit60
vanilla30
\n", "
" ], "text/plain": [ "result.perturbation disentanglement False\n", "config.model.embedding.model \n", "rdkit 60\n", "vanilla 30" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(\n", " results[\"config.model.embedding.model\"],\n", " results[\"result.perturbation disentanglement\"].isnull(),\n", ")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['config.model.append_ae_layer', 'config.model.pretrained_model_hashes.jtvae']" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[c for c in results.columns if \"ae\" in c]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
config.model.load_pretrainedFalseTrue
config.dataset.data_params.split_key
split_baseline_A5492010
split_baseline_K5622010
split_baseline_MCF72010
\n", "
" ], "text/plain": [ "config.model.load_pretrained False True\n", "config.dataset.data_params.split_key \n", "split_baseline_A549 20 10\n", "split_baseline_K562 20 10\n", "split_baseline_MCF7 20 10" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(\n", " results[\"config.dataset.data_params.split_key\"],\n", " results[\"config.model.load_pretrained\"],\n", ")\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
result.loss_reconstructionFalse
config.dataset.data_params.split_key
split_baseline_A54930
split_baseline_K56230
split_baseline_MCF730
\n", "
" ], "text/plain": [ "result.loss_reconstruction False\n", "config.dataset.data_params.split_key \n", "split_baseline_A549 30\n", "split_baseline_K562 30\n", "split_baseline_MCF7 30" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(\n", " results[\"config.dataset.data_params.split_key\"],\n", " results[\"result.loss_reconstruction\"].isnull(),\n", ")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "config.model.hparams.dosers_depth True\n", "config.model.hparams.dosers_width True\n", "config.model.hparams.embedding_encoder_depth True\n", "config.model.hparams.embedding_encoder_width True\n", "dtype: bool" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results.isnull().any()[results.isnull().any()]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "clean_id = results.loc[~results[\"result.training\"].isnull(), \"_id\"]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Percentage of invalid (nan) runs: 0.0\n" ] } ], "source": [ "results_clean = results[results._id.isin(clean_id)].copy()\n", "print(f\"Percentage of invalid (nan) runs: {1 - len(clean_id) / len(results)}\")" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "rdkit 60\n", "vanilla 30\n", "Name: config.model.embedding.model, dtype: int64" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "results_clean[\"config.model.embedding.model\"].value_counts()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
_idconfig_hashseml.executableseml.nameseml.output_dirseml.conda_environmentseml.working_dirseml.source_filesseml.output_fileseml.commandseml.temp_dirconfig.overwriteconfig.db_collectionconfig.dataset.data_params.covariate_keysconfig.dataset.data_params.dataset_pathconfig.dataset.data_params.degs_keyconfig.dataset.data_params.dose_keyconfig.dataset.data_params.pert_categoryconfig.dataset.data_params.perturbation_keyconfig.dataset.data_params.smiles_keyconfig.dataset.data_params.split_keyconfig.dataset.data_params.use_drugs_idxconfig.dataset.dataset_typeconfig.model.additional_params.decoder_activationconfig.model.additional_params.doser_typeconfig.model.additional_params.patienceconfig.model.additional_params.seedconfig.model.append_ae_layerconfig.model.embedding.directoryconfig.model.embedding.modelconfig.model.enable_cpa_modeconfig.model.hparams.adversary_depthconfig.model.hparams.adversary_lrconfig.model.hparams.adversary_stepsconfig.model.hparams.adversary_wdconfig.model.hparams.adversary_widthconfig.model.hparams.autoencoder_depthconfig.model.hparams.autoencoder_lrconfig.model.hparams.autoencoder_wdconfig.model.hparams.autoencoder_widthconfig.model.hparams.batch_sizeconfig.model.hparams.dimconfig.model.hparams.dosers_lrconfig.model.hparams.dosers_wdconfig.model.hparams.dropoutconfig.model.hparams.penalty_adversaryconfig.model.hparams.reg_adversaryconfig.model.hparams.reg_adversary_covconfig.model.hparams.reg_multi_taskconfig.model.hparams.step_size_lrconfig.model.load_pretrainedconfig.model.pretrained_model_hashes.grover_baseconfig.model.pretrained_model_hashes.jtvaeconfig.model.pretrained_model_hashes.rdkitconfig.model.pretrained_model_pathconfig.profiling.outdirconfig.profiling.run_profilerconfig.training.checkpoint_freqconfig.training.full_eval_during_trainconfig.training.max_minutesconfig.training.num_epochsconfig.training.run_eval_disentangleconfig.training.run_eval_logfoldconfig.training.run_eval_r2config.training.run_eval_r2_scconfig.training.save_checkpointsconfig.training.save_dirconfig.seedresult.epochresult.stats_epochresult.loss_reconstructionresult.loss_adv_drugsresult.loss_adv_covariatesresult.penalty_adv_drugsresult.penalty_adv_covariatesresult.loss_multi_taskresult.elapsed_time_minresult.perturbation disentanglementresult.optimal for perturbationsresult.covariate disentanglementresult.optimal for covariatesresult.trainingresult.testresult.oodresult.total_epochsconfig.model.hparams.dosers_depthconfig.model.hparams.dosers_widthconfig.model.hparams.embedding_encoder_depthconfig.model.hparams.embedding_encoder_widthresult.training_meanresult.training_mean_deresult.val_meanresult.val_mean_deresult.test_meanresult.test_mean_deresult.final_reconstruction
0121343b475af8111dbf99e03a97bfa546cbchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1121baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue20.00036427.459343e-0712840.0005611.329292e-0725632320.0005611.329292e-070.2623780.1990703.9813998.605035050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints633631420[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3612.1250748652965, -4404.025819726288, -456...[16743.648698329926, 16650.181357383728, 16627...[3565.2551429867744, 3514.6954230070114, 3455....[19.383947187998274, 0.21128761193540413, 0.21...[4.457751702488167, 1.1393359339490416, 0.1101...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...214.7424220.117921[0.09427048634243837]0.753831[[0.5531312227249146]][[0.894983643520549, 0.8292395011699352, 0.845...[[0.7011336828407801, 0.6790618055181907, 0.51...[[0.6922795044051276, 0.5382340351740519, 0.60...200NaNNaNNaNNaN0.8949840.8292400.7011340.6790620.6922800.538234-5630.343360
11224f5a9a00cb34fff872d9e650545f8d49chemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1122baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue30.00770235.669850e-0425640.0079697.114476e-0625632320.0079697.114476e-060.2623781.66752133.35042443.526159050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints785708499[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3015.6840969249606, -4258.411025434732, -451...[16747.717359542847, 16588.1752948761, 16575.5...[3657.765406548977, 3482.871282696724, 3488.26...[21.653557068414557, 0.01693590308169668, 0.00...[0.10074355859187276, 1.6497430284824943e-05, ...[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...230.5553450.097851[0.09427048634243837]0.586775[[0.5531312227249146]][[0.8779092754512863, 0.8201843837644573, 0.84...[[0.6879080172786094, 0.6737331918944742, 0.51...[[0.6768552528487312, 0.5380959510803223, 0.61...200NaNNaNNaNNaN0.8779090.8201840.6879080.6737330.6768550.538096-5772.161108
2123fa0d1d0cb3f0fb762cb7b86717c265bfchemCPA/experiments_run.py👾🧪_baseline_comparison/storage/groups/ml01/projects/2021_chemicalCPA...chemical_CPA/home/icb/leon.hetzel/git/chemCPA_v2[[chemCPA/profiling.py, 62e5be92ced508a4b08482.../storage/groups/ml01/projects/2021_chemicalCPA...python chemCPA/experiments_run.py with 'datase.../tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c123baseline_comparisoncell_typeproject_folder/datasets/adata_baseline_high_do...lincs_DEGsdosecov_drug_dose_nameconditionSMILESsplit_baseline_A549TruetrapnellReLUsigm501337Falseproject_folder/embeddingsvanillaTrue30.00241734.570563e-056440.0029111.570297e-0625632320.0029111.570297e-060.2623780.74416314.88326523.523782050Falseff420aea264fca7668ecb147f60762a1a7060ac4e2c6154e64a13acd414cbba24f061dbfc7af05cf84f06a724b0c8563project_folder/checkpoints./False25False1200201TrueFalseTrueFalseTrueproject_folder/checkpoints265863942[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...[200][-3103.6756750843488, -3997.364077932667, -421...[16745.280101776123, 16632.498584747314, 16595...[3612.7785443663597, 3519.0313788056374, 3528....[11.70924133083463, 0.08866506138838304, 0.068...[0.38809096050771075, 0.002621283691138565, 0....[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...219.8426170.147818[0.09427048634243837]0.964024[[0.5531312227249146]][[0.8885318681246139, 0.8238044218878564, 0.84...[[0.6944840129771435, 0.6757455790726621, 0.51...[[0.6832679973708259, 0.5239443447854784, 0.60...200NaNNaNNaNNaN0.8885320.8238040.6944840.6757460.6832680.523944-5631.224975
\n", "
" ], "text/plain": [ " _id config_hash seml.executable \\\n", "0 121 343b475af8111dbf99e03a97bfa546cb chemCPA/experiments_run.py \n", "1 122 4f5a9a00cb34fff872d9e650545f8d49 chemCPA/experiments_run.py \n", "2 123 fa0d1d0cb3f0fb762cb7b86717c265bf chemCPA/experiments_run.py \n", "\n", " seml.name seml.output_dir \\\n", "0 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "1 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "2 👾🧪_baseline_comparison /storage/groups/ml01/projects/2021_chemicalCPA... \n", "\n", " seml.conda_environment seml.working_dir \\\n", "0 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "1 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "2 chemical_CPA /home/icb/leon.hetzel/git/chemCPA_v2 \n", "\n", " seml.source_files \\\n", "0 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "1 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "2 [[chemCPA/profiling.py, 62e5be92ced508a4b08482... \n", "\n", " seml.output_file \\\n", "0 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "1 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "2 /storage/groups/ml01/projects/2021_chemicalCPA... \n", "\n", " seml.command \\\n", "0 python chemCPA/experiments_run.py with 'datase... \n", "1 python chemCPA/experiments_run.py with 'datase... \n", "2 python chemCPA/experiments_run.py with 'datase... \n", "\n", " seml.temp_dir config.overwrite \\\n", "0 /tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1 121 \n", "1 /tmp/a1f37c71-b6e3-4cee-aa0c-1896169ecda1 122 \n", "2 /tmp/eee38f2a-fe72-4120-b2c6-bcc1501a273c 123 \n", "\n", " config.db_collection config.dataset.data_params.covariate_keys \\\n", "0 baseline_comparison cell_type \n", "1 baseline_comparison cell_type \n", "2 baseline_comparison cell_type \n", "\n", " config.dataset.data_params.dataset_path \\\n", "0 project_folder/datasets/adata_baseline_high_do... \n", "1 project_folder/datasets/adata_baseline_high_do... \n", "2 project_folder/datasets/adata_baseline_high_do... \n", "\n", " config.dataset.data_params.degs_key config.dataset.data_params.dose_key \\\n", "0 lincs_DEGs dose \n", "1 lincs_DEGs dose \n", "2 lincs_DEGs dose \n", "\n", " config.dataset.data_params.pert_category \\\n", "0 cov_drug_dose_name \n", "1 cov_drug_dose_name \n", "2 cov_drug_dose_name \n", "\n", " config.dataset.data_params.perturbation_key \\\n", "0 condition \n", "1 condition \n", "2 condition \n", "\n", " config.dataset.data_params.smiles_key config.dataset.data_params.split_key \\\n", "0 SMILES split_baseline_A549 \n", "1 SMILES split_baseline_A549 \n", "2 SMILES split_baseline_A549 \n", "\n", " config.dataset.data_params.use_drugs_idx config.dataset.dataset_type \\\n", "0 True trapnell \n", "1 True trapnell \n", "2 True trapnell \n", "\n", " config.model.additional_params.decoder_activation \\\n", "0 ReLU \n", "1 ReLU \n", "2 ReLU \n", "\n", " config.model.additional_params.doser_type \\\n", "0 sigm \n", "1 sigm \n", "2 sigm \n", "\n", " config.model.additional_params.patience \\\n", "0 50 \n", "1 50 \n", "2 50 \n", "\n", " config.model.additional_params.seed config.model.append_ae_layer \\\n", "0 1337 False \n", "1 1337 False \n", "2 1337 False \n", "\n", " config.model.embedding.directory config.model.embedding.model \\\n", "0 project_folder/embeddings vanilla \n", "1 project_folder/embeddings vanilla \n", "2 project_folder/embeddings vanilla \n", "\n", " config.model.enable_cpa_mode config.model.hparams.adversary_depth \\\n", "0 True 2 \n", "1 True 3 \n", "2 True 3 \n", "\n", " config.model.hparams.adversary_lr config.model.hparams.adversary_steps \\\n", "0 0.000364 2 \n", "1 0.007702 3 \n", "2 0.002417 3 \n", "\n", " config.model.hparams.adversary_wd config.model.hparams.adversary_width \\\n", "0 7.459343e-07 128 \n", "1 5.669850e-04 256 \n", "2 4.570563e-05 64 \n", "\n", " config.model.hparams.autoencoder_depth \\\n", "0 4 \n", "1 4 \n", "2 4 \n", "\n", " config.model.hparams.autoencoder_lr config.model.hparams.autoencoder_wd \\\n", "0 0.000561 1.329292e-07 \n", "1 0.007969 7.114476e-06 \n", "2 0.002911 1.570297e-06 \n", "\n", " config.model.hparams.autoencoder_width config.model.hparams.batch_size \\\n", "0 256 32 \n", "1 256 32 \n", "2 256 32 \n", "\n", " config.model.hparams.dim config.model.hparams.dosers_lr \\\n", "0 32 0.000561 \n", "1 32 0.007969 \n", "2 32 0.002911 \n", "\n", " config.model.hparams.dosers_wd config.model.hparams.dropout \\\n", "0 1.329292e-07 0.262378 \n", "1 7.114476e-06 0.262378 \n", "2 1.570297e-06 0.262378 \n", "\n", " config.model.hparams.penalty_adversary config.model.hparams.reg_adversary \\\n", "0 0.199070 3.981399 \n", "1 1.667521 33.350424 \n", "2 0.744163 14.883265 \n", "\n", " config.model.hparams.reg_adversary_cov \\\n", "0 8.605035 \n", "1 43.526159 \n", "2 23.523782 \n", "\n", " config.model.hparams.reg_multi_task config.model.hparams.step_size_lr \\\n", "0 0 50 \n", "1 0 50 \n", "2 0 50 \n", "\n", " config.model.load_pretrained \\\n", "0 False \n", "1 False \n", "2 False \n", "\n", " config.model.pretrained_model_hashes.grover_base \\\n", "0 ff420aea264fca7668ecb147f60762a1 \n", "1 ff420aea264fca7668ecb147f60762a1 \n", "2 ff420aea264fca7668ecb147f60762a1 \n", "\n", " config.model.pretrained_model_hashes.jtvae \\\n", "0 a7060ac4e2c6154e64a13acd414cbba2 \n", "1 a7060ac4e2c6154e64a13acd414cbba2 \n", "2 a7060ac4e2c6154e64a13acd414cbba2 \n", "\n", " config.model.pretrained_model_hashes.rdkit \\\n", "0 4f061dbfc7af05cf84f06a724b0c8563 \n", "1 4f061dbfc7af05cf84f06a724b0c8563 \n", "2 4f061dbfc7af05cf84f06a724b0c8563 \n", "\n", " config.model.pretrained_model_path config.profiling.outdir \\\n", "0 project_folder/checkpoints ./ \n", "1 project_folder/checkpoints ./ \n", "2 project_folder/checkpoints ./ \n", "\n", " config.profiling.run_profiler config.training.checkpoint_freq \\\n", "0 False 25 \n", "1 False 25 \n", "2 False 25 \n", "\n", " config.training.full_eval_during_train config.training.max_minutes \\\n", "0 False 1200 \n", "1 False 1200 \n", "2 False 1200 \n", "\n", " config.training.num_epochs config.training.run_eval_disentangle \\\n", "0 201 True \n", "1 201 True \n", "2 201 True \n", "\n", " config.training.run_eval_logfold config.training.run_eval_r2 \\\n", "0 False True \n", "1 False True \n", "2 False True \n", "\n", " config.training.run_eval_r2_sc config.training.save_checkpoints \\\n", "0 False True \n", "1 False True \n", "2 False True \n", "\n", " config.training.save_dir config.seed \\\n", "0 project_folder/checkpoints 633631420 \n", "1 project_folder/checkpoints 785708499 \n", "2 project_folder/checkpoints 265863942 \n", "\n", " result.epoch result.stats_epoch \\\n", "0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... [200] \n", "\n", " result.loss_reconstruction \\\n", "0 [-3612.1250748652965, -4404.025819726288, -456... \n", "1 [-3015.6840969249606, -4258.411025434732, -451... \n", "2 [-3103.6756750843488, -3997.364077932667, -421... \n", "\n", " result.loss_adv_drugs \\\n", "0 [16743.648698329926, 16650.181357383728, 16627... \n", "1 [16747.717359542847, 16588.1752948761, 16575.5... \n", "2 [16745.280101776123, 16632.498584747314, 16595... \n", "\n", " result.loss_adv_covariates \\\n", "0 [3565.2551429867744, 3514.6954230070114, 3455.... \n", "1 [3657.765406548977, 3482.871282696724, 3488.26... \n", "2 [3612.7785443663597, 3519.0313788056374, 3528.... \n", "\n", " result.penalty_adv_drugs \\\n", "0 [19.383947187998274, 0.21128761193540413, 0.21... \n", "1 [21.653557068414557, 0.01693590308169668, 0.00... \n", "2 [11.70924133083463, 0.08866506138838304, 0.068... \n", "\n", " result.penalty_adv_covariates \\\n", "0 [4.457751702488167, 1.1393359339490416, 0.1101... \n", "1 [0.10074355859187276, 1.6497430284824943e-05, ... \n", "2 [0.38809096050771075, 0.002621283691138565, 0.... \n", "\n", " result.loss_multi_task result.elapsed_time_min \\\n", "0 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 214.742422 \n", "1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 230.555345 \n", "2 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ... 219.842617 \n", "\n", " result.perturbation disentanglement result.optimal for perturbations \\\n", "0 0.117921 [0.09427048634243837] \n", "1 0.097851 [0.09427048634243837] \n", "2 0.147818 [0.09427048634243837] \n", "\n", " result.covariate disentanglement result.optimal for covariates \\\n", "0 0.753831 [[0.5531312227249146]] \n", "1 0.586775 [[0.5531312227249146]] \n", "2 0.964024 [[0.5531312227249146]] \n", "\n", " result.training \\\n", "0 [[0.894983643520549, 0.8292395011699352, 0.845... \n", "1 [[0.8779092754512863, 0.8201843837644573, 0.84... \n", "2 [[0.8885318681246139, 0.8238044218878564, 0.84... \n", "\n", " result.test \\\n", "0 [[0.7011336828407801, 0.6790618055181907, 0.51... \n", "1 [[0.6879080172786094, 0.6737331918944742, 0.51... \n", "2 [[0.6944840129771435, 0.6757455790726621, 0.51... \n", "\n", " result.ood result.total_epochs \\\n", "0 [[0.6922795044051276, 0.5382340351740519, 0.60... 200 \n", "1 [[0.6768552528487312, 0.5380959510803223, 0.61... 200 \n", "2 [[0.6832679973708259, 0.5239443447854784, 0.60... 200 \n", "\n", " config.model.hparams.dosers_depth config.model.hparams.dosers_width \\\n", "0 NaN NaN \n", "1 NaN NaN \n", "2 NaN NaN \n", "\n", " config.model.hparams.embedding_encoder_depth \\\n", "0 NaN \n", "1 NaN \n", "2 NaN \n", "\n", " config.model.hparams.embedding_encoder_width result.training_mean \\\n", "0 NaN 0.894984 \n", "1 NaN 0.877909 \n", "2 NaN 0.888532 \n", "\n", " result.training_mean_de result.val_mean result.val_mean_de \\\n", "0 0.829240 0.701134 0.679062 \n", "1 0.820184 0.687908 0.673733 \n", "2 0.823804 0.694484 0.675746 \n", "\n", " result.test_mean result.test_mean_de result.final_reconstruction \n", "0 0.692280 0.538234 -5630.343360 \n", "1 0.676855 0.538096 -5772.161108 \n", "2 0.683268 0.523944 -5631.224975 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_mean = lambda x: np.array(x)[-1, 0]\n", "get_mean_de = lambda x: np.array(x)[-1, 1]\n", "\n", "results_clean[\"result.training_mean\"] = results_clean[\"result.training\"].apply(get_mean)\n", "results_clean[\"result.training_mean_de\"] = results_clean[\"result.training\"].apply(\n", " get_mean_de\n", ")\n", "results_clean[\"result.val_mean\"] = results_clean[\"result.test\"].apply(get_mean)\n", "results_clean[\"result.val_mean_de\"] = results_clean[\"result.test\"].apply(get_mean_de)\n", "results_clean[\"result.test_mean\"] = results_clean[\"result.ood\"].apply(get_mean)\n", "results_clean[\"result.test_mean_de\"] = results_clean[\"result.ood\"].apply(get_mean_de)\n", "results_clean[\"result.perturbation disentanglement\"] = results_clean[\n", " \"result.perturbation disentanglement\"\n", "].apply(lambda x: x[0])\n", "results_clean[\"result.covariate disentanglement\"] = results_clean[\n", " \"result.covariate disentanglement\"\n", "].apply(lambda x: x[0][0])\n", "results_clean[\"result.final_reconstruction\"] = results_clean[\n", " \"result.loss_reconstruction\"\n", "].apply(lambda x: x[-1])\n", "\n", "results_clean.head(3)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
config.model.embedding.modelconfig.model.load_pretrainedconfig.dataset.data_params.split_key
0vanillaFalsesplit_baseline_A549
10vanillaFalsesplit_baseline_K562
20vanillaFalsesplit_baseline_MCF7
30rdkitTruesplit_baseline_A549
40rdkitFalsesplit_baseline_A549
50rdkitTruesplit_baseline_K562
60rdkitFalsesplit_baseline_K562
70rdkitTruesplit_baseline_MCF7
80rdkitFalsesplit_baseline_MCF7
\n", "
" ], "text/plain": [ " config.model.embedding.model config.model.load_pretrained \\\n", "0 vanilla False \n", "10 vanilla False \n", "20 vanilla False \n", "30 rdkit True \n", "40 rdkit False \n", "50 rdkit True \n", "60 rdkit False \n", "70 rdkit True \n", "80 rdkit False \n", "\n", " config.dataset.data_params.split_key \n", "0 split_baseline_A549 \n", "10 split_baseline_K562 \n", "20 split_baseline_MCF7 \n", "30 split_baseline_A549 \n", "40 split_baseline_A549 \n", "50 split_baseline_K562 \n", "60 split_baseline_K562 \n", "70 split_baseline_MCF7 \n", "80 split_baseline_MCF7 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[c for c in results_clean.columns if \"pretrain\" in c]\n", "\n", "results_clean[\n", " [\n", " \"config.model.embedding.model\",\n", " \"config.model.load_pretrained\",\n", " \"config.dataset.data_params.split_key\",\n", " ]\n", "].drop_duplicates()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACEoAAAGMCAYAAADH1dUpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RU5dbA4d+Zml5JpzfpWMCLICqioqKiCFwU+73otX0XGwpYEQhFEVDBesECWCmKBSkC0oQgNTSp6QkhvU3//hhykkACIW1mkv2sxVpzyszZkyi85z373VvJyclxIIQQQgghhBBCCCGEEEIIIYQQQgjRBGhcHYAQQgghhBBCCCGEEEIIIYQQQgghREORRAkhhBBCCCGEEEIIIYQQQgghhBBCNBmSKCGEEEIIIYQQQgghhBBCCCGEEEKIJkMSJYQQQgghhBBCCCGEEEIIIYQQQgjRZEiihBBCCCGEEEIIIYQQQgghhBBCCCGaDEmUEEIIIYQQQgghhBBCCCGEEEIIIUST4daJEhkZGXz22Wc89dRT9OnTh+DgYIKCgli4cGGdX2vdunUMGTKEli1b0rx5c2666SaWLFlS59cRQgghhBBCCCGEEEIIIYQQQgghhOvoXB3A+axatYr//ve/6raiKPVynUWLFvHkk0+i0Wi49tprMRqN/P777zzyyCMcOXKEsWPH1st1hRBCCCGEEEIIIYQQQgghhBBCCNGw3LqiRHR0NI8++iiffPIJu3bt4vrrr6/za2RkZPD888+j0WhYsmQJS5YsYfHixaxZswZfX19iY2PZt29fnV9XCCGEEEIIIYQQQgghhBBCCCGEEA3PrRMlBgwYwPTp0xk2bBitW7eul2t89tlnFBUVMXToUK699lp1f9euXfn3v/+Nw+Hgww8/rJdrCyGEEEIIIYQQQgghhBBCCCGEEKJhuXWiRENYvXo1AIMHDz7n2G233VbhHCGEEEIIIYQQQgghhBBCCCGEEEJ4tiafKHHgwAHAWUHibN26dQMgNTWVnJychgxLCCGEEEIIIYQQQgghhBBCCCGEEPVA5+oAXCkvL4+8vDwAIiMjKSws5D//+Q8lJSW8//77hIeHExgYSG5uLklJSQQFBVXrcxcuXMiiRYuqdW5sbCw9evSgqKiI5OTkmn4VIYQQQogqxcTE4OPj4+owhBBCCCGEEEIIIYQQQgi30KQTJQoLC9XXPj4+rFixgh9//BGAb775hqeeegpfX19yc3MrnHshCQkJbNq0qVrnliZqCCGEEEIIIYQQQgghhBBCCCGEEKL+NelECYfDUWG7T58+dOjQgeLiYm644YYK5yiKUu3PbdmyJf369avWuQEBAYAzUaNDhw7VvoYQQgghhBBCCCGEEEIIIYQQQgghLl6TTpTw8/NTXxcVFREREcH27dsrnFNUVARwUeWqR40axahRo+omSCGEEEIIIYQQQgghRJ0rKChg+vTpLF++nLS0NEJDQ7npppuYMGECYWFhdXKN0ha/S5cu5dixY9hsNmJiYrjpppt47rnn6uw6QgghhBBCiIujcXUArhQQEKBWdEhLSzvneHFxMbm5uQA0b968QWMTQgghhBBCCCGEEELUj4KCAgYNGsScOXNwOBzceuut+Pv7s2DBAq677jpSU1NrfY2SkhIGDx7Mm2++SUJCAv379+fGG2+kqKiIDz74gGuuuYbExMQ6+DZCCCGEEEKIi9WkEyUAOnfuDEB8fPw5x/bt2wdAVFQUQUFBDRmWEEIIIYQQQgghhBCinsTGxhIfH8/1119PXFwc8+fPZ+vWrYwcOZLk5GRefPHFWl/js88+Y8eOHbRr145du3bx9ddf8+WXX7Jz5041GWPKlCl18G2EEEIIIYQQF6tJt94AGDhwIH/++Sc///wzd955Z4VjK1asAOCGG25wQWRCCCFE07Z9+3bWrVuH1WoFQFEULr/8cm666SYXRyaEEEKIpiA1NZUlS5aQl5en7ouIiGDYsGFqdUohhGcqKSlhwYIFAEyfPh2DwQA47zmmTp3KsmXL+PHHH0lKSqpVldlNmzYB8MADDxASEqLu9/b2ZvTo0axbt46//vqr5l9ECCGEEBdtw4YNbNmyBbvdfs4xmX8UomlptIkSsbGxTJs2DYAff/yR/v37V3regw8+yDvvvMP333/PqFGjuPbaawFnhYlPPvkERVF49NFHGyxuIYQQQkBeXh4zZszAbDZX2L9161batGlDhw4dXBSZEEIIIZqKDz/8kF27dp2z3+Fw8K9//avhAxJC1JktW7ZQWFhIp06daN++fYVjQUFB9OvXjzVr1rBmzRoefPDBGl/Hy8sLAI3m3KK+pfvKJ1AIIYQQon4lJibyzjvv4HA4qjxn69attGzZkk6dOjVgZEIIV3Dr1htpaWnccMMN6p/t27cDMGPGDHXfc889V6trREREMH36dOx2O0OHDuXuu+/mnnvuYeDAgRQWFjJ27Fi6d+9eF19HCCGEENV07Nixc5IkSh04cKCBoxFCCCFEU2O32zl48GClx6raL4TwHKUteLt27Vrp8W7dugGwf//+Wl3nxhtvBGDhwoXk5uaq+00mE5988glArRIxhBBCCHFxtmzZct4kiVKlVaGEEI2bW1eUMJlMxMXFnbP/xIkTnDhxAgCj0Vjr69x///3ExMTwzjvvsH37dmw2G926dePxxx/n7rvvrvXnCyGEEOLiJCQkqK97eGsI1Sn8nm8755gQQgghRH04deoUJSUlANj03pzqdCORe38AnGMRu91e6QpxIYRnSElJASAyMhKAZcuWMXv2bB544AEefvhhdX9ycnKtrjNs2DA2bNjAF198Qc+ePenTpw96vZ64uDjMZjPTp09n5MiRF/WZCxcuZNGiRdU6NzY2lh49elBUVFTr7yKEEEI0BuvXr1df3x6oo62xbEyfarHzTbazBfDGjRvp378/iqI0eIyeJiYmBh8fH1eHIUSNuHWiRKtWrcjJyanRe8eNG8e4ceOqff7111/P9ddfX6NrCSGEEKJuHTt2TH3dw1tLc0NZokT5Y0IIIYQQ9eHo0aPqa5N/OPlR3Wh2aA06cyEmk4mUlBSaN2/uwgiFELVRWFgIgLe3NwDTp09n//79HDlyhIcffhhfX98K59WUoijMmTOHDh06MHHiRH799Vf12ODBg+nVq9dFf2ZCQkK1V7nm5eVd9OcLIYQQjVVGRoaaOKgDBgfq8NWWJUJYHRpW5FopskN2djYnTpygTZs2LopWCNEQ3DpRQgghhBBNU/mHE22MCjH6suzuhIQELBYLer3eFaEJIYQQogkoPxYpCYgCwBQQhS7zCABHjhyRRAkhPNjZJbdHjBjBjBkzGDVqVIXjtV1Fmpuby8MPP0xcXBwzZ87k5ptvRq/Xs379esaOHcstt9zCl19+qbboqI6WLVvSr1+/ap0bEBAAgI+PDx06dKjRdxBCCCEaiz///FN9famPpkKSBIBOUfiHr1ZdrHXkyBFuuummBo1RCNGwJFFCCCGEEG6loKCApKQkADRAS4MGL41ChE4h3erAarVy9OhROnXq5NpAhRBCCNFoHTp0SH1tOpMoURIYhe+ZRInDhw9z3XXXuSI0IUQd8PPzA6C4uBiAMWPGMGbMGPV4UVERQK3LSL/22musXbuWWbNm8cADD6j777zzTnx9fRk+fDhjx45lx44d1W7nM2rUKDWhQwghhBDVY7FYWLNmjbrdz6/yx6P9/MoSJTZs2MDDDz+sVqASQjQ+0lBTCCGEEG7l4MGD6gquVgYFL40zu7uDV9mwZf/+/S6JTQghhBCNn9Vq5fDhw+p2cZCzckRJUFkFCRmLCOHZoqOjAUhLS6v0eOn+mJiYGl/D4XDw9ddfA3DzzTefc3zgwIF4eXlx/PhxEhISanwdIYQQQlzYn3/+SXZ2NgDBWmdFicp0NGqI0TvnIktKSvj9998bLEYhRMOTRAkhhBBCuJV9+/aprzuWS464pNzr8ucIIYQQQtSlw4cPYzabAbB4B2Hz8gegODAax5ky/CdPniQvL89lMQohaqdr164AxMfHV3q89H6jS5cuNb5GRkaGWrHC19f3nOMajUZdoZqRkVHj6wghhBDi/BwOB0uWLFG3r/PXoauivZaiKAwMKKs2sXz5cmw2W73HKIRwDUmUEEIIIYRb2bVrl/q6q7dWfd3lrEQJi8XSkGEJIYQQoonYvXu3+roopLX62qEzUhLgXIXucDjYs2dPQ4cmzsNms5GUlERiYqL6JzMz09VhCTd11VVX4evry8GDBzl69GiFYzk5OWzatMn5oGTgwBpfIyAgAK3WeT9T/u+VUklJSerK1qioqBpfRwghhBDnt2vXLo4dOwaAXqFCIkRl+vtp8T0zDZmens6mTZvqO0QhhIuc/28DIYQQQogGlJmZyYkTJwDQAp3KJUeE6zWE6xQyrA7MZjP79u3jsssuc02gQgghhGi0/vrrL/V1UWjrCseKQtvgnZsMwI4dO7j66qsbMjRRhYKCAp599tlKV+XfcccdPPLIIy6ISrgzLy8vHnzwQebOncvYsWNZvHgxBoMBh8PBuHHjKCkp4bbbbqN58+aVvj82NpZp06YB8OOPP9K/f/9zzvH29mbAgAGsXr2aV155hW+++YawsDAACgsLef755wG4/PLLadGiRT19UyGEEA2hpKSEXbt2UVhYeM4xrVZL9+7dCQ0NdUFkwuFwsGjRInX7Gj8tgdrKq0mU8tIo3BigY1mOFYCvvvqKvn37otPJI1UhGhv5v1oIIYQQbmPbtm3q605eGrw1FW9cLvXR8FueTT1XEiWEEEIIUZeysrL4+++/AXAoGopC21Q4XhjWntBjGwFnooTNZlNXjAvX2bJlS5WtC3766SdGjRqF0Whs4KiEuxs3bhzr1q1jzZo19OrVi169erF//34OHjxIVFQU06dPr/U1pk+fzi233MLOnTvp1asXvXv3Rq/Xs2PHDjIyMggKCmLOnDl18G2EEEK40qxZs9i6dWuVx4OCgnjvvffw8/NrwKgEOMeJpeN7vQK3B1XvseigAB2/5VkpskNKSgpr1qxh0KBB9RmqEMIFpPWGEEIIIdxG+ZvKy33OfehQft/WrVulR6AQQggh6lT5sUhxcAvseu8Kx00BUViNzgnuvLw89u/f36DxicodPHhQfR2ohWi9guFMvq3NZuPIkSMuiky4M39/f1auXMlTTz0FwIoVK8jNzeXBBx9k3bp1REdH1/oabdu2ZePGjTz99NNERETwxx9/sHbtWvz8/Bg9ejSbNm2iW7dutb6OEEII18nOzubPP/887zk5OTkVFgeJhmEymViwYIG6fYO/jlBd9R6L+mkVBgeWJVUsWrSIgoKCug5RCOFikighhBBCCLeQlZXF3r17AVCAXr7nJkp08tLgf2b0kp2dTXx8fANGKIQQQojG7o8//lBfF4R3OvcERaEgvGOl5wvXKT8mfDrcwLTmXvQpN5aUhBZRFX9/fyZNmsSePXvIyMjgwIEDzJ49m4iIiPO+b9y4ceTk5JCTk1Np243ywsLCePPNN9m2bRvp6emkp6fz119/MWPGDGJiYury6wghhHCB7du343A4ALB4BZIX3V39UxxU1sLpQskUou4tWbJErTrmp6l+NYlSgwJ0hJ5p05Gbm1uhhYcQonGQRAkhhBBCuIUNGzaoN5advDSE6M7tF6hVFPr4lU16//777w0WnxBCCCEat/T0dA4cOACAQ1EoiKwkUQLIj+yqvt68eTNms7lB4hOVy8jIIC0tDQCDAm2Nzqmuzl5lU1579uxxSWxCCCGEaPzKJ87mtOpNerfby/50Hawe++uvv6QiQQNKSEjg+++/V7eHB+vx154713g+Ro3CvaF6dfuXX36pUMlMCOH5JFFCCCGEEC7ncDj47bff1O2r/aru9d3Pryz7e9OmTXKTKYQQQog6sXr1avV1UWhbbAbfSs8rCWqOxSsQgIKCAlkd6GI7d+5UX1/ipUGvOCfAu3qXjScPHDhAcXFxg8cmhBBCiMbt1KlT7Nu3DwAHCvkRnSsct/iGUuIf6XxtsbB58+YGj7EpstlsvPvuu1itVgDaGhWu8696rvF8evto6O7tfJTqcDh49913MZlMdRarEMK1JFFCCCGEEC63Z88eUlJSAPBW4MpK2m6UamtQaHmm6bTZbGbdunUNEaIQQgghGjGr1cqaNWvU7dyYnlWfrCjklTu+cuXK+gxNXMD27dvV1z3LJUcE68rGjFartUJChRBCCCFEXVi1apVaHbU4pBU2L/9zzsmP7qa+Lr9ISNSfr7/+mr///hsAHfBoMwMa5eKqSZRSFIVHmunxOvP25ORkFixYUDeBCiFcThIlhBBCCOFyP/zwg/q6n58WL03VNy+KojDAv6yqxI8//ojNZqvX+IQQQgjRuG3ZsoWsrCwArAZfCsM6nPf8vJgeOM5Mtu7bt48TJ07Ud4iiEoWFhezatUvdvsyn4jTXZT5liRNbtmxpqLCEEEII0QRYLBZWrVqlbuc2v6zS8/KiumHXOMckR44c4fDhww0SX1O1d+9evv32W3V7aLCOGEPtHoU202m4N6RiC46tW7fW6jOFEO5BEiWEEEII4VIJCQns2LEDAAUYFKg7/xtwtubwPTOKSU9Pl5sTIYQQQtSYw+GokLSZ2+Jy0Jy/NK/VK4CC8E7qdvn3i4azdetWtaRya4NCuL7iNFf5KmXbtm2jpKSkQeMTQgghROO1bt06srOzAbAa/SgI71jpeXaDDwWRXdTtpUuXNkh8TVFmZiZvv/22WuWjs5eGwdWYZ6yO6/y19C6XlDtnzhySk5Pr5LOFEK4jiRJCCCGEcKlvvvlGfX2Zj4ZI/YWHJ14ahYHlqkp888032O32eolPCCGEEI3bnj171NK8do2W3OaXV+t9Oa16q6/Xr19PRkZGvcQnqvb777+rr/tU0rqthV4hWu+s/GEymaSqhBBCCCHqhM1mY8mSJep2dssrz5tom93qH+rrrVu3kpiYWK/xNUUWi4Xp06eTk5MDgL8GHg+recuNsymKwr+aGWimc35eUVERsbGxFBcX18nnCyFcQxIlhBBCCOEyJ0+eZNOmTer2kCD9ec6uaFCgDqNS9jky8S2EEEKIi+VwOCokbebF9MRm9K3We0uCmlMU3BI4d7Jc1L/U1FT27dsHOKuS9fU7d7Wgoij09yt7aCF9wYUQQghRF9asWUNqaioANp0XuS0qb7tRyuwfTsGZ1m4Oh4OFCxfWe4xNicPh4N1331XbmmiAp8INBOvqJkmilK9W4b/hBs7k4ZKUlMRbb70lLYGF8GCSKCGEEEIIl/nss8/UcniXemtoa6z+0CRAq3BjQNmE+JdffonFYqnzGIUQQgjReO3atYv4+HgAHIqG7NZXXdT7s9r2U1+vWrWKtLS0Oo1PVO2XX35RX1/qo6lyIvxqP506+XXgwAFOnDhR/8EJIYQQotEqKSlh8eLF6nZ263/g0Bkv+L6sdv3V11u3buXAgQP1El9TtGjRIjZs2KBu3xOip4v3+Vvp1VRro4ZHQssWeu3YsYOPP/5Ynd8UQniWumnOI4QQQrgxu93OypUrSUhIqPS4r68vN910E+Hh4Q0cWdO2a9cu/vrrL8C5CnB4SPWrSZQaHKhjbb6VIrtzVeGvv/7K7bffXseRCiGEEKIxstvtfPHFF+p2bkxPrN6BF/UZxSGtKQ5qgXdOIjabjYULF/Lcc8/VdajiLEVFRaxatUrdLt+S7WxBOoXevlr+LHSu9Pvxxx95+umn6z1GIYQQQjROX3/9NdnZ2QBYjX7ktLqyWu8zBUSSH9kF/7T9AHz00Ue89dZbaLX180C/qfjll1/49ttv1e3r/bUMCqjfn+nV/jpSLQ5+yLUC8OuvvxISEsKIESPq9bpCiLoniRJCCCEavTVr1vDhhx+e95y9e/cybdq0BopIWCwWPv74Y3W7v5+WloaLL3Tlp1W4M0jHoiznjcnixYu5+uqrCQ4OrrNYhRBCCNE4rV27lmPHjgFg1+gqrPKrNkUhs+MAWmz7HIA//viDwYMH06lTp7oMVZzll19+UftBR+sVunuffxw5KKAsUWL9+vWMHDmSsLCweo9TCCGEEI3LyZMn+eGHH9TtzPbX4dBWf+FPZofr8M04jMZu5fjx4/z000/ccccd9RFqk7BhwwY++ugjdbuHt4YHQvUoSt223KjM3cE6TlkdbDkzxly0aBF+fn7ceuut9X5tIUTdkdYbQgghGr1169Zd8JxDhw5JqeQGtGzZMpKTkwHwUmBY8MVXkyh1Q4COyDPNAYuKipg/f36dxCiEEEKIxquwsLBCNYns1v/AZvSr0WeVBDWnIPwSdfuTTz6RPsX1qKSkhOXLl6vbtwbq0FxgMryDl5aOZ1q8Wa1WlixZUq8xCiGEEKLxsVqtzJ49Wx3nFQe1ID+6+8V9hndQhdZtX375JSkpKXUaZ1OxdetWZs+erba8aGtUeCrcgLYBkiQANIrC6DA9Xb3KHrN+/PHHrFmzpkGuL4SoG5IoIYQQolHLzs5We/45gFOX3EBGp5vUPyUB0eq5mzdvdlGUTUtiYiLffPONuj0sWF9lT+nq0CsKD5brDbhhwwbi4uJqFaMQQgghGrcvv/yS3NxcACxGf7JbX1WrzzvVcSB2jbPE75EjR1i5cmWtYxSV++GHH8jLywOgmU6hn1/1SivfGVxWVHXVqlWSJC2EEEKIi/Ltt9+Wq0amJaPLzVCDh/LZrftg8nNWtjKbzRWSL0T1bN26lRkzZqg/txi9wvMRRrw1DZMkUUqvKIyJMNDO6Lyuw+HgvffeY+3atQ0ahxCi5uokUWLbtm3MnDmT559/nqeeeqrCscLCQk6cOMGJEyfq4lJCCCHERdmwYQN2ux2A4uCW5LS6ktyWvdQ/OS0uV89dt26dmoUs6ofNZuPdd9/FYrEA0NqgcEMd9A3s5q3lKt+yz5k7dy4FBQW1/lxRP2TsKIQQwpUOHjzIr7/+qm5nXjIQh85Qq8+0+gRVSLb44osvOH36dK0+U5wrJyeHpUuXqttDgnToqvmAopuXpkJViYULF9ZLjKLuydhRCCGEq+3Zs6fCop/T7a/F7FfDNl4aLendbsehOMclhw4dknHJRdi8eTNvvfWWmiQRqVN4MdKIv7ZhkyRKeWmcSRqtDGXJEu+++y6rVq1ySTxCiItTq0SJkydPMmjQIG6++WYmTZrEp59+yqJFiyqcU1hYSL9+/bjiiivYvXt3rYIVQgghLobD4ahQ7iw/qts55xREXIJd41xdlpCQwJEjRxosvqbou+++4/DhwwBogUfD6q4k3v2hegLOjGyysrKYN2+eJL64GRk7CiGEcDWTycR7772njhEKm7WnIKJznXx2dpu+mH1CACguLpaxSD1YuHAhxcXFgHPlYP9qVpMAUBSFf4aUVZX4448/2L9/f53HKOqOjB2FEEK4g6ysLGbOnKmO64rOLMSqDVNAJKfbXaNuL1myhO3bt9fqM5uCtWvX8tZbb2G1WgFnksS4KGOtKtXWBT+tM1mjfLLE+++/z48//ujSuIQQF1bjRImsrCxuu+02tm3bRrt27XjooYfw9fU957zw8HBGjRqF3W5n2bJltYlVCCGEuCj79+8nISEBALtGT0FEp3POceiMFfaXX10o6taBAwf4+uuv1e27gnW0MNRdFzB/rcLDzcpWg27atEn6AroRGTsKIYRwBwsXLiQpKQkAu9ZARudBNSqZXBmHVkd6l1vV7bi4OBmL1KHDhw+zevVqdXtkiP6iE247emnp7VM2/vzoo4+k1LWbkrGjEEIId2AymYiNjSUnJwcAq8GHtB53glL7+azsNldRGNpW3X7nnXdITEys9ec2VitWrGDOnDlq5eAovTNJIsTFSRKl/M8kS7Q2lMXz6aef8tVXX0nytBBurMZ/m8+aNYukpCSGDBnCli1bmDlzZqU3LAAjR44EYMuWLTW9nBBCCHHRymft5kd3xa73qvS83BZXqK83bNhAdnZ2vcfW1OTm5vLWW2+pNzOXeGm4PVB3gXddvF6+Wgb4l60s/Oijj6QMr5uQsaMQQghX2717d4Xx4alLBmL1DqzTa5SEtCS7ZW91+5NPPiE1NbVOr9EUWa1W5s6dq04yX+aj4VKfmrVvuzdUT+n89YkTJ2Sln5uSsaMQQghXs9vtvPfee/z9998AOBSFtO5DsBn96uYCikJa9zuweAUAUFRUxKRJk8jNza2bz28kHA4HCxcu5JNPPlH3tTAoTHCjJIlS/lpn8kYHY9mj16+++kqSc4VwYzVOlPjll19QFIU33ngDne78DzouvfRS9Hq9umpDCCGEqG+JiYls3bpV3c5p0avKc0sCoykJiAbAYrHIZGkds9lsvPXWW2qfbl8NPB6mR1NHqzfPNipET4ze+dlms5lp06ZRUFBQL9cS1SdjRyGEEK6Uk5PDrFmzylpuhLYlL+bSernW6Q7XqS04SkpKePvtt7FYLPVyraZi6dKlavKrQYH7QvQ1/qxmOg1DgsrGIosWLZJkFjckY0chhBCu9tlnn/HHH3+o26cuuZHi0DZ1eg27wYeUy4Zj1zrHNunp6UyaNEltNdbU2Ww25s6dy7fffqvua29UGB9pJFDrXkkSpXw0CmMjDXTzKnv8+ssvv/D2229jNptdGJkQojI1TpRITEzE19eXVq1aXfgiGg1+fn6cOnWqppcTQgghLkr5Fg8FYR0w+4dXfbKikNXmKnXz559/Vkvqidr7/PPP2bt3LwAK8HiYgVBd3bXcOJtRo/B0uAHjmful1NRU3nnnHcncdjEZOwohhHAVm83G7Nmz1aphVoMP6d1uq7OWG2dzaPWk9RiC40xJ5iNHjvDZZ5/Vy7WaguPHj1cY2w8N1hGur91Y8tZAHS0NZYm1c+bMkbGim5GxoxBCCFdaunQpy5cvV7dzml9eoSJtXTL7R5DWfQilzRn+/vtvpk+f3uQTbYuLi5k8eTKrVq1S9/X01vBipBE/N02SKOWlUXgu0sBVvmUV0DZv3sxrr71GXl6eCyMTQpytxneWXl5elJSUVOtGsqioiLy8PAICAmp6OSGEEKLajhw5wsaNG9XtrLb9LviewvCOmPzCAOfKv/KZyqLm1qxZU+HG8s4gHT1rWCb5YsQYNIxuVrbScMeOHXz++ef1fl1RNRk7CiGEcJVvvvmGnTt3qtvp3W6vu5LJVTAFRJHZ8Xp1e8WKFRXGp6J6zGYzs2bNwmq1AtDWoHBzQO3bt+kUhX83M1A6Kj1w4ABLly6t9eeKuiNjRyGEEK7y008/VUhyLQjvyKnON9Vbki045yVPdb5Z3d65cyczZsxQx0BNzenTp5kwYQJ//fWXuu9qPy1jIgx4adw7SaKUTlH4T5ieQQFl86AHDhzgpZdekmpmQriRGidKdO7cGZvNVq3+f0uWLMFms9G9e/eaXk4IIYSoFofDwaeffqpuF4R3xBQYfeE3Kgqn21+nbv7yyy8kJCTUQ4RNx969e5k3b566fbmPhjuDaj+xXV3/8NNxW2DZ9ZYvX85vv/3WYNcXFcnYUQghhCts376db775Rt3OatOXombtGuTaOS17UxDeUd1+7733OHnyZINcu7FYsGCB+jMzKPCfMAPaOnpI0cZYcWy6ePFiDh48WCefLWpPxo5CCCFc4ddff+Xjjz9Wt4uCW5DW/U5Q6q8yaqncFpdzuu3V6va2bdt4++23m1yyxLFjxxg7dizHjh1T990ZpOPRZnp09ZisUh80isJ9oQbuDdFTGnlKSgpjx45l//79Lo1NCOFU47/dhw0bhsPhYNy4cWRlZVV53p9//smECRNQFIVhw4bV9HJCCCFEtaxbt44DBw4A4FA0ZHa4rtrvLQxrT1FwSwDsdjsff/yx2sdaXJwTJ04QGxur3sy1MCg8HmZA08A3NMODdVzuUzbc+eCDD4iLi2vQGISTjB2FEEI0tMTERGbOnKmO54pCWnO6/TUNF4CikN71Nsw+wYCzatmUKVOk3G41bd68mZ9//lndvidET5Shbh9S3B6ko73R+Zk2m423336b/Pz8Or2GqBkZOwohhGhoP/zwAx988IG6XRwYQ8plI3BoG27RT1a7/mS17qNub9myhenTp2M2mxssBlfavn0748eP5/Tp04DzAea/mum5O1iP4mFJEuXdEqjj6XAD+jNfIT8/n1dffZX169e7NjAhBEpOTk6NngDZbDYGDRrEjh07iI6O5u6772bBggUUFBSwePFikpOTWbt2Lb/++is2m40rr7ySX375BY2m/jPvhBBCNE05OTk8/fTT6uRmVus+nC5X8rg6DPkZtNz6KcqZCfUnn3ySG2+8sc5jbcxOnTrFSy+9pN7UBGnhtWgjzXSuGQOU2B1MTjVxwuz8nRqNRt588006dux4gXeKuiRjRyGEEA0pLy+PF198US1ra/EKJLHPQ9gMvg0eiyE/gxbbPkNjc/aZ7t69O6+++ip6vf4C72y6kpKSeOGFFyguLgagt4+Gp8MN9TJBnmmxMyHFRJHduX355ZczYcIEtNr6bxcnqiZjRyGEEA3F4XDw3XffsXDhQnVfSUAUyVfcg13v5YqAaHZ4DcEnt6m7evbsybhx4/DyckE8DcDhcLB8+XI+++wzNcnZRwNPhxvo5t14xmRHSuzMTDeRby/bN3z4cO655x4ZwwjhIjVOlADIzs7m4YcfZv369ZXerJb+hda/f38WLFhASEhIzSMVQgghzsPhcDBt2jS2bt0KgMUrgJN9R+PQGS/6s5odWkPwyT8B8PHxYfbs2YSFhdVpvI1VTk4O48ePJyUlBQAvBV6OMtLK6NrBfo7VwRupJjKtzrGJn58fkydPplWrVi6Nq6mRsaMQQoiGYLFYePXVV9UqY3aNnsR/PIDZP8JlMflmHCJ61/fq9sCBA3nqqac8emVcfSkqKmLs2LEkJSUBEKZTeDPaiK+2/n5WOwptzMooW6k5fPhwRo0aVW/XE9UjY0chhBD1zW638+mnn/LTTz+p+4qDmpNy2QjXJEmUcjgI/XsdISfKWlB16NCBV155hYCAANfFVQ8sFgsfffQRq1atUvc10yk8H2Egpo6ribmDDIudmelmki1lj2b79u3Lf//7X4zGi5/HFkLUTq0SJUqtXLmSr7/+mri4OE6dOgVAs2bNuOKKKxg+fDi33nqr3PwLIYSoV7/99htz585Vt5MvH0lRs7Y1+izFZqHllk8wFGUDzv64kyZNklVlF1BQUMCrr76q9hDUAc9Fuk/md6rZzpupZVnbwcHBTJkyhaioKNcG1gTV59ixoKCA6dOns3z5ctLS0ggNDeWmm25iwoQJdZrwlJuby7vvvstPP/1EQkICGo2GmJgY+vXrxxtvvIGfn1+dXUsIIUT12e12Zs2axYYNGwBwAKk9h1IY0cm1gQHBxzbR7EhZed1Ro0YxfPhwF0bkfmw2G7GxsWqrNIMCrzZQ0u03WRZ+zC3rAf7CCy/Qr1+/er+uuDCZdxRCCFEfzGYzs2fPZtOmTeq+opDWpFw6DIfO4MLIznA4CD6+iWZHNqi7oqOjee2114iIcF0CcF3Ky8tj2rRpxMfHq/s6GjX8X4SBwHpMknW1IruD9zLM7C0uKy3Rrl07xo8fT2hoqAsjE6LpqZNECSGEEMKVTpw4wdixY9V+fTnNL+NUl1tq9ZleOUk03/6F2oJDVpWdX1FREa+//jqHDx8GQMFZHq+3r3skSZQ6brIzJdVEyZnRT1hYGJMmTWo0N5hNXUFBAYMGDSI+Pp6WLVtyxRVXsH//fg4dOkRMTAyrV6+uk8SY48ePc/vtt5OUlER4eDhXXnklAMeOHWP//v3Ex8cTExNT6+sIIYS4eJ999hlLly5Vt091uJ6cNn3O844G5HAQEb+CgJS96q6nn36agQMHujAo93L27+8/YXr6+TVMX3C7w8Fb6WUT1gaDgSlTptC+ffsGub4QQgghGk5eXh6xsbFqBTKA/IjOpHe/HYemYcYe1RWYsIOwgyspTRsIDAxkwoQJHt9SNjExkcmTJ5OWlqbuu9pPyyPN9OibQAKkzeFgUZaF3/Js6r6QkBDGjx8v408hGlDjq1sjhBCiSSkoKCA2NlZNkjD5NiPzkhtq/bklQc053a6/uv3tt9+qbT1ERcXFxbz55ptqkgTAv5vp3S5JAqCNUcNzEQYMZ+63Tp06xauvvqquTBOeLTY2lvj4eK6//nri4uKYP38+W7duZeTIkSQnJ/Piiy/W+ho2m4377ruPpKQknnzySeLj4/nyyy/58ssv2bx5M1u3biU4OLgOvo0QQoiL9eOPP1Z4yJ7b/FJyWv/DhRGdRVFI73IrRcFlrb/ef/99duzY4cKg3Mdvv/1W4fc3OFDXYEkSABpF4ckwA5E650DRbDYzefJkGScKIYQQjUzp/ED5JImclr1I63Gn2yVJAOS2vIK0nkOxa5zzbLm5ubz88sts3rzZxZHV3M6dO3nxxRfVJAkFGBGs49EmkiQBoFUU7g818FCoXn1Qm5WVxfjx4z36dyuEp5GKEkIIITyW1Wpl0qRJ7Nq1CwC7Vk/iPx7C7FdH5fUddqL/+hrf08cB8Pb2ZurUqbRq1eoCb2w6iouLmThxYoWbywdD9dwQ4H43luXtLbbxTrqZ0naAERERTJo0qU5bM4iGVVJSQrt27SgsLCQuLq5C9n1OTg6dOnXCZDKxd+9emjdvXuPrfPvtt4wePZoBAwZUeJgjhBDCtdatW8esWbPU7YKwDqT2vBs07rc+RGMpofn2LzEWZADOygUTJ06kUyfXtwdxlZ07d/Lmm29itzurOVzqreGZCAMaF0yUp5rtvJ5qouhMJeRWrVoxZcoUfH19GzwWIYQQQtStXbt2MWPGDAoLCwFnm7bMjgPJaXUluPkDeq/sRKJ3fYfWUqzuu+eeexgxYoRHtaD6+eef+eSTT9Rxn0GBx8MM9HLDBVcNJb7YxpwMszr+BGebvmHDhnnU71YIT1StRInyPZpqS/o7CiGEqAsOh4N58+bx22+/qftSe9xFQWTnOr2OxlxEy63z0ZfkAs5euNOnTyckJKROr+OJioqKmDhxIgcPHlT3jQrRc3OgeydJlNpVZGNWupnSAnfh4eG8+eab0oajDrhi7Pj7779z11130alTp0qrv9x9992sWbOG2bNn8+CDD9Y4npEjR/Lrr7/y9ddfM2jQoBp/jhBCiLqzfft2YmNj1cnW4sAYknvdi0Ord3FkVdOW5NNi2+fqGNPX15fJkyfTunVr1wbmAkePHmXChAmUlJQA0Mqg8HKUES+N6yaF9xfbmJ5WNk7s3r07r776Knq9+/435clk3lEIIUR9czgc/PTTT/zvf/9Tx4x2jY60HkMoDL/ExdFVn74oi+i/vsFQlKXu69u3L//9738xGo0ujOzCbDYb8+fPZ8WKFeq+EK3CMxEGWhvdL7m5oaVa7MxMM5NmLXtkO2DAAJ544gkZgwpRj6qVKBEcHFwnWUuKonD69Olaf44QQgjxzTffsGjRInX7dNuryWp/Tb1cy5CfQfNtn6O1Odt7tGnThkmTJjXpVWX5+flMnDiRv//+W93nSUkSpXYV2ZidbsZ6ZrtZs2ZMnDiR6Ohol8bl6Vwxdnzvvfd4+eWXufvuu/n000/POf7aa68xe/ZsHnvsMaZNm1bjmDp27EhGRgaJiYmkp6fz3XffkZaWRlhYGDfddBO9e/eu8WcLIYS4eHv37mXixIlYLBYATH5hJPW+D7ve28WRXZi+8DTNt32BzlIEQFBQEJMnTyYmJsbFkTWctLQ0XnrpJXJycgAI1Sq8Fm0kWOf6lXMb8618mGlRt/v3788zzzyDxg2rlHg6mXcUQghRn8xmMx988AFr165V91mM/qReNgxTQJQLI6sZjaWYqN1L8ck6oe5r06YNL730ktsu/ikpKWHmzJls27ZN3dfWoPBMhJEgNxj3uYsCm4M5GWYOlJSVlujWrRsvvfQSfn5+LoxMiMarWk8zmjdvXuUNS2Jiovray8uLoKAgwFniuHQ1gKIotSpxLIQQQpT3888/V0iSyIvqRla7/vV2PbN/OGk9hxK982sUh4Pjx48zefJkXnvtNbfP1q4POTk5vP7665w4cULdd3+Inps8LEkC4FIfLWMiDMzOcLbhyMzMZMKECbzxxhu0bNnS1eF5LFeMHVNSUgCIjIwEYNmyZcyePZsHHniAhx9+WN2fnJx8UZ9bXmFhIRkZGYSEhPDzzz/z1FNPqQ/mAGbMmME999zDe++9h1Zb/ZKRCxcurPB32vnExsbSo0cPioqKavVdhBCiMTh58iQfffSR+nexxTuI5MtHekSSBIDFN5SUK0YSE7cQrdVETk4OEyZM4IknniA4ONjV4dW7vLw85s6dqyZJ+Gjg+UiDWyRJAFztryPL5uDbbGdK7R9//IHdbmfIkCGNvgRyTEwMPj4+DXY9mXcUQghRXzIzM5k2bVqFhT4lAdGkXDYMm9EzHzzb9d4kX/5Pwg6tJihxBwDHjx/n+eef54UXXqBHjx4ujrCinJwcJk2axJEjR9R9vX00PBZmwOjCCmLuyE+rMDbSwPxMCxsKnLXN9u3bx0svvcSrr75KeHi4iyMUovGpVhr83r172bNnT4U/27dvp1OnTmi1Wp566im2bNlCSkoKBw4c4MCBA6SkpLBlyxaefPJJNBoNnTt3ZseOHfX9fYQQQjRyq1ev5qOPPlK3i0Jak9H11nrvI1jUrC0ZXW5Vt/fv38+UKVMwmUz1el13k5mZycsvv6wmSSjAw6GemSRRqqePlmciDBjO/CeUnZ3NhAkTKtzAiYvjirFjaX9Rb2/nw7Hp06ezc+dOXn31VQC1AkzpeTWRn58POFejjBkzhrvvvpu4uDhOnjzJ4sWLiYiIYPHixcyZM+eiPjchIYFNmzZV609eXl6N4xdCiMYkKSmJTz75BLPZWfHLavQj6Yp7sHn5uziyi2MKiCTlshHYNc6xVE5ODh9++CG5ubkujqx+FRcX8+mnn6qr//UKPBthoLnBvao13B6oY6B/WfLjpk2bWL16tQsjapxk3lEIIUR92LdvH88991yFJIm86O4k9b7PY5MkVBotpzoPIr3LLTgU5/gpPz+f119/nWXLluFwXLCQfINISUnhxRdfrDDHNjhQx1PhkiRRFZ2i8O9meoYHl821JiUl8eKLL3L8+HEXRiZE41TjpxpTp05l9erVzJ49m/vvv/+c44qi0KlTJyZNmkTHjh0ZM2YM06ZN4+WXX65VwEIIIZquNWvW8P7776vbxYExpFw6DIemYR7S58X0RGMpIezwGgB2797N1KlTGTduHAaDoUFicKXU1FReffVVTp06BTiTJB5tpudqf89NkijV3VvL2EgDb6WZKXE4by5fffVVJkyYQNeuXV0dXqNQ32PHsycBRowYwYwZMxg1alSF47VZAVrax7SgoIDevXvzwQcfqMduueUW7HY7o0aNYu7cuYwZM6ba12rZsmW1+2kHBAQA4OPjQ4cOHS7yGwghRONw4sQJ/ve//6mrya16H5J63YvVxzOrMJQEtyD1suFE/fUNGoeN06dPM3/+fCZNmtQoK0uYTCZef/11tRqUAjwZZuASr+pXY2ooiqLwQKieAjv8Wehc1ffbb7/RqlUrBg8e7OLoGjeZdxRCCFFTDoeDFStWMH/+fPU+3qEonLrkBnJb9Kr3xVYNKa/5ZZj9woja9T06cyF2u50FCxbw999/89RTT6mLSVzhyJEjTJw4UV3woQAPhuoZGOD584j1TVEU7gjSE6ZT+OiUBSvOhV3jx49nwoQJdOvWzdUhCtFoKDk5OTVKLevWrRtZWVkkJSVdsD+jzWajRYsWhIaGsnfv3hoFKoQQomn75Zdf+PDDD9XtEv8Iknvd65LSyiFHNxJ6dIO63aNHD8aNG+fSm4/6duLECd544w2ys7MB0AJPhBu40tf9JrRr46jJzow0E4VnWgEaDAbGjh1Lr169XBtYI1DfY8fx48czd+5cnnzySSZPnnzO8Xnz5jFu3Dhuu+02vvzyyxp9h5ycHFq3bg3AzJkzeeSRRyocdzgcREREYDab2bFjB+3atavRdYQQQlQtISGBV155Ra24YNN5kdR7FGb/+unHrNgs+GUcQlecg9U7mILwjji0+nq5lu+pv4na9T2KwzkQadGiBW+++abaaqAxsFgsxMbG8tdff6n7RjfTc42bJ95aHA5mppnZV65f9H//+18GDBjgwqgaN5l3FEIIURMlJSW8//77/PHHH+o+q96HtJ53URzSyoWR1S9tST5Ru5fgnVvWorNly5a8+OKLxMTENHg88fHxTJo0ieLiYgAMijMx9vJGNo/YEA4U25iVYaZI5iqFqBc1rmmYmZmJVqu94M0KoJ6XmZlZ08sJIYRowpYuXeo2SRIAWe2u5nS7/ur2nj17eP311ykoKHBJPPXt4MGDTJgwQU2SMJwpjdwQSRImu4NNBVaWZVvYXGDFbK/f0oHtjBomRBkJPPPVzGYzsbGxbNiw4fxvFBdU32PH6OhoANLS0io9Xrq/NhMEgYGBar/uFi1anHNcURQiIpwP6mTcK4QQdS8xMfGsJAkjyb3uqbckCWNuCq3/mEvk3h9odmQDkXuX0/qPuRhzU+rleoVhHUjrcSeOM6scExMTefXVVxtN2yWbzcY777xTIUni3hD3T5IA0CsK/40w0N5YtgL13XffZevWrS6MqnGTeUchhBAXKzU1lRdffLFCkkRJQDSJVz3SqJMkAGxe/iT1vo+c5per+xISEnjhhRfYtm1bg8ayc+dO3njjDTVJwlcD4yKNkiRRQ529tbwcZSTorLnKjRs3ujYwIRqJGidKNG/enMLCQn799dcLnvvLL79QWFhI8+bNa3o5IYQQTVBpubjPPvtM3VcSEO3SJIlSWe36k9n+WnX70KFDjB8/Xu2z3Fjs3LmT1157jcLCQgC8FRgbaaCHT/3f3Bwz2XkusYQPTln4PsfKvFMWnk0s4ZjJfuE310ILg4ZXoow00zknwksn9asz5hFVq++xY2mLlPj4+EqP79u3D4AuXbpU+zPPpigK7du3B5zVJSpT+vDOy8urxtcRQghxrqSkJF599dWyJAmtgZTLR2IKiKqX6yk2C9E7v0VnLqywX2cuJHrntyg2S71ctyCiE2nd7sCBcxySkJDQKJIl7HY77733Hps3b1b33Rmk45ZA90+SKOWlUXg+wkgLvfN3Y7fbeeuttyokfoi6I/OOQgghLkZcXBzPP/88J0+eVPflxlxKUu/7sHoFuDCyBqTRcqrLzaR1vQ27xjlvV1RUxJQpU1i0aJHahqQ+7dy5kylTpmA2mwEI1MKEKCPtvWr8KLJeNfQCrZoqnasMKzdXOXPmTDZt2uTiyITwfDX+22n48OE4HA5Gjx7Nxx9/XOlkcU5ODh999BGPPfYYiqIwfPjw2sQqhBCiCbFYLMyePZtly5ap+4qCW5LU6x6XJ0mUym7bj4xLblS3ExISePHFF0lMTHRhVHVn06ZNTJ48GZPJBIC/BsZHGRukf7TZ7mBmmoncs+7hcu0wM81U7zcuEXrnDUjMmYlwh8PBBx98wLfffovD4Z43Te6uvseOV111Fb6+vhw8eJCjR4+e87mbNm1CURQGDhxYq+9x3XXXAVR6M3r06FHy8vLQ6XR06NChVtcRQghRJjk5mVdeeUWtbmXXGki5YiQlQfVXRtgv4/A5SRKldOZC/DIO19u1C6K6kt79djVZ4sSJE7z22msemyzhcDj4+OOP+f3339V9gwK0DA3ynCSJUr5ahRejjESemaS2Wq1MnTpVTcgUdUfmHYUQQlSH3W7nm2++YfLkyeoiH7uiJb3LrWR0vRWH1vPGG7WVH9ODpCsfwOIVqO775ptvmDJlSr1Ww929ezdTpkzBYnEmFIdqFV6JMtLC4J5JEq5aoFVT4WfmKqPLJe2+/fbbFRKRhRAXT8nJyanRbL/ZbObOO+9ky5YtKIqCRqMhJiaGkJAQFEXh9OnTJCcnY7fbcTgcXHXVVSxbtgyDwVDX30EIIUQjU1BQwLRp0yr0ly0I60hajyH11hO6NvxT9hIR/5PaT9rX15eXXnqJ7t27uziymlu1ahXz5s1Ts81DtQovRhqIaqCbm80FzhuUqjwepqevX/3f7ObbHLyVZuKYuWy4NGTIEB566CEURTnPO8XZGmLsOH78eObOncvAgQNZvHgxBoMBh8PBE088weLFi7ntttv48ssvK31vbGws06ZNA+DHH3+kf//+lZ539OhR/vGPf6DRaPjmm2/UxIni4mIeeughVq5cyV133cX8+fMv7gckhBCiUikpKRVagNm1epIv/yclwS3r9brBxzbS7EjVrbcy219Ddtur6zUG/5S9ROz7kdIRR9u2bXnjjTfw9/ev1+vWJYfDweeff87SpUvVfdf6aflXM71Hj6UyrXYmpZg5bXOOEb28vJg4cSIdO3Z0cWSNh8w7CiGEuJDi4mJmz55doRWWxehP6qV3YwqMdmFk7kFjLiJqzzJ8sk6o+6Kjoxk3blyl7URr4++//+aVV16hpKQEcM4jjo8yEK53zyQJs93Bs4kl5yzQAgjUwMwWXhg07jlWzbE6iE0zkWJxjkN1Oh2vvvoqPXr0cHFkQnimGidKAJhMJt5++20++eQTddLibMHBwYwePZpnn30Wo9FY40CFEEI0Denp6bz55pskJSWp+3KbX0pGp5uhGv1pXcUn8xhRu79Hc6YMs06n44knnuD66693cWQXb9myZSxYsEDdjtYrjI00EKpruJ//smxnNndV7g7ScWdwwyTNFNsdzEo3s7+k7O7phhtu4PHHH0erlf6KF6O+x475+fkMGjSI/fv307JlS3r16sX+/fs5ePAgUVFRrFmzhujoyidLqpsoAc6e5K+88goajYbevXsTFhbGzp07SU5Opnnz5qxatYqoqPopBS+EEE1JSkoKL7/8MllZWQDYNWeSJELqN0kCwD81nsi9y6s8ntZ9CPlRXes/juQ9RMSvqJAsMXHiRPz8/Or92nXh66+/ZvHixep2H18tj4fp0XhwkkSpdIudN1NN5Nqc276+vkyaNIk2bdq4NrBGpCHmHQsKCpg+fTrLly8nLS2N0NBQbrrpJiZMmEBYWFhtv4IqNzeXd999l59++omEhAQ18aNfv3688cYbHvP/tBBCuIvU1FRiY2NJSEhQ9xUFtyStx13YjL4ujMzNOOyE/r2ekBNb1F3e3t4888wzXHnllXVyiZSUFF566SW1+lmIVmGCGydJgPss0KqpHKuDyWkm0s4kS3h7ezN58mTatm3r4siE8Dy1SpQoZbFYiIuL4+DBg2opvODgYDp37swVV1yBTue+f6EIIYRwH/Hx8UybNq1CWeHM9teS3aYveMBkqjEvjeid36AzlZWxu/vuuxk1ahQaN07yKOVwOFi0aBHffvutuq+NQeH5SCMB2ob9+bvbDYvZ7mDeKTNxRWXJEn379uWZZ55Br3e/Kifurj7Hjvn5+UybNo0ffvihwmT3+PHjiYiIqPJ9F5MoAbBy5Urmzp3L7t27KSwsJDo6mkGDBvHCCy/U6aS6EEI0Vampqbz88sucPn0aALtGR8rl/6Q4pFWDXF+xWWj9x9xK229YDb6c6P9Eg1U6C0jeTXj8T2qyRLt27Tziwery5csrVFi63EfD0+EGdPU4rjfZHcQV2ThlcRCuV+jlo63X1YBJZjuTU00UnBkiBgYGMnnyZJo3b15v12yK6mvsWFBQwKBBg4iPj6dly5ZcccUV7N+/n0OHDhETE8Pq1avrJPn1+PHj3H777SQlJREeHq4+mDp27Bj79+8nPj6emJj6ayUkhBCNzd69e5k+fTr5+fnqvuyWvcnsONCtF1m5kl/aASL2rUBjd861KYrCfffdx9ChQ2tV5auwsJCxY8eSnJzsvI4GXo4yEuOm7TZKudMCrZrKtNiZmGoi+0zSbmhoKG+//TZBQUEujUsIT1MniRJCCCFEba1Zs4Z58+ZhtToHqXZFS3q32yhogJV6dUlXnEv0zm8wFpxS91155ZU888wzeHt7uzCy83M4HHz66aesWLFC3XeJl4bnIgx4u6DUnDuWwLM5HHySaWFjgU3dd8UVVzB27FipmiWEEELUofT0dCZMmEBmZiZQmiQxguKQ1g0ahzE3heid31ZIlrAafEm5bHiDl3MOSNpFxP6f1e0OHTrw+uuv4+vrnismV65cybx589Tt7t4anokwoK/HJIljJjsz00wVxo+BGng20khbY/1N1p8w2YlNM1GaTxsaGsqUKVPOm6Ap3MOECRN4//33uf766/nqq6/Utm2PP/44X331FXfccQeff/55ra5hs9m45ppriI+P58knn+T111+vkGh98OBBWrZsiY+PT22/jhBCNAmrVq3igw8+wGZzzs3YNVoyutxKfrTntr9tKIb8dKJ3foe+JFfdN2DAAJ544okaLQKy2+3Exsayfft2APQKjI800t7LvZMkwP0WaNVUktlZ4ax0HNqlSxfeeOMNWdQlxEVwi0SJ9u3bc+TIEVeHIYQQwgVsNhvz58+v8IDeqvch9bJhlAR55kosjdVE5J5l+GYeVfe1bNmS8ePHExkZ6cLIKmez2fjggw9YtWqVuq+nt4b/Cze4tB+fqya7z8fucLAwy8JveWXJEt27d2f8+PFunQjT2MjYUQghGq9Tp04xYcIEMjIygDNJEpcNpzjUNe0MFJsFv4zD6IqzsXoHUxDescEqSZwtIGknEft/UbcvueQSXn/9dbcbg2zYsIF33nkHh8M53XSJUcMLkQaM9TiudHWS7d8lNqalmTGdmWGLiIggNjaWkJCQerumqL7Kxo4lJSW0a9eOwsJC4uLiaN++vXosJyeHTp06YTKZ2Lt3b60qhHz77beMHj2aAQMGsHTp0hp/jhBCNHUOh4Mvv/yS77//Xt1nNfiScukwTEFSlae6NOYionYvwSe7rGVJ165dGTdu3EVXKzu7de8TYXqu8oDkAnCOHf8voYTCSp6O+iowp2XDL9CqqT1FNt5KN1P6Ve6++27uv/9+l8YkhCdxi9SugoKCC58khBCi0cnLy2PixIkVkiRMfmEk9nnYY5MkAOw6IymXDSe7VVmvv4SEBF544QV2797twsjOZbPZePfddyskSVzpq2VMhGuTJADaGjXMbOHF42F67g7S8XiYnpktvFyWJAGgURTuC9FzR2DZjd/evXuZOHEixcXFLourqZGxoxBCNE6nT5/mlVdeKZckoSX10mEuS5IAcGj15Ed1Jbvt1eRHdXVZkgRAXvPLyOg8SN0+dOgQkyZNwmQyuSyms23fvp1Zs2apSRJtDArP1XOSBEBcka3SJAmAXLvzeH3q4KU9UzHDuZ2ens7rr79eoaWgcJ3Kxo5btmyhsLCQTp06VUiSAAgKCqJfv344HA7WrFlTq2uXPtD7z3/+U6vPEUKIpsxqtTJnzpwKSRIm/3AS+zwsSRIXyW7wIfmKe8iN6anui4+PZ/z48Wo1t+o4ceIEX375pbp9a6DOY5IkVFUNTz0jP0LVw0fL8OCyn/3SpUs5cOCACyMSwrO4RaJEbXogCSGE8EzHjx/n+eefr5A4UBDekcQrH8TqHejCyOqIoiHzkhtI63obdkULQH5+Pm+88QbLly9XJ49dyWazMXv2bNatW6fuu9pPyxNh+nrtHX0xDBqFvn7OvoB9/XQuT94A57hleIieEeVuQg4cOMDrr79OYeG5fcxF3ZOxoxBCND45OTm89tprpKWlAc42bKk9h1HUrK2LI3MvuS2uIKPTjep2fHw8U6ZMwWw2uzAqp3379jFjxgzsdmfGQoxe4YVIY4O0ccuwnH9sfaHjdaGrt5anwg1oz2wnJCTw5ptvSjKtG6hs7BgfHw84V9FWplu3bgDs37+/Vtf+66+/AOjbty9Hjhxh6tSpjBkzhsmTJ6ulyoUQQlTNZDIxZcoUfv/9d3VfYbP2JPZ+AKtXgAsj82Bn2pVkdhig7kpISODFF18kOTn5gm+32+28//77avvkNgalwoN6TxBXZKOwiiTbwgZIsq1rgwN1dD3T8sRut/Puu+9isVTdWkQIUcaz/vYSQgjRKGzcuJE5c+ZUmNA93a4/WW2vhkb2ADQ/pgcW31Cidn+PzlSA3W5n/vz5HDt2jCeeeAKj0eiSuEqTJDZs2KDuG+Cv5aFQPZpG9juoL7cHORNKFmU5bzwOHTrExIkT3bIEthBCCOHOCgoKeP3110lKSgLAoWhI63kXRWHtXBxZaeuNQ+iKc1zeeqNUbsveKHYbYYfXArB7927eeustxo4di07nmmmeo0ePMnnyZHV8H65TeDHSiL+2YcaV4frzX+dCx+vK5T5aHgvTM++UBQfw999/ExsbyyuvvCK9ot1MSkoKgNoacdmyZcyePZsHHniAhx9+WN1fnQdGVSksLCQjI4OQkBB+/vlnnnrqqQoPLWbMmME999zDe++9h1arPc8nVbRw4UIWLVpUrXNjY2Pp0aMHRUVFtfouQgjhCiaTifnz53P0aFlr29yYS8nofDNo3GIN8DnccexYKUUhu81VWL38idi3AsVh5/Tp07z44os89thj520dvGPHDv7++28A9Ao8FmZwmwVX1ZVqPn8S7YWOuxuNojA6TM/4ZBNFduc454svvqB///4Ncv2YmBh8fHwa5FpC1DVJlBBCCNFgbDYbX3zxBcuWLSvbpzWQ3v0OCsM7ui6welYSFEPCPx4mavcSvHOdk1Pr168nMTGRl156ifDw8AaNpzTzu3ySxEB/LQ9IksRFuyVQhxb4olyyxKRJk3jllVfw8vJybXBCCCGEBygpKeHNN9/kxIkTADhQSOs+xC3GhsbcFKJ3fovOXFYxymrwJeWy4ZgCo10YGeS07oPGZiX0qHM8t23bNt59913++9//omngBwcpKSkV2pAFaeHFSAPBuoYbV/by0RKosVTafiNQ4zzeUK7y01FkhwWnnePDPXv28M477/Dcc89d1MNwUb9KK8GVJjhPnz6d/fv3c+TIER5++GF8fX0rnFcT+fn5AJjNZsaMGcPdd9/N888/T1hYGJs3b2bMmDEsXryYjh078swzz1T7cxMSEti0aVO1zpX2L0IIT2Uymfjkk0/UMSLA6bb9yGp3jdsusnLnsWNV8qO6YTX4Er3zOzR2CwUFBcybN4/HHnuM6OhzY7Zarfzyyy/q9i0BOmIM7pm0cj45tirKSVTzuDsK1Wm4M0ivLuhatWoVvXr1ksVcQlyAJEoIIYRoEPn5+bz99tvs2rVL3Wf2CSHl0mFY/Jq5LrAGYvPyJ7n3KMIO/EZg8i4Ajh07xnPPPccLL7xAjx49GiQOh8PBJ598wtq1a9V9A/21PBiqd8t2Bia7g7giG6csDsL1Cr18tG7RfqO8mwKdw6nSZIn4+HimTp3KhAkTZOWgEEIIcR4Wi4Vp06Zx6NAhdV9618EURHZ2YVROis1yzkQ3gM5cSPTObznR/wmXrw7MatsPxWYm5MRWwJmI6+fnx7///e8GG9dlZ2fzxhtvkJubC4CPBsZGGgnXN+yEuUGj8GykkbdTTeSVWwAYoMCzkcYGHz8ODNBRYHfwXbazJPXmzZsJCgpi9OjRbjnmborOboU4YsQIZsyYwahRoyocr83vq7QNTUFBAb179+aDDz5Qj91yyy3Y7XZGjRrF3LlzGTNmTLWv1bJlS/r161etcwMCnGXpfXx86NChw0V+AyGEcA2LxcKkSZMqJElkdhhAdpurXBfUBXjC2LEqxaFtSL5iJNF/fY3WZqaoqIj58+cTGxtLVFRUhXN///13ddwXqIXbgzzzEWO+7fwVIy503F3dGKBlTZ6VdKuD4uJiTpw4wR133OHqsIRwa27/t1hBQQHTp09n+fLlpKWlERoayk033cSECRMICwurk2uUlJTw/vvvs3TpUo4dO4bNZiMmJoabbrqJ5557rs6uI4QQTdWJEyeIjY0lPT1d3VfQrD3p3e/Arm86q+4dGh0ZXW+lJCCS8IO/oTjs5Ofn8/rrr/PQQw9x++231/vE6ddff83PP/+sbl/r56wk4Y4TtsdMdmammSqsDAzUWHg20khbo3tlq98UqMOKg8VZzsnwXbt2MXv2bJ555hlZOSiEEEJUwm63895777Fz5051X8YlN5If0zDJoxfil3H4nInuUjpzIX4Zh8mP6trAUZ1FUTjdYQBaq4nAJOfP8aeffiI4OJhhw4bV++WLiop488031TG+QYHnIgy0cOWqQgVwnLXtIncE6si3OViZ5+xx/fPPPxMcHMzw4cNdF5RQ+fn5AaiVUMaMGcOYMWPU40VFRQC1KiNd/r333HPPOcdvvfVWDAYDp06d4tixY7RrV712Q6NGjVITOoQQorGx2+3MnDmT3bt3q/tOXXIDOa2udGFUF+YRY8fzKAluQXKve4nZsRit1UROTg6vvvoq06ZNIyQkRD2v/JziTQE6vNxsMVN1aZWzB42VHfc8OkXh1kAd889UNvvpp58aZL5ZCE/m1okSBQUFDBo0iPj4eFq2bMmtt97K/v37WbBgAatWrWL16tXnZLRdrJKSEgYPHsyOHTsICAigf//+6PV64uLi+OCDD1i+fDm//fYbLVq0qKNvJYQQTcvmzZuZPXs2JpNJ3efupfLqW16LyzH7hxO163t05kLsdjv/+9//OH78OI8//jgGg6Ferrty5Uq++uordfsfvloeaeae7TbMdsc5SRIAuXaYmWZiZgsvt6sscWugnhI7LM1xJkts3LiRwMBARo8e7eLIhBBCCPfzxRdfsH79enX7dNuryW3V24URVaQrzq7V8QajKGR0HoTGUoJ/+gEAvvzyS0JCQrj++uvr7bJWq5Xp06dz7NgxADTAU+EGOnq5JkG0dOyYd9bYMc+FY0dFUbg3RE+uDbYWOpMlFi5cSLNmzRgwYECDxiLOVVpOPC0trdLjpftjYmJqfI3AwEB8fHwoKiqqdF5RURQiIiJITEwkMzOz2okSQgjRmC1atIgtW7ao25ntr3X7JAnwoLHjeZgCo0m5bAQxOxajsVs5deoUU6dOZdKkSRgMBjIyMvj7778B54PFAf5u/XjxvHr6aNlWVHV7jZ4N2LatrvXz0/J1toUiO6Snp19UMmZ9s9vtFBQUUFRUhMVicXU4opFTFAUvLy8CAgLO+7zFvZZjniU2Npb4+Hiuv/564uLimD9/Plu3bmXkyJEkJyfz4osv1voan332GTt27KBdu3bs2rWLr7/+mi+//JKdO3dy3XXXkZqaypQpU+rg2wghRNNit9tZvHgx06dPV5Mk7FoDKZfeTVb7a5tskkSpkqDmJPR5hOJyPQp///13Xn75ZbKysur8ejt37uTDDz9Ut7t7a/hPmHsmSQDEFdkq7TENzmSJuCJbwwZUTXcF6bgxoOxm6qeffuKnn35yYURCCCGE+1m5ciVLly5Vt3ObX0ZWu/4ujOhcVu/gWh1vUIqG9O63UxTSSt01d+5c9u7dWy+XczgcfPDBBxVa6j3cTM9lLpxQdtexo0ZReDRMTxevsum3999/nz179rgkHlGma1fnqt74+PhKj+/btw+ALl261PgaiqLQvn17AHJycio9p7R8uZdX06m0KIQQVdm4cSPfffedup3dsjfZbfq6MKLq86ix43mUBLcgtefdOM6U5Tp8+DDz5s0DIC4uTj2vs7cGf617zilWRx9fLb5VPB311TiPeyqjRqGnd1n85X9vrmS328nMzCQ3N1eSJESDcDicLWgyMzPVlniVcduUr5KSEhYsWADA9OnT1WwPRVGYOnUqy5Yt48cffyQpKYnmzZvX+DqbNm0C4IEHHqhQQsjb25vRo0ezbt06/vrrr5p/ESGEaIJMJhOzZs2qkAFu9g4m9bJhmP2knVEpm5c/yb3vI+zASgKTnSUFDx8+zPPPP8/48ePVSbXaSkpKYsaMGeqAoLVB4f/CDejcNEkCIMNy/l6AFzruKoqicF+Inhyrg+1nMtM//fRToqOjueyyy1wcnRBCCOF6u3btqpC8WRDWgYzOg9wuibYgvCNWg2+lJZStBl8Kwju6IKqqOTQ6Ui8dRvNtX2AsyMBqtTJ16lSmT59eqxXxlVm6dCmrV69Wt+8K0nGdi1cUuvPYUa8o/DfCwJspJpIsDqxWK9OmTauX342ovquuugpfX18OHjzI0aNHK6y0zMnJYdOmTSiKwsCBA2t1neuuu449e/awadOmc9quHD16lLy8PHQ6HR06dKjVdYQQwtOdOnWKuXPnqtuFzdqReclAtxsjVqUgvCNWnRc6a8k5x6w6L7cbO55PUZjzZx92yDne+/3337n88ss5dOiQek75B/GeyKBRGBtp5K00E/nlnp/6a+D5SKPbVbG9WD19NGw5U9Gs/O/NlQoKCjCZTGi1WoKDgzEajWg0br2WX3g4q9XK6dOnMZvN5OXlERQUVOl5bvtf4ZYtWygsLKRTp07nPCgKCgqiX79+OBwO1qxZU6vrlGZsV/Y/ZOm+8gkUQgghzi8rK4vx48dXSJIoCmlNYp+HJEmiEg6Njowut5JxyY04ztz8ZWVlMWHCBLZu3Vrrzy8uLmbatGlqj91gLTwbYXT7HoLh+vPHd6HjrqRRFP4TZqCt0RljaX/NjIwMF0cmhBBCuFZqaipvvfWWmrxZ4h9JWvchoLjf1IRDqyflsuFYDb4V9lsNvqRcNhyHVu+iyKpm1xlJuXwEVqMfAIWFhUyZMoXCwsr7ZdfE1q1b+eKLL9Ttq/203BXk+jU47j529NEoPB9pIOjMM4XCwkImTZpEXl6eS+Nqyry8vHjwwQcBGDt2LGazGXCuPBs3bpzaqreqxVmxsbEEBQURFBTEH3/8UeV1HnzwQXQ6HYsWLWLdunXq/uLiYsaPHw/A7bffjo+PTx19MyGE8Dx2u505c+aoc1dm72C3HSOeT1U5HR6S61FBTsve5EV1V7c/+OADEhIS1O2WBg/8UpVQHOff9lQtDWX/76SkpLgwkjLq3HRwMN7e3pIkIeqdTqcjMDAQcI69q+K2/yWWlr4rLYV3tm7dugGwf//+Wl3nxhtvBJx9IkvL3YFzNfQnn3wCoN44CSGEOL8TJ07wwgsvcPToUXVfdsteJF8+Erve24WRuTlFIbdVb1IuH4lNZwSc/w6VVlByOGo2Snc4HMybN4/ExEQADIozSSJY5/43M718tARWMUoJ1DiPuzODRnH+rM+EmZ+fz/Tp06W0nBBCiCaruLiY2NhYCgoKALAa/ZwJB7qqe4W6mikwmhP9nyCt+xAy219DWvchnOj/BKZyrdPcjdUrgJTLRmDXOJMXkpOTmTVr1nlLjVbXiRMnmDVrljo2vcRLw7+a6VHcYPbfE8aOoToNz0YYKX2ukJqayowZM7DZ3LOlXFMwbtw4unTpwpo1a+jVqxePPPIIV111FYsXLyYqKorp06fX+hrt2rXjtddew2w2M3ToUAYNGsR9991Hr169WLlyJc2bN5eWv0KIJm/jxo1qyzAHCundb8eu96yWRH4Zh9Fazq0mAaC1lOCXcbiBI6olReFU55uweDkfMhYWFpKcnKweDvOAucXzMdsdzEwzkXfWlGueA2ammTDbPTtjIrzc7yczM9OFkZQpnRM1Go0ujkQ0JaXdKs53z+X6tP8qlGY5RUZGArBs2TJmz57NAw88wMMPP6zuL/+Xc00MGzaMDRs28MUXX9CzZ0/69OmDXq8nLi4Os9nM9OnTGTly5EV95sKFC1m0aFG1zo2NjaVHjx4UFRXV+rsIIYQrHTlyhM8++4ySEudNgUNRONXpJnJbXOHiyDxHUWgbEv/xINF/fYuhOBuABQsWcOTIEW6//faLzrTduXMnGzZsULcfCtXT2ui2OZIVGDQKz0YamZlmqtBvOlADz3pICbxArcJT4QampJqx4fx/ZN68edxyyy0NHktMTIysUhNCCOFSH330kboKza5oSbl0GDYvfxdHdWEOrZ78qMoXcLgrU0AkGV0HE7l3OQDbt29n2bJlDB06tMafmZ+fT2xsrDrWD9cp/NeNWrl5ytixjVHDf8IMzMlwVi/Yu3cvn332GY888oiLI2ua/P39WblyJdOmTeOHH35gxYoVhIaG8uCDDzJ+/HgiIiLq5DpPP/00HTt2ZO7cuezevZu//vqL6OhoHn30UV544QXCwqTyohCi6TKbzRWqVWW3/gclQTVvte4qujPzeDU97o7sOiPp3QbTPM75rKu0+hLgNmPAmoorslUYM5aXa3ce7+vnto9PL6h8HktdJEzXJakkIRpSaVL/+RaiusX/6ZUFWFoa0tvbuQJ5+vTp7N+/nyNHjvDwww/j6+tb4byaUhSFOXPm0KFDByZOnMivv/6qHhs8eDC9evW66M9MSEhg06ZN1TpXyiwKIRqDPXv2sGjRIjUzz6Y1kNZzKEXN2ro4Ms9j8W3mTJbY9R3eOUmAM7M+Pz+fkSNHotNV75/u3Nxcli5dqm5f46elv4t7R1+stkYNsTFGvs+xkmpxEKVXGBakw0/nOQPqjl5a/hmiY1GWFXD2dezatSstW7Z0cWSeraZVVoQQQrjG2rVr+f3339XtU11uduuqDI1BflRXjHlpBJ/8E4Avv/ySLl260KlTp4v+LJvNxsyZM0lPTwfAS4FnIgz4a91rgrytUcPMFl7EFdnIsDgI1yv08tG6TZJEqd6+WoYG6ViS4xwf/vDDD7Rr145rr73WxZE1XucbO/r7+zNp0iQmTZp0UZ85btw4xo0bV+3zBw0axKBBgy7qGkII0RT88ccfnDp1CgCr3pvsNn1dHFHNWL2Da3XcXRWHtKYgrAN+p/6usN+GA3CvMdbFyLCcf17pQsfdnbVc+JKYIJqy6lQ/dIsnJs8///w5+86+iRkxYgQzZsxg1KhRFY7XtsRjbm4uDz/8MHFxccycOZObb74ZvV7P+vXrGTt2LLfccgtffvml2qKjOlq2bEm/fv2qdW5AQAAAPj4+dOjQoUbfQQghXGnNmjUsXLhQzU61Gv1IvvyfmP3rZvVNXVNsFvwyDqErzsHqHUxBeEe36zFtN/iQfMW9ROxdjn/GIQB2796NTqdj7Nix1SpRNmPGDLX3VjOdwn2h7vUdq+OYyV5hVeD+EogrtPFspJG2HlIZA2BQgI6dRXYOlNhxOBz8+OOPvP3222i1ri8B7akqGzsKIYRwT+np6Xz00Ufqdl50d/JierowoqYjs8N1eOUk4Z2bjN1u55133mHWrFnqgpTq+vbbb9m5c6e6/ViYgeYG9xyLGTSKR6z+GxKk46TZzo4i50B37ty5tG3blhYtWrg4ssZJxo5CCOG+fvvtN/V1Tus+Htdyo1RhaJsqUwccZ457qtPtrz0nUeKUxUGo+w+5qhSuP/9zxQsdd3enymVKhIaGujASIdyfW/xVVtkNi5+fH4D6kGfMmDGMGTNGPV5UVARQ6zLSr732GmvXrmXWrFk88MAD6v4777wTX19fhg8fztixY9mxY0e1M69GjRqlJnQIIURjtnLlSubNm6dum31CSL7iHqzegS6MqmrG3BSid36LzlxWjchq8CXlsuFut6rRodWR1nMotoO/EZS4A4AdO3YwadIkXn755fMmS8THx1eobDS6mR5vN1tJdyGlvQLPLoOXa3f2CpzZwsvtVgdWRaMojG6m56VkE2aHs7/3qlWruPnmm10dmseSyW4hhPAMdrud9957T23XYPYJIaOTrKhuMBotaT3upOWWT9FaS0hPT+eLL77g0UcfrfZH7Nmzh6+//lrdvj1QRy9fSfasLY2i8FiYgVdTTKRZHJhMJqZPn85bb70lfZvrgYwdhRDCPaWlpXHokHOBkEPRkBfTw8UR1Zzv6eNV1ldQzhz3tHZupcz+4RQHNVcr3wIkWhx0urjcW7fSy0eLr2KhsJLCEb6K87gnSzSXTahGR7vXnLcQ7qZOEiVyc3M5efIkhYWFF+x3U91KC6X/86alpVV6vHR/TEzMRURakcPhUG/4K3tYMXDgQLy8vDh+/DgJCQm0bt26xtcSQojGZvXq1RWSJEr8I0i5fCQ2o68Lo6qaYrOckyQBoDMXEr3zW070f8LtKkugKJzqdBM2vRehx5yJD3v37mXKlCmMHz++0klUh8PBggUL1O2rfLV08fa8wX1j6xUYptdwR5CO77KdJZYXLVrEddddh5eXZ66UqK36GDsKIYRwP2vWrGHv3r0AOFBI634HDp3BxVE1LVbvQE51upHIfT8C8PPPP9O/f386d+58wffm5eXxzjvvqBU9O3tpuDvYc8Zf7s5bo/B/4QZeT3Em0yYmJvK///2Pxx9/3NWhuR0ZOwohROMUHx+vvi4KbYPN4J5zitWhLzxdq+PuLj+yc4VEiT1FNm4M8PBxoYKz3Edl+z3cnuKy8ZJUsheVefzxx1m8eDEvvvjiRbWTcwcLFy7kySefpF+/fvz000+1/rxa/U3222+/MXXqVHbt2lWt8xVF4fTp6v2D0LWrM7uu/D+W5e3btw+ALl26VOvzKpORkaFWrPD1PfcfYY1Gg7e3NyUlJWRkZEiihBBCnLF582bef/99dbskIIrkK+5x6/J4fhmHz0mSKKUzF+KXcdg9M7sVhaz21+LQ6Gl2ZB3gbMMxc+ZMxo4de077hj179vD3385yeHoF/hnimTctjbFX4C0BOtbl28i0OsjLy2PVqlXcfvvtrg6rQdXn2FEIIYR7yc/P5/PPP1e3s9v0cbsKXk1FflQ3/NIPqiWTP/roI956663ztgFzOBy89957ZGdnA+CvgSfCDGhr2f60vpnsDuKKbJyyOAjXK/Ty0bp1FbIWBg33h+r5NNMCOCv2XXbZZfTp08fFkbkHGTsKIUTjdvDgQfV1cXBLF0ZSe1pLca2Ou7vi4FYVtveX2Cm0OfDVuu8463ziimwUVpF7WeiBC7TKszgc7C6yqdu9evVyYTQXb/DgwRUqJQNotVoCAwPp3Lkzd9xxBw899JBbVWH7448/2LhxI927d+e2225zdTjiItX4//Tly5fzyCOP4HA4cDgcGI1GmjVrVu32FBdy1VVX4evry8GDBzl69Cjt2rVTj+Xk5LBp0yYURWHgwIE1vkZAQABarRabzcbu3bu5+uqrKxxPSkpSJwWioqJqfB0hhGhM4uPjK6wsK/GPJPmKkW6dJAGgK86u1XFXy27bF8VhJ/ToBgD+/PNPPv74Yx577DGUchPWS5YsUV9f46clVOee/aMvpDH2CjRoFAYH6vjstHMifPny5dx6663nfUjRmNT32FEIIYR7+frrr8nPzwfA4hVIVturL/AO96TYLPhlHEJXnIPVO5iC8I7uV4XsQs5UKfM5fRyN3crx48dZvXo1gwZV3QZl7dq1bNu2Td1+NMxAkM69x1/HTPZzWrcFaiw8G2mkrdF9xxvX+mnZV2znz0LnhPa8efPo1KkTQUFBrg3MxWTsKIQQjV/psxcAs2+oCyOpPesFxocXOu7uzv79mB2wocDGLYGemUzQGBdolfqzwEb+mfFwaGgo7du3d21ANeTl5UVAQAAAJpOJrKwsNm3axKZNm/j888/54YcfCA11j783Nm7cyLRp07jnnns8JlEiMjKSDh06uM3P0JVq/LfY22+/jd1up3fv3kyfPp1LL720DsNy/k/w4IMPMnfuXMaOHcvixYsxGAw4HA7GjRtHSUkJt912G82bN6/0/bGxsUybNg2AH3/8kf79+59zjre3NwMGDGD16tW88sorfPPNN4SFhQFQWFio9jC8/PLLadGiRZ1+PyGE8EQZGRlMnToVi8X5oNfsE3ImScL9m9JZjf61Ou4OstpdjcZqIvjknwD8+uuvtGzZkltvvRWAzMxM9uzZAzirxN3qoTcr0Hh7BV7jp2VJtoV8u/P3tW/fPnr27OnqsBpEfY8dhRBCuI9Tp07x66+/lm1fMtDzkgsAY27KOa3brAZfUi4b7nHVMazegWS17UuzI86k22+++Ybrr78evf7c38vp06f59NNP1e0b/LVc6uZjL7PdcU6SBDhbts1MMzGzhZfbVpZQFIWHQ/UcLrGRbXO2mfjoo48YO3asq0NzKRk7CiFE41eaVAtg84C5xfPRWUy1Ou72NFpsWgNam1ndtTLXykB/967eVZXGuEALwO5w8HOuVd2+9dZbPTbJ9K677qrQ9jsjI4NZs2Yxd+5c4uPjGTNmDF988YULI/Rsr732Gq+99pqrw3ALNf4/5PDhwyiKwoIFC+rtZmXcuHF06dKFNWvW0KtXLx555BGuuuoqFi9eTFRUFNOnT6/1NaZPn05ERAQ7d+6kV69eDBs2jHvuuYfLLruMX3/9laCgIObMmVMH30YIITyb2Wxm+vTp6k2M1eBL8uUjsRt8XBxZdV1ogOsZA+DMjteTH1nWdurTTz9VSxVu3LhRrfTRxUtDuN4zB8Kqqn4lnvGrqpRBo3CVX9mDhvXr17swmobVEGNHIYQQ7mHJkiVYrc4JuuLAaArDL3FxRBdPsVnOSZIAZ8u26J3fotgsLoqs5nJaXon1zNj99OnTrFq1qtLzPvroI4qKigCI0Cn8M8T9k1ziimznJEmUyj1TPtmd+WoV/t3MoG5v3ry5QkWPpkjGjkII0fjpdGULfBS7e/9bfSFaS+Xtfqt73O05HOf8jk7bHPyWZ63iDe6tl4+WwCqmTQM1nrtAa0OBjcQz1TCMRiM33nijiyOqO+Hh4UyZMoURI0YAzgXy6enpLo5KNAY1foISGBiIv78/0dH1t4rC39+flStX8tRTTwGwYsUKcnNzefDBB1m3bl2dXLtt27Zs3LiRp59+moiICP744w/Wrl2Ln58fo0ePZtOmTXTr1q3W1xFCCE+3aNEijhw5AoBD0ZDacyhWnyDXBnURdKa8Wh13G4pCetfbKAmIBMBms/H2229TXFzMzp071dP6+HnmgL5UdXoFeqqrfMsmAnbu3KkmtzR2DTF2FEII4XqFhYWsXbtW3c5qdw0onpfl6Jdx+JwkiVI6cyF+GYcbOKLac+gMZLfpq27/9NNP54xDtm3bxp9//qlu/6uZHi8PWCXYGMon9/DRck25MfyHH35ISUmJCyNyLRk7CiFE4xcYGKi+1pkKXBhJHVAu8KjtQsfdnMZagsbhnIsrn+CyPMfKaWsVE3huzKBReDbSeE6yRKAGno00emSVjHybg++yy5K5hw4dqrauaExGjhypvt61a1eFY3/88QdBQUF0794dcM673nfffXTs2JHIyEh69uzJf//7X8xmM2c7dOgQTz75JN27dyc8PJzWrVszdOhQVq5cWWkcQUFB6p/S7gaLFy+usD8oKIjY2Ngqv8vgwYMJCgpi4cKFmEwmZs2axVVXXUVUVBRt2rThlltuOSe5PS4ujtdff52BAwdyySWXEB4eziWXXMLIkSMrVHWsTERExEXFV9nP9PPPP6d///5ERUXRrl07nnzySbKyss77GRf7sy21Y8cORowYQatWrWjevDm33XYbmzdvPu97aqLGfztfe+21FBQUcOrUqbqM5xz+/v5MmjSJPXv2kJGRwYEDB5g9ezYRERHnfd+4cePIyckhJyen0rYb5YWFhfHmm2+ybds20tPTSU9P56+//mLGjBnExMTU5dcRQgiPdOjQIX744Qd1O7Pj9ZQEe1ZLIqt3cK2OuxOHVkdqz6HYdF6As7z1/PnzOXTokHpOVy/PvgFrDJPdVWlrVPA6c7+VnZ1NRkaGawNqIA01dhRCCOFav//+OyaTs7SwyS+MotA2Lo6oZnTF2bU67q5yYy7FpnVWLkhOTmbv3r3qMbPZXKHlxrV+Wjp7e0bybWMpnzwyRI//mWH86dOn+f77710bkAvJ2FEIIRq/8slwXnkpLoyk9gqbtavVcXfnlVP2+2nevDnNmzcHoMQBn5yyeOQioLZGDbExRgb6a+nipWGgv5apMUbaGj1zTvXz0xZyz6wrCwkJYciQIa4NqJ6U/3sjL6/qhY+rVq3i5ptvZsWKFRQUFGAwGDh58iSfffaZWj2v1MKFC+nXrx8LFy4kMTERo9FIbm4ua9eu5Z///CeTJk065/PDw8PVP76+vgB4eXlV2B8eHo6fn98Fv5PNZmPEiBG8/vrrHDp0CC8vL/Lz89myZQtr1qxRzysoKOCGG25g1qxZ7Nixg5ycHHx8fEhPT+fXX39l5MiRvPTSS1Vep3xcXl5eF4zrbK+++ir/93//x5EjR7DZbJw+fZqFCxcyYsQI7PbKE6Zq8rMF+Pnnnxk0aBC//fYb+fn5aLVaNm7cyB133MHWrVsvOvbzqfH/8S+//DLBwcGMGTOG4uLiuoxJCCGEG7Hb7Xz44YfqP3ZFIa3JadnbxVFdvMLQNlQ1ZHecOe5JrN5BnOp8k7r922+/qSvOgrTQTOcZk8FVaSyT3ZXRKArtyt10HTt2zIXRNBwZOwohRNOwYcMG9XVui8s9spoENK4k2/IcOgP50d3V7fJtwFasWKGWr/XV4BEtN0o1lvLJ/tqKrU6WLVvWZBMFZOwohBCNX9euXdXXPqePgwc+bC9VENkFm9ZY6TGb1khBuTa6nsgn67j6unv37jzxxBMoZ8b5+0rs/JbneZVfj5nsjEs2sSbfxv4SO2vybbyUbOKYyfMqZGwqsLK1sOx38Pjjj9foQbgnSExMVF8HBQVVeo7JZGLMmDH07duXjRs3kpKSQkJCAjt27GDUqFHqf7sAmzZt4umnn8Zut/Pcc89x+PBhEhMTSU1N5ZNPPiEoKIi33nqL1atXV7jG4cOH1T+lXRHuuuuuCvsPHz7M008/fcHv9L///Y+4uDjeeecdEhISOH78OElJSfzvf/87ZzF/t27dmDFjBjt37iQ9PZ0TJ06Qnp7OJ598gp+fHx988AErVqyo9Dp79+5V47rrrrsuGFd5GRkZ/O9//+Ozzz4jOTmZ5ORk3n33XTQaDXFxcfz222/nvKemP9usrCyefPJJrFYrgwcP5vDhw5w8eZLdu3fTq1cvvvjii4uK/UJ0Fz6lcps2bWL06NHMnj2brl27MnToUFq3bk1oaOh533fPPffU9JJCCCFcYPPmzeqDXLtGR3rXWz1ywtv39HGqilo5czw/qmsVZ7in/Miu+KfuxzfzSIX94TpNhQGfJ3JOdlsq7TXtSZPdVYnQK8SfqaR8ofJkjYWMHYUQovHLysri8GFnSwqHopDvwRPCBeEdsRp8K22/YTX4UhDe0QVR1Y38qG4EJe4AYPv27dhsNoqLi1myZIl6zt3Bevy1njOeLC2fPDPNVGH86Inlk/v7aVmTZ+W42YHFYuGrr76q1gRrYyNjRyGEaPw6d+6M0WjEZDJhKDyNV24yJUHNXR1WjTmqmIurar/HsNvwT9mnbvbs2ZMuXbowZMgQli1bBsDiLAutjQqXeHnGfJ3Z7jhn3AiQa4eZaSZmtvDymPHjSZOd/2WWtdwYOHAgvXt73iLH6vrf//4HgEaj4bLLLqv0nIyMDK688kq+/fbbCq1i2rVrx/vvv1/h3AkTJmC32xk/fjxjx45V93t5eTFs2DBMJhNPPvkk7733HjfccEM9fCNnC5Gvv/6aQYMGVbj+0KFDK5zn5+fHxo0bz3m/0Whk2LBhnDhxgkmTJvH9999z22231WmMJpOJsWPHqpVKNBoN999/PytWrGDlypWsW7eOm2++ucJ7avqzXbhwIdnZ2URFRfHpp5+qST+tWrXi888/59JLLz2nKkht1DhRojRjzOFwUFxcrP7HeSFywyKEEJ7D4XDw3Xffqds5rXpj9Q5yXUC10CjLJysKmR0H4JN5FKVcvYwgD68mAY1rsrsygeUePOTk5LgukAYkY0chhGj8du7cqb4uDmqJXe/twmhqx6HVk9lhABHxKyok2zqAzA4DcGg9p9rC2UoCo9UkkLy8PI4ePcr27dspKHD2Bo/QKQzw94xJ7vLaGjXMbOFFXJGNDIuDcL1CLx+tx40bNYrCyBA9sWnO3sm///47Q4cObXKtYWXsKIQQjZ+Xlxf9+/dXVxMHJWwnzUMTJfwyDqOzllR6TGctwS/jsMct0CrlnxqPzuJ8KBkaGqo+nB41ahTx8fH8/fff2IA56WZejzYSpnf/1hVxRbZKF2eBM1kirshGX78aPz5tMLk2B7MzzJjPTAs3b96cf//7364Nqh6YTCb+/vtv5syZwy+//ALAsGHDaNasWZXvGTt2bIUkicocOnSIXbt2odPpePTRRys9p/QB/tatW7FarRf8zJro1atXhSSJmurZsydQf9WL77///nP2/eMf/2DlypWcOHGiwv7a/GxXrVoFwJ133nlOZZTw8HBuvPFGli9fXtuvo6rxb7Rv374ev1pVCCHE+f3999/qP3J2jY7s1n1cG1AtNNbyyWa/MPIjuxCQFq/uayz/OjeWye7KlP8GTWU8JWNHIYRo/P7++2/1dVFoa9cFUgcUm4Www6vPGVcpQNjh1RREdvbcZAlFoTikFf5p+wGIj4/n559/Vg8PDdah89B/sw0axSMmtS+ki7eWbl4a9pXYsdvtLFu2jCeffNLVYTUoGTsKIUTTcPPNN6uJEv5pB8hu1QdTYJSLo7p4jXKBFs4xcejRstZ6N910E1qtM6FWr9czduxYnn/+eXJzc8mzw1vpZl6JMuLn5pXJMiznb/NyoePuoORMVYxTVmes3t7evPTSS3h7e26yenmLFy9m8eLFlR7r06cPb731VpXv1Wq19OvX74LXiIuLA5ytx6+88srznltSUkJWVhbh4eEX/NyLde2111b7XJvNxsKFC1m6dCnx8fFkZWVhtVornFOaAF+XfH19K/3upckqhYUVKzHW5md78OBBwNlmpDI9evRwj0SJn376qc6CEEII4Z7K95jOj+zi0asCG3P55NwWl1VIlDB7cE/HsznO/Glsyt9vld5gNnYydhRCiMav/MoVU4DnTXCX55e2H62l8lWBWksJfmn7yY/p2cBR1Z2SwGg1UWLz5s3qxFaETqGPb9MYm7i7IUE69pWrKnHvvfcSHOyZyd01IWNHIYRoGtq3b0+fPn3YunUrAGEHfyPpyvtBcf+qBOU11gVawce3oC/JAyAwMJDbb7+9wvGwsDDGjh3La6+9htVqJcXi4J10M2MjDRjdeKFTyAWq8V7ouKtZHQ7eyzBz7EwpCY1GwzPPPEPz5p5ZkaUyXl5eBAQEAM6508DAQDp16sRtt93GXXfddd751NDQ0GoljJw6dQpwPszPyMi44PnFxcXVjP7iVLdyXEFBAcOHD2fLli3qPl9fX0JCQgAwm83k5ORgsViq+ogaK73G2Up/D3Z7xRIttfnZllZfruqaF2rFd7E8P81eCCFEvdmzZ4/6uiCyswsjqT2HVk/KZcOJ3vlthWQJq8GXlMuGe+6KQKAkqAVWvTc6i3NAkekBWc/Vccxkr6T1hoVnI420NXrWDfPZSrO9oe4Hd0IIIYSrlE6GAJh9PfvfN9/Moxc87smJEmafskmnkydPqq9vDdShkVX8buESLw3tjApHTQ6sVitr1qxh2LBhrg5LCCGEqHP3338/cXFxWK1WvHOTCT6xlew2fV0d1kVpjAu0jLmphBzfpG7/85//xMfH55zzunbtypgxY9QV/odNdmalm3kmwuDGVWEvNHfqvnOrNoeDuRlmdheXTZg++uijF1y172nuuusu5s2bV6P3Go3Gap3nOLPYsEePHhUWjDa06sb79ttvs2XLFnx9fZk4cSJDhw6tkEi9fv16hgwZon4vV6qLn21DVZfz7KcMQggh6k1JSQkJCQkAOBQNxUEtXBxR7ZkCoznZdzQ5LS6nMKQVOS2u4GTf0ZgCo10dWu0oCkXBrdTNNKsDqxsMiGrDfKZ83Nn9AnPtMDPNhNnu2d8v2VL2xZpav2khhBCNk81mIzc3t2zb6OvCaMSFWI3+6muz2Vm1wFuBvn5STcJdKIrCjQFl65tWrVp1zkotIYQQojGIiYlhxIgR6nbokQ145SS5MKKLV7pAy2qoOAb21AVaGksJkXuXo5yZX+zcuTODBg2q8vyrr76aRx55RN3eV2Ln3QwzFjedn8yy1u64q9gcDj46ZWF7UdmYcPjw4dx8880ujMpzhYWFAZCSkuLiSKpnyZIlAEyePJl//etf51Sby8zMdEVYlarNz7b0e50+fbrS41XtrylJlBBCCFGp8v+wWrwCcOgMLoymbhhzU2i1+WOCEv/CN+skQYk7aLX5Y4y5njEYOh9zQFmPMIsDjpR49iRqXJHtnCSJUrl253FPlWtzkFiuNF7Lli1dHJEQQghRe3a7XX2I61A0ODSeXcCysFn7Wh13d5VN1l/lp8XLbVf9NU29fbT4nJm5S09P58iRI64NSAghhKgnd999Nx06dABAcdiJ2vU92pJ8F0d1cUyB0Zzo/wRp3YeQ2f4a0roP4UT/JzxvgZbDTuTe5RiKsgBnC4T//ve/F2wde8cdd3Dvvfeq27uKnZUl3HGxU7j+/GPeCx13BavDwbxTFjYXls2J3n777RV+5uLiXHHFFYDzOUj5ytoXS6NxDthttvqdry5NOqiqekj5lhyuVpufbefOzsrme/furfR4bX5Xlan1zMXPP//M999/z7FjxygoKMBisVRZ1kNRFHbt2lXbSwohhGgAFVcE+rkwkrqh2CzntN0A0JkLid75LSf6P+Fx2d3l2QwVf0e7iu108vbcFYGp5vPfRF3ouDvbWy7J45JLLsHXt2mtuJWxoxBCNE6lk0MAuOnKsYtRENkZ66HV6Kwl5xyz6rw8vi0dnJuRKtUk3I9Bo9DLR8uGAuf4cfPmzXTs6Hmlu2tDxo5CCNE0aLVann/+eZ5//nny8/PPzNd9Q3Lv+7DrqleW3h04tHryo7q6OoyaczgIO7S6Qhu6p556isjIyGq9fcSIEVgsFr799lsA9hTbeftMGw53Ssjt5aMlUGOpdJFWoMZ53J1YzrTbiCtXSeLmm2/mkUceabD2BI1R586d6d69O3v37mXixIl88803Fe9ryzl27Bht27at9FhAQAAAqamp9RZr6XVOnz7N8ePH6dKlS4VjCQkJfPXVV/V6/YtRm5/twIEDWbduHcuXL+f111/Hy8tLPZaRkcGqVavqNNZaVZQYP3489913H0uWLGHXrl0cOXKEkydPkpCQoP5JTEyssC2EEMIzVMgSbgST3X4ZhyvtEwjOZAm/jMMNHFFdq/g72lhg9ej2G/kXyDa/0HF3tr6gLFGiNLu2qZCxoxBCNF4ajQaDwVmBTMGBxmpycUS149DqSbliJFZ9xT7MVr0PKVeM9OgEWwCtpWICSIAGOhil6Kg76uVbdl/W1JIAZOwohBBNS0REBGPHjlUfpnnlpxO181sUm5v2QWiEQo5tIighTt0eNmwYV1999UV9xr333ss///lPdXt/iZ2paSYKbO4zl2fQKDwbaSTwrOFvoAaejTRicKOkjhK7g7fTKiZJDB48mMcee0ySJOrApEmT0Gg0rF69mnvvvZcDBw6ox06dOsXChQsZMGAAU6dOrfIzunXrBjgrOmzbtq3eYh0wYAAAr7zyCn/99RfgrOy4fv16hgwZUmUigqvU9Gc7atQogoKCSE1N5d///rda+fzkyZM88MADFBUV1WmcNa4osXLlSubNm4efnx9jxoyhR48ejBgxguDgYObPn8/p06fZsmULX331FRqNhkmTJtGmTZu6jF0IIUQ9Kp+pp7XU7T8+rqArPH+Prgsdd3dac3GF7Vwb7Ci08Q8/zyx77X+Bcd2FjrurJLOdg2faomg0Gq6//noXR9RwZOwohBCNm6IoNGvWTC0HqivOxewffoF3uTdTYDQnrnnSmXBbnI3VO5iC8I4enyQBzt9PeV29tWhkotUtdfbSoAVswIkTJ8jLy1NXrTVmMnYUQoimqXv37jz++OO8//77APhkJxC1ewmplw71iNZuis2CX8YhdMU5Hjd2DDq5jdCjG9Ttvn37cs8991z05yiKwj333INOp2PhwoUAHDU5mJxqYmykkWCde4w52xo1zGzhRVyRjQyLg3C9s5KXOyVJFNgcvJ1u4oipLMlkyJAhPPTQQ5IkUUeuvfZa5syZwzPPPMOvv/7Kr7/+iq+vL1qtlry8PPW80tZAlenXrx9du3YlPj6eQYMG0aJFC0JCQgB46KGHeOihh+ok1pdffpnff/+dY8eOcf311+Pr64vdbqe4uJhmzZoxadIk/u///q/S9w4YMIDk5GR1u/S7vffee8yfP1/dHxMTw++//14n8db0ZxsSEsL777/PAw88wIoVK/j5558JCAggNzcXnU7HAw88wOeff14nMUItEiUWLFiAoijMnj2boUOHqvsNBgPXXnstAEOHDuXpp5/mzjvvZNKkSaxfv772EQshhGgQUVFRaDQa7HY7+qJsFJvFYwb2ldFZzi2bfDHH3Z2xIOOcfctyrPT29cxJ7yiDBud08PmOe56lOWWrIK688kp10NwUyNhRCCEav8jISDVRwliQ4fGJEtAIyidXwVhwqsJ2Jy/PHFudzWR3EFdk45SbTnbXhJdGobVR4eiZCfIjR45w+eWXuziq+idjRyGEaLpuvPFG8vPz1QdhvplHiNr1Pak978ahdd9kCWNuyjltf60GX1IuG44pMNqFkV1Y0ImthB1eq2737NmTZ555pmLF4Ys0fPhwfHx8+PjjjwFIsjiYmGpibKSBKL17jD0NGoW+brrI7LTVzvQ0MymWsiSJe++9l+HDh0uSRB277777uOqqq5g3bx7r1q0jOTkZjUbDJZdcwiWXXMJNN93EkCFDqny/RqNh2bJlTJ48mTVr1pCamqpWOqvLdhytW7dmzZo1TJkyhd9//52cnBwiIiIYOHAgL774IkePHq3yvZmZmWRknPv8oLCwkMLCsr+zjMa6bXVU05/t4MGD+fXXX5k+fTp//vknFouFfv368fLLL3P06NE6TZRQcnJyalTvplOnTmRkZJCeno5e73xwFhwcTEREBAcPHqxw7vr167nzzjt5+OGHmTlzZu2jFkII0SCeeuopkpKSAEi+fCRFzSrvw+UJQo5sIPTYxiqPn257NVntr2nAiOqQw0GbDe+iMxUAzslDs9kMwH/C9PRz0wH/+ZjtDp5NLKmyV+DMFl4eN+l9wmTnlZSyMuRvvfUW7du3d2FEDUvGjkII0fh9/fXXLF68GIDc5peR0eUWF0dUe568KvB8mm/7Au+cRHX7tSgj7T08WeKYyc7MNFOF8WNp+eS2Ht5WZH6mmbX5ziTihx56iDvvvNO1ATUAGTsKIUTT5nA4WLhwId999526ryikNSmXDsOhM7gwssopNgut/5hbadtfq8GXE/2fcM8xpMNByLFNFSpJdO7cmVdffRVvb+86ucT69euZPXs2drtzkOavgecijbTz8PFZfUoy25mRZiarXLuS0aNHM3jwYBdGVTuJic57jxYtWrg4EtHUXOi/vRr/TZSdnU1QUJB6swKg0+kqZJ6Uuuaaa/D29mbVqlU1vZwQQggXKL9SyS/94HnOdH8W39BaHXdnXrnJapKEv78/d9xxh3pscZaFQjfqAVhdntQrsDrsDgfzM83qdp8+fZpUkgTI2FEIIZqCzp07q699Mo+Bw/PGIOUZc1No/cdcIvf+QLMjG4jcu5zWf8zFmJvi6tBqRWMpxisnqcK+GINnja3OZrY7zkmSAMi1w8w0E2a7Z/+3GF1u1WVdrkpzZzJ2FEKIpk1RFEaNGsXw4cPVfT5ZJ2getwiN2f1aBPtlHK40SQJAZy7EL+NwA0dUDQ4HYYdWVUiS6Nq1a50mSYCz/P748ePVler5dpiSamJXUdWVZJuyQyU23kw1qUkSOp2O5557zqOTJIRwZzVOlAgODqa4uGI/9JCQEAoLC8nJyamwX1EUNBpNpWU9hBBCuK8+ffqor/3T4tFYis9ztnsrCO+I1eBb6TGrwZeC8I4NHFHdCUz8S3195ZVXMnToULWlQ64NvsqyuCq0WintFfh4mJ67g3Q8HqZnZgsvj1wRuCrPxjGz8wZHr9dz//33uziihidjRyGEaPw6d+6Mn58fAPqSXI9OKFBslnNKJ4Nzojt657coNs8cX4FzIl+hLHHAqIC3hyWhni2uyFZpJTJwJkvEefhEfFC5Xt5nj5saKxk7CiGEUBSFe++9l3vuuUfd55WXQovtX6ArznFdYJXQFWfX6nhDU+xWIvcuJyghTt3Xs2dPXnnllTpNkijVq1cvJk6ciL+/PwBmB7yTbmZdvvUC72xathfamJZmpujMuNbLy4tXXnmF/v37uzYwIRqxGj9paN68OSaTiRMnTqj7unZ19u1ctmxZhXN37txJYWEhQUFBNb2cEEIIF+jcuTMtW7YEQGOzVHgg72kcWj0plw0/J1mitFegW5a/qwZdcS7+afvV7ZtvvhkfHx9Gjx6t7ltXYCOu0DMnhx1n/niyRLOdr7PLHqYMGzaMmJgYF0bkGjJ2FEKIxk+v1/OPf/xD3Q5M3u3CaGrHI1cFVlNA0q4K234eniQBkGE5/4jxQsfdnV+52buCggLXBdKAZOwohBACnMkS//znP3nsscdQFOeYxVB4mhZ/foYxz32qLFm9g2t1vCFpLMVE71hcYT6xb9++vPzyy3h5edXbdS+55BKmTp1KWFgYAHbg00wLy7ItODy8El1dWJVn5d0MM6XD1qCgICZPnkzPnj1dG5gQjVyNEyWuvvpqANauXavuu/POO3E4HLzyyit8/vnnHDx4kF9++YXRo0ejKAoDBgyofcRCCCEajKIoDBkyRN0OPr4FrclzJ+ZMgdGc7DuanOaXUxjSipwWV3Cy72hMgdGuDq3Gmv29FsXhTDPu0qULHTp0AJzVQK666ir1vE8yzWRaq1hm56aOmew8l1jCB6csfJ9jZd4pC88mlnDM5Dnfo8Tu4L1yNzmtW7dm6NChrg3KRWTsKIQQTcPAgQPV1/6pe9FWkWzg7jxtVWB1eeUk452bXGGf4vl5EoToanfc3ZWfvGsqDxJk7CiEEKK8W265heeeew6dzvmPus5cSPNtX+LrJsmrnlLJVleUTYttn+OTnajuu/nmm3nuuecqtLuqLzExMUybNo02bdqo+77PsbLgtAVbExnjnM3hcPB1loXPT1vUxWLR0dFMnTqVdu3auTQ2IZqCGidK3H777TgcDhYsWKDuu+++++jTpw8FBQWMGTOGvn37MmrUKI4ePUpoaCjjx4+vi5iFEEI0oGuvvZbmzZsDoLWZaXZ47QXe4b6MuSm02vwxQUl/4Zt1kqDEHbTa/LHHloX2Pn0c/7QD6vZ9992nvlYUhSeeeIJmzZoBUGiHOelmj+nP3Bj6TDscDj7OtJByJkvCaDQ22I2nO5KxoxBCNA2dO3emffv2AGjsNoJO/OniiGrGk1YFXozgY5vO2dc4JqUvlO3h2dkg5WvDaTSe14auJmTsKIQQ4mxXX301b7zxBr6+zoQEjd1C1K7vnONNF49nPKGSrVd2Ii3/XICh8LS674EHHuCxxx5Dq9U2WBwhISHnVEpYm29jTobnzFvWFavDwUeZFlbklrUg6dixI1OnTiUyMtKFkQnRdNT47uqKK64gKSmJX375pezDNBq+++47xowZQ8uWLdHpdISEhDBs2DBWrVqllm8XQgjhOXQ6Hf/617/U7YDUffimH3JhRDXT2PpMaywlRMT/pG5fffXVdOnSpcI5/v7+PPfcc+rNznGzg08yPaOcXWPoM/1DrpVt5VqejB49mhYtWrgwIteSsaMQQjQNiqJw1113qdtBCXHoSvJcGFHNeMqqwIvhlZWAX+aRc/YX2D2/SkGW9fzxX+i4u8u3lcUfEBDgwkgajowdhRBCVKZr165MnTqV8PBwwJkKGXZ4DeH7fwG7a+eKTIHRnOj/BGndh5DZ/hrSug/hRP8n3KKSrX/KXmLiFqG1FAPOlnnPPfccQ4cOVVuaNCQfHx9efvllrr32WnXfX0V2pqWZKbR59ritukrsDt5JN7OxoOy/2969e/Pmm282mfGeEO5AycnJaRp/6wghhKiVd955h/Xr1wNg03uT0OcRrN6BLo6q+vxT44ncu7zK42ndh5Af1bUBI6oFh4PIvcvUahL+/v7MmTOH4ODKVzb+8ssvfPjhh+r2kCAdw4Jdn8l+Psuyne02qnJ3kI473fg7bC5wtgopdeutt/Loo4+6MCIhhBCi4djtdsaOHcuRI86H8nmRXUnvMeQC73I/xtyUcxJtS1cFusOE90Wx22mxbQFeeWkAXHfddWzZsgWTyQTA3JZe+Gs9t+rC2WOvsz0epqevn+f23/gpx8JX2c6xsYwrhRBCCMjNzSU2NpaDBw+q+4qCW5Lacyh2g48LI3MzDgehR9YTcnyzuiswMJBx48bRqVMnFwbmZLfb+fzzz1m2bJm6r7leYWykkWCd545NL6TA5uDtdBNHTGWPZ2+88Ub+85//NGh1j4aUmOhs99KUF5EJ17jQf3tNo16fEEKIWhs9ejShoaEAaC3FRO1egmKr+kG2u9GXKytXk+PuJChhe4WWG//5z3+qTJIAZx/Hm2++Wd1enmNlTZ57/+48uc90fLGNj8pN1Hfv3p1HHnnEhREJIYQQDUuj0fDggw+q2wFp8ficPu7CiGrGnVcFXqygxDg1SUKv13Pvvfeq7fUAksxVlPLyED28NFU211DOHPdkSZaySfTyvzchhBCiqQoMDGTixIkVKhL4ZCfQYttn6AszXRiZ+1CsZqJ2f18hSaJFixZMnz7dLZIkwHnf8NBDD1WYN0uyOJiUaiLD4tnj06rkWB1MTq2YJDFixAieeOKJRpskIYQ7q7M7RbvdTmZmppqZIYQQonHx8/Or0MbBKy+V8PifXN4DsLpKS8vV9Li78Mk8SrPDa9Ttm2++mX79+l3wff/+97+5/PLL1e3PTlvYUuDOyRKe2Wf6SImdWelmtY90y5YtefHFF9Hp3Dizw0Vk7CiEEI1b9+7dueaaa9Tt8P2/oFhNLoyoZhxaPflRXcluezX5UV3dor/0xdIXZRN6ZIO6PWLECMLDwyu0KThm8uyJ6D0ldqq6K3GcOe7Jjpf7/TTV9hIydhRCCHE2g8HAmDFjGDVqVNm+omxa/PkZPpnHXBiZ6+lK8mi+/Qv8Mg6r+6644gqmTZtGRESECyOr3B133MEzzzyDRuN8ZJlhdfBmqolkD0/mPdspi503U00VkmBHjx7Nvffe65IWKEKIOkiUWLt2LUOHDqV58+Z07NiRSy+9tMLx48eP89hjj/H4449TWFhY+YcIIYTwCF26dOHhhx9WtwPS4gk5uuE873AfVr1XrY67A0N+OlG7l6KcSU7p0KED//rXv6r1Xp1Ox9ixY+nQoQPgnDD+8JSFvwpd27+xKp7YZ/qkyc6MdBMlZ0ILDQ3llVdewc/Pz7WBuRkZOwohRNPxyCOPqP8O6otzCD+4ysURNUF2OxF7f0BjMwPOVYR33nkn4Bzbl9rv4YkEGZbzjw0vdNyd5VgdJJ+JX6fTqeP5pkLGjkIIIc5HURSGDx/O2LFjMRqNAGitJqJ3fk1gQpyLo3MNY04yLbbOxys/Xd13xx13MH78eHx83LctybXXXsu4ceMwGAwA5NhgcqqJkx6e0FsqzWJncqqZjDNzmlqtlmeeeYbBgwe7ODIhmrZaJUpMnjyZYf/P3p2HR1WeDx//zj6TTPY9gRACBCQsAmEXEKniglvBlVbkbd21IlYRUVELPwStrbVVq1atVbHaKoJLUVFU9lWWsCWEANn3ZWYy+3n/GHIygZB1kpkkz+e6uJyZc+ace4hMnvOc+7nvOXP4/vvvqaurQ5IkpLNWFvfv35+srCz+/e9/s3bt2g4FKwiCIPjfVVddxWWXXSY/j8rZ3C0uPJzB0R3a7m8aSwVJuz+UJ7mjo6NZvHgxGk3rVzXq9XqeeOIJuVyvC3i5xM4+S+AlS8Rqms+ibml7Vzttd7OyyIblzLVbSEgITz/9NDExMf4NLMCIsaPgb3v27OGuu+7i5ptvZu7cubz55pv+DkkQerTw8HDuuusu+XlowX6MhZl+jKj3icz5CUN1PuCZjH3wwQfl8eOIESPk/Q5b3dS5u28yQXcbO7bFz3UNY/XBgwfLN4F6AzF2FARBEFpr0qRJ/N///Z/cNlghScQe+ZqYw+vB3TNutLeGsegQfXa9h9ruSR5UqVTcd999/L//9/+6RVuHsWPHsnTpUgwGAwC1blhRZGtUXas7KrS7WV5oo9zlGcdoNBoee+yxRq1jBEHwj3YnSnz99de88MILhIWF8be//Y2jR48SGxvb5L6/+c1vkCSJ9evXtztQQRAEITAoFAruuuuuRm0cYo98TUjBAT9G1TJTbBpObXCT25zaYEyxaV0cUeuprLUk7VotX+QEBQXx5JNPEhkZ2eZj1fdwjI+PB8AJvFRiZ3+AJUtkBKkIO88oJUzp2R4oTtvdrCi0UXvmmi0oKIhnnnmGvn37+jewACPGjkIgePvttykuLsZqtWI2m/n88885fvy4v8MShB5typQpjSYA4w59idZU6seI2kbhchBSeJCInE2EFGaicDn8HVKrBZVmE5WzWX5+yy23MHDgQPl5XFwc/fr1A8Ahwd4AGw+2RXcaO7bVNlPDz2X8+PF+jKRribGjIAiC0FYDBgzg+eefb1R9Kfz0bhL3foSyG7aAaxNJIiJnEwn716B0e8YOISEhPPPMM1x66aV+Dq5t0tPTeeaZZ+TqF2Y3rCzqvpUlihxu/q/IRtWZIZ1Wq+WJJ55g7Nix/g1MEASgA4kSf//731EoFPzxj3/k1ltvPe/FCsDMmTMBOHr0aHtPJwiCIAQQlUrFI488wuDBg+XX4g5+HtArBCWVhoJRN5yTLOHUBlMw6oaA7TetstbSZ9f7aKzVgGcwvWTJEnlSuz0iIyN59tln5d/dDgn+HGCVJbRKBQvjdedMeIcpYWG8Dq0yMFYFnp0kYTAYWLp0Kampqf4NLACJsaPgb6WlpU32Nd+zZ48fohGE3uXOO+8kISEBAKXLQcK+T1A6rH6OqmW66gJSfnqF+ANric7+kfgDn5Hy0yvoqgv8HVqL1JZK4g80rK4fMWIE119//Tn7XXTRRfLjH2oDZyzYVt1l7NhWJQ53o7YokyZN8mM0XUuMHQVBEIT2iIyMZNmyZUyePFl+Lbg8hz47/4XKWuvHyDqR20XsoS+Jzm5oj5yUlMSqVasYNmyYHwNrv7S0NP7whz/IbfzMbniuyEaevXslS5Q63KwotMtJEjqdjqeeeoqRI0f6NzBBEGSKqqqqdtVW7N+/PzU1NRQWFso9gwYPHkxpaSkVFRXn7J+cnAzAqVOnOhCuIAiCEEhMJhNLlizh5MmTAEgKBUXDr8UUP7SFd/qPwuXAWHIMdV0lTkMEpti0wE2SsJnos/M9tBbP71WVSsXixYvJyMjwyfGLi4t58sknKSkp8RwfeCBWy5jgwFlxZ3dL7LK4KHFIxGoUZASpAmaiO9fmabdhOitJYsiQIf4NLECJsaPgb2vXruWtt9465/XU1FRefPFFP0QkCL1Lbm4ujz76KHa7p42YOXoABaNuAEWHOoJ2GoXLQcpPr8gVvbw5tcHkTrk3YMeQSqeNPtv/ic5cBkBUVBQvvvgiYWFh5+xbWlrKXXfdhftMSeoVSTr6aAPzZ9IagTx2bI/VFQ6+rHYCMGrUKJYuXerniLqOGDsKgiAIHeF2u1m9ejUff/yx/JpDF0LB6Juwh5w/+a67UThtJOz7hODyE/Jrw4cPZ9GiRXKSQXeWnZ3NU089hcViASBCBU8l6IjWBP54tdol8YcCG8VOzy1YrVbLk08+yfDhw/0cmX/UL1zpigq8b775JidOnGh5xy7Uv39/fvvb3/o7jHOMHTuWrKws+fnf/vY35s6d68eIfK+l//fU7T2wxWIhODhYvlhpidvtPqePoCAIgtC9GY1GnnnmGZ588klOnz6NQpKIP/AZRZKEKSHd3+E1SVJpqA3Q2LzVV5KoT5JQKpU88sgjPkuSAE+55WXLlvHkk09SXFyMC3i5xM49sVrGB0iyhFapYJKx3cOVTnPc5mZVkQ2LV7uNp556SiRJNEOMHQV/kiSJ77//Xn5emnYJUVk/oJRc5OTkkJubS0pKiv8CFIReICUlhfvuu48//elPAASXHSf62HeUDf6FnyNrmrHkWJNJEgBquxljybHAHFO63cTv/0xOklCr1Tz66KNNJkkAxMTEMG7cOLZt2wbAF9VO7opp3e/qQCSd+dMTmF0S39c45edXXHGFH6PpemLsKAiCIHSEUqlk7ty5xMfH88orr+ByudDYaumz818UjLoBa0Syv0PsMJXNROKej9DXFsmvXXLJJdxzzz1oNIGZ0NtWAwcO5Omnn2bp0qXU1dVR6YKVxXaeTNARqgrcZNg6t8QLRQ1JEhqNhiVLlvTaJImuduLECfYfzcYWEufvUADQ1Rb75Djh4eHn3fbLX/6yycVBLXn22Wepqanh2LFj/PGPf+xAdN1Xu+88xMXFkZeXR1lZGdHR0c3ue+TIEcxmc6PeUIIgCELPEB4ezrPPPsuTTz5JXl7emWSJtRRLbmoTxeCvPdTWGpJ2vo+2rhLwXNw9/PDDTJgwwefnio2NZdmyZTz11FMUFhbiAv5WYscRreGikMBLUAgER60uXiiyYz0zDxscHMzTTz8txjktEGNHwZ8OHz4sryZwK9XUJF2IvrqQkOLDAHz11Vfcc889/gxREHqFadOmcerUKf773/8CEHFyBw5DBNXJY/wc2bnUZxIN2rvdLySJmKNfE1yWLb90//33N2qX15TrrrtOTpTYYnJxbbib+G6wSu9sOTY3LxbZqPaqyBymdLAwXkeqrvt9nv/VOKk7M97s06cPY8YE3r+TztRVY0eTycSqVav47LPPKCoqIioqissuu4wlS5YQExPT3vCb9eWXX3LrrbcCsHTpUh566KFOOY8gCIIAM2bMIDo6mpUrV2KxWFA5bSTtXk3RiOswxzY/RgpkakslSbs/lOcOAW6++WZuuukmFIrATSBoj7S0NBYvXsyzzz6L0+mkyCHx52I7j8VrA7JymEuS+GuJnVy7ZyBXP68r2m10LVtIHPljf+XvMABI2vmez46Vnp7O7373u3Ner6+u1lb1ydg//fRTr02UaPeV4pQpUwBPz8CWPPPMMygUCqZNm9be0wmCIAgBLCIigmXLlsnlixRIxB1cR2jeXj9H1v2oLZX02fEv+UJHpVLx+9//vlFvRV+LiYlh+fLl9OnTB/Cswvt7mYPvvFawCR4H61ys8kqSCAkJ4Q9/+IO4od8KYuwo+NOnn34qP65NSMet0VPdd7T82vfff09lZWVTbxUEwcfmzp3L+PHj5ecxR74muCSrmXf4h9ph7dB2fwg/uZ3w03vk57Nnz+biiy9u8X1DhgxhxIgRALiBjyu73xjQ7pbOSZIAqHbDi0U27O7uVWmgyinxVXXDz+GGG25ApQqMim9dpSvGjiaTiZkzZ/KXv/wFSZK48sorCQkJ4Z133uHiiy+msLCwXbE3p7q6mocfftjnxxUEQRDOb+TIkSxbtkxeja10u0jY9wkhhZn+DaydNOYy+u78V6MFVvfddx8333xzj0uSqDdixAgWLlwof74sm5u3yhwBWU1qdYWD/XUNg9J77rmnUxa/Cb1TfHw8N9100zl/Jk6c6O/Quq12J0o8+OCDqFQq/vSnP/HHP/6Rmpqac/Y5ePAgN954I//73//QaDTce++9HQpWEARBCFzh4eEsW7ZMLl2uAOIOfUXYqZ1+jas70ZjL6bPzPTTWaqChVPKkSZM6/dyRkZGNfn4Ab5c7+F9195so7yx7LS5eLLZzJiGciIgIli9fTmpqqn8D6ybE2FHwl+PHj7NzZ8Pvoqp+4wCoi0jGGpoAgN1ub5RMIQhC51EqlSxcuFBOMlQgEb//U/RV+X6OrDGXxtCh7V0tpDCTmGPfyc+nTJnSpt6y3vvuMLs4anX5NL7OtsviOidJol6127O9O/lPpQPbmTFncnIyF110kX8D8oOuGDuuWLGCzMxMLrnkEnbt2sXbb7/Ntm3buPnmm8nPz2fRokW++jiypUuXYjabmTFjhs+PLQiCIJxfamoqzz33HAkJnmtAhSQRd+AzQvN+9m9gbaStLaHPjvdQ20yAp6XDokWLuPTSS/0cWeebNGkS8+bNk59vNrtYXxNYY7xNtc5GMc2ePbtX/GyEwFJYWMiSJUuYPHkyycnJJCQkMGXKFP7xj390+NibN2/m2muvZcCAAcTHx3PhhRfywAMPNDlWP3DgAHPnzqV///7ExcUxdepUPvvssw7H4GvtTpRIS0vjz3/+M5IksXz5cgYOHEh5eTkAF198MWlpaUydOpVvvvkGpVLJn/70J/r37++zwAVBEITAExYWxrPPPsuAAQPk12KPfEP4iW1+jKp70NaWeJIkbLWe51otixcvbrTisrOFh4efUx3h/QoHa6scXRZDoNppdvFSsR3HmQnr6Oholi9f3u6yZr2RGDsK/vL+++/Lj2vjhmA3nimjrVBQkdpQreerr76irCwAS+kLQg+k0+lYsmQJcXGenrFKt5PEvR+hCaB2Fo7gqA5t70pB5SeIO7hOfn7BBRfwwAMPoFS2fspn8ODBjW7G/7PcgTMAV+idT4mj+Vhb2h5Isq1ufjQ1TLDPnz+/11WTgM4fO1qtVt555x0AVq1ahVarBUChUPDcc8+h1+tZt24deXl5PvtMmzZt4p///CdPPPEEsbGxPjuuIAiC0Drx8fH83//9nzyX41nk9SWh+fv8G1graWtLSNr1PmqHBQC9Xs9TTz3VpXOH/nbttdc2Sjz4sMLBsQBJ8D1td/N2ecMc6sSJE9uUuCwIreFwOCgvLz/nj9vdkDWemZnJe++9x5gxY1i0aBHPPvssffr04eGHH+a5555r97mzsrKYM2cOxcXFPPTQQ6xcuZLrr7+eTZs2nVOldcuWLVx22WXs37+fBx54gOXLlxMfH8+8efP497//3e4YOkOHmjTOnTuXtWvXMmLECBwOBy6XC0mS2LdvH6WlpUiSxPDhw/n000/l3nuCIAhCzxYaGsozzzzTqBdyTNZ3RB7f5MeoApu2ppg+u95HbTcDnpsHTzzxhF/6EIeEhPDMM89wwQUXyK99XOnkk8rALGfXFbaanPy1xE79ZVdcXBzLly8nMTHRr3F1R2LsKHS1zMxM9uzxlKGXgIoBUxptN8cMkqtKOByOgLtYE4SeLDw8nKeeeorQ0FAAVI46knZ/iNp67koUfzDFpuHUBje5zakNxhSb1sURNU1XXUjCz/9BIXkmxpKTk1myZIl807ctbrvtNnQ6HQCn7RLru1EbtlhN82WmW9oeKJySxNvldupH3RkZGYwaNcqvMflTZ44dt27ditlsZsiQIQwcOLDRtvDwcCZPnowkSWzYsMEnn8VqtfLggw8yfPhwfvOb3/jkmIIgCELb1bcPbrTIK/MLQgoO+DGqlmnMZSTt/gC1ow6AoKAgnn76aYYPH+7nyLqWQqHgzjvvlBd5uYBXShxY/Nxmze6W+GtJQxXaPn368Lvf/a5NicuC0Bo//vgjAwYMOOePd8u4MWPGcOjQIf7yl79w3333cccdd7B69WomTZrEq6++2iipoi02bNhAXV0dr732Gvfffz/z5s1j6dKl7NmzR27pDSBJEg8++CCRkZH89NNPLFy4kN/+9rd89NFHXHLJJTzzzDMBdZ9B3dEDTJ48mY0bN3Ls2DF27dolX6jExMQwZswYhgwZ4os4BUEQhG7EaDTy9NNPs2zZMjIzPf3+oo7/CJKLigFToYf2y2sPXU0hSbtWo3J6+lwbDAaeeuqpRokKXS0oKIilS5eyfPlyDhzwXCh+WuXEJcGcCHWP7XfYlE21Tl4vc8iT1UlJSTz77LNERQXOKtLuprPHjiaTiVWrVvHZZ59RVFREVFQUl112GUuWLCEmJsZHn6KxL7/8Up6cX7p0KQ899FCnnEdoG0mSeO+99+TntQnDGqpJ1FMoKBt0MX12rwY8F33XX3+9SIQShC6SlJTEE088wVNPPYXVakVjrSFx94fkjfs1bj+3tpBUGgpG3UDi3o/lZFbwJEkUjLoBSaXxY3QeGnM5iXs+ROnyrFyLioriySefxGg0tut4sbGx3HTTTbz77rsA/LfSyeggFQmawJ/gzQhSEaZ0NNl+I0zp2d4dfF7l5NSZGXatVssdd9zh54j8r7PGjvXXqenp6U1uHzZsGBs2bODQoUPtjt3bihUryMnJ4euvv+6VFUIEQRACSf0ir6eeeoqcnBxPZYnMz3FpDFhiBrb4/q6mttZ4EortnkoSBoOBp59+mrS0wEjc7WoajYZHHnmEhx9+mNraWspdEv8qd3BXTNsThX3lP5VOCs5UMNPpdCxatAiDIbBa9Qk9w6hRo1i6dOk5r0dHR8uPIyIi5Mc2mw2z2YwkSQwbNowtW7ZQVlbWrupmISEhAPzwww+MGDFCTgRSKBSNxrf79u0jKyuLu+++G5fLJVeFA0+lle+++47s7OxGVa39qcOJEvXS0tJ67RezIAiCcK76G/4rVqzg559/BiAqZzMKSaJ84DSRLIFnBWDS7g9QOW0ABAcHs3Tp0oD4farX63niiSd47rnn2Lt3LwBrqz2rCntLssTZSRJ9+/blD3/4A+Hh4f4Mq8fojLGjyWRi5syZZGZmkpyczJVXXsmhQ4d45513+Oabb/j222/lfqS+Ul1dzcMPP+zTYwq+sX//fg4fPgyApFBSPnBqk/vVRfXHEtmPoIqTuN1uPv74Yx588MGuDFUQerW0tDQWLVrEsmXLcLlc6MxlJO75iPyMW/2ejGALSyR3yr0YS46hrqvEaYjAFJvm97gAVNZaz4T5mVWFISEhPP300x1OCrzmmmv48ccfyc3NxSHBG6UOnkjQogzwsZ9WqWBhvI4Xi2yNkiXClLAwXodWGdjxA5yyu1lT1VDF45ZbbpHb0wi+HzsWFBQAnjLsAGvWrOGll17itttuY/78+fLr+fn5HT7Xvn37+Nvf/sZtt93G2LFjO3y8999/nw8++KBV+65YsYIRI0ZgsVh88lkEQRB6kttuu43XXnuNoqIiFJJEwr5PyM+YizU8yd+hyZSOOhL3/BvNmaprWq2W+fPno1AoyMrK8nN0/nXdddfxr3/9C4BNJhfjg11c6Ifk2GNWF//zqsR21VVXYbVae9XPJykpiaCgIH+H0StERkZy8cUXN7uP0+nkT3/6E++//z65ubnnbLdare069+zZs1m9ejVLly7lpZdeIiMjg/Hjx3PzzTeTlNTwvZmTkwPAa6+9xmuvvdbksUpLSwMmUSLwlwUIgiAI3ZZOp+Pxxx9n9OjR8muRJ7YQefwnP0YVGHQ1RSTtXi0nSYSEhPDss88GRJJEPZ1Ox+LFi8nIyJBfW1vt5JOq7lOGub22mBonSfTr149ly5aJJIkAt2LFCjIzM7nkkkvYtWsXb7/9Ntu2bePmm28mPz+fRYsW+fycS5cuxWw2M2PGDJ8fW+iY//73v/Lj6qSROA3h5923fOA0+fEPP/xAaWlpZ4YmCMJZRo0a1ShByVCdT8K+T8Ht/37DkkpDbUI6lakXUZuQHhBJEkpHHUl7PkRjrQYa2rb17du3w8dWq9X87ne/k1cEZdncfF7dPcZ+qTolL/bVc0+Mhtnhau6J0fBiXz2pusCf+rK7JV71avU2ePBgrrnmGr/G1NOZzZ5KMfWrPVetWsXevXt56qmnAE8Su/d+7eV0OnnggQcIDQ1tcvVfe5w6dYrNmze36k9NTWC0MxIEQQhEwcHB3HHHHfLqa6XbScLej1HXVfs5sjPcbhL2fYrO5Lk+VSqV3HbbbfTv39/PgQWGESNGNGpR9q9yB/YubsHhliTeLW+YP0xLS2PChAldGoMgnG3JkiUsX76cESNG8Prrr/PJJ5+wZs0abrjhBoB2t73Q6/WsW7eO9evXc++992Kz2Vi+fDkTJ05sMjHovvvuY82aNU3+GTp0aIc+oy91qKLEsWPHWL9+PceOHaOsrAybzYbT6TzvX7JCoWDt2rUdOaUgCILQzWi1WhYvXszKlSvZtWsXAFE5m5CUKipTJ/s5Ov/Q1pacSZLwZG/WJ0kE4oWOVqtl0aJFjX5+a6qcqBVwbbj/bxR0hp1mF6+VNk6S+MMf/iD3UBfarzPHjlarlXfeeQfwTHTX92ZXKBQ899xzrFmzhnXr1pGXl9eob15HbNq0iX/+85+sXLlSrrwiBIb8/Hz2798PgISCyv4Tm93fGt4HS0QyQZWncLvdfP3118ydO7crQhUE4YypU6dSU1PDm2++CUBwWTZxmV9SPGyWqETmReFykLj3Y3nCXKVSsWjRIgYPHuyzc6SmpnLjjTeyerWnLdEnlU6GGVTdIuFAq1Qwyeiz4qld5qNKB3mOhpYbDzzwgGjPQOeOHc8+xo033sjzzz8v//6v397RSnovv/wy+/fv5y9/+QuRkZEdOla95ORkJk9u3bV0/TVMUFBQwKzaEwRBCDTLli1j8eLF1NTUoHZYSPj5P+SN/TWS2n+tHACij20gqCJXfv7ggw8ybdq087+hF3rooYe49957MZlMlDglvqx2cl1E181Xfl/r4qRX27Tf//737WppIAi+9OGHHzJx4kS5pWK95iqS1c+julzNL1ZQKBSMHz+e8ePH8/vf/56NGzfK1V2effZZwHM9CZ42OS1VvwgE7b56fOONN3jssceQJKnV2Se9oUy3IAiCcC6NRsOiRYtYsWIFe/bsASA6+wfcah3VyRktvLtn0VgqPUkSZ8okG41GnnnmmYBMkqjX1M/vP5VODAoFl4V1v4no5uy3uPhbiV1OkkhOTubZZ58VSRI+0Nljx61bt2I2mxkyZAgDBzbuKRoeHs7kyZPZsGEDGzZsYN68eW2KvSlWq5UHH3yQ4cOH85vf/Ib777+/w8cUfOfHH3+UH5tjB8nVJBQuB8aSo6jrqs4poV+dnEFQ5Sn5/bfeequ4fhGELjZr1iyqq6v5+OOPAQgtPIBTZ6Q8bbqfIwsQbjfx+9dgqMqTX/rd737XqHqbr8yZM4c9e/Zw9OhRXMDfSuwsS9Jh6AYtLLqbny0u1tc0TEjOnz/fZ0md3Vlnjx2NRiMAdXWe67IFCxawYMECebvF4ukD35Ey0sePH2flypWMHTuWX//61+0+ztnmzp0rEjoFQRB8KCkpiUWLFrF06VKcTif62mJij3ztSdj1E2PRISJO7ZSf33TTTSJJogmhoaHMnTuXv//97wB8We3kF6FqjKrOH7Pa3RJrqhzy8zlz5ogkCSEgqFQq1OrGc/YnT57k888/P+976q8/mmsZU15eTlRUVKPX6pMi7Ha7/NqIESMYMGAA//znP7n77rvllnb1cnJy5PcFgnbf3XjhhReQJIkrrriCq666ipiYGLRarch4FwRBEJqk0Wh47LHHWL58Ofv27QMg9sjXuDQGTAnpfo6ua6hsJpJ2r0Zt95RvDQoK4umnnw6ogcH51P/8li1bJq/S/leFg2AVTO6Gq/aakmV18ZJXyeOkpCSeffZZwsLC/BpXT9HZY8fMzEwA0tOb/j4ZNmwYGzZs4NChQz4534oVK8jJyeHrr78W498AVJ/UBVAb7/l/QlddQOLej+XvYACnNpiCUTdgC0vEHDMQl0qLymWnuLiYgoKCRj0WBUHoGrfeeitVVVV88803AETmbsWpM1Ldb6yfI/MzSSL2yHqMpQ0TV//v//2/TpswV6lUPPTQQzz00EPU1dVR4pR4u8zBPTEakUTmQ5VOiddLGyYVMzIyuPzyy/0YUeDo7LFjYmIiAEVFRU1ur3+9I2OB9evXY7VaMZlMzJkzp9G2+jHp+++/z6ZNmxg3blyntIkTBEEQWic9PZ077riDV199FYDQgv1YovpT64c5S7WlithDX8nPJ0yYwE033dTlcXQXl112GZ9//jn5+fnUSfBVtZMbIju/qsR3tS6qzkwiRkZGcu2113b6OYXW09UWk7TzPX+HAXhigZAuO9+1117L22+/zd13383EiRM5ffo0b731FikpKeedF01KSmLixIm89dZbREZGkpiYSEREBJdddpm8z/PPP8/333/P5ZdfTv/+/amtreXdd99FrVbLbT3A0ybo5ZdfZvbs2UyePJl58+bRr18/8vPz+emnnxpVgQ0E7b6zUVdXh16v57333hMXyYIgCEKraLVaHnvsMZ5++mmOHj0KQNzBz3HpjNRF9vNzdJ1L4bSTuPdjNHVVgOfvYsmSJeesfA9k9W1UvH9+b5Q6CFMpGGbo3jeKC+1uXiy2c6ZaHjExMTz99NOEh4f7Na6epLPHjgUFBQBylvKaNWt46aWXuO2225g/f778en5+fofPtW/fPv72t79x2223MXZsx2/cvf/++82Wv/O2YsUKRowYgcVi8cln6YlcLhc5OTnyc0tkP7lUvXeSBIDabiZx78fkTrkXSaXBGtGX4LLjAGzevLlRv1NBELrOjBkzyM/PlydxYo5+g9MQijnWd+0lupuI3K2E5TW0eZo2bRoXXHBBsyt+fOH666+Xf0dtNbsYalBycUjPSJL1N5ck8bdSO7Vuz/PQ0FBmzZpFdna2fwPDM1HakUoKvtDZY8f65Nr6ZNuzHTx4EMAn/ZMPHz7M4cOHm9yWnZ1NdnY2Op2uw+cRBEEQOmbmzJkcOnSIH374AYCYw//DEpGMS991NziRJOIy16Fy2gCIi4vjgQceQKkM/BZo/qJSqbj55pv54x//CMCGWifXhKvRdWIlNLck8b9qp/x8zpw54nd5AAm8ys0hXRrT8uXLCQ4OZs2aNXz66acMGDCA5cuXk5eX1+wCsjfffJOFCxfypz/9iZqaGoYNG9YoUeLKK6+koKCA//znP5SWlhIeHs6FF17Iyy+/zJgxYxoda9KkSXz77be88MIL/Otf/6K6uprY2FhGjBjBHXfc0WmfvT3afXV700038Y9//INNmzYxZcoUX8YkCIIg9GAGg4Enn3ySxx57jLy8PJSSi4Sf/8vpCbfjCPJNz9aAI0nEH1yLvqYQ8GRVPvLII+dd+R7I6n9+jz/+OKdOncIFvFRs56lEHX213fOirdol8XyxHdOZSeqwsDCeeeYZYmJi/BtYD9PZY0ez2XMD3GAwALBq1SoOHTpEdnY28+fPJzg4uNF+7eV0OnnggQcIDQ1l6dKlHQv6jFOnTrF58+ZW7VtTU+OTc/ZkJpNJ7qno1ATh1gYRUph5TpJEPbXdjLHkGLUJ6diDo+REiaqqqq4KWRCEs6hUKrmE7qlTp1AA8fs/I2/sr7CFJfo7vC5nLMwkOmuj/HzUqFFceeWVXXLuUaNGkZWVxc6dntLP75Y7SNUpSe6m475A8kmlk6NWzwBUoVBw6623yuMVofPHjhMnTiQ4OJgjR45w/PhxBgwYIG+rqqpi8+bNKBQKZsyY0e5z3Hvvvdx7771NbrvnnntYvXo1S5cu5aGHHmr3OQRBEATfuuuuuzh69ChFRUWonDZij6yn8MI5Lb/RR0Lzfyao8jTgmT9cuHChGB+0wqRJk3jvvfcoLi7G7PYk+HZmcu9ei5tyl2e1VWhoKL/4xS867VxC2/32t7/1dwidorXzVEFBQSxbtoxly5ads+2RRx457/uSkpL497//fd7tU6dOZerUqa2KATyJyW+//Xar9/eXdn9TPPfcc+Tm5nLttdeSmJhIXFwcer2+2cw2hULB2rVr23tKQRAEoYcwGo089dRTLFq0iMrKSlROKwl7/8Pp8fOQ1D0v+zYyZxPGkmPy87vuussnq9D9xfvnV15ejlWCF4vtPJuoI6QLegD6klOSeLnYTqnTc3Gj0+l44okn5FK8gu909tjx7N7VN954I88//7zcv7l+e0dXJL788svs37+fv/zlL0RG+ia5Kzk5mcmTJ7dq39DQUMBz0TNo0CCfnL+n8S6hLak85TbVdZXNvqd+u1vVUJ4zJCRE/B0Lgp/94Q9/YNGiRRQVFaF0O0nc+zGnJ8zHqQ/1d2hdRleVT1xmQy/ZYcOG8fjjj6PRdH454Xq///3veeSRRzh16hQOCV4u8Yz7DJ24Sq+9bG6JXRYXpQ6JWI2CjCAV2gCMc5/FxVqvVYi33HKLaLlxls4eO+r1eubNm8crr7zCo48+yurVq9FqtUiSxOLFi7FarcyaNUvu13y2FStWsHLlSgDWrVsnFpEJgiD0EEFBQdx///088cQTABhLjhFcmoU5pvOvDZV2C9HHvpOfX3/99Qwe3HsrqrWFSqXiiiuu4J133gHgp9rOTZT40dQwjrv00kvRarWddi5BEDpXu78p/vjHP/Ltt98CnhLGrSn9K1p0CIIgCPViY2NZsmQJixcvxuFwoDOXEXfoS4qGXwc96PdFUNlxoo7/JD+/5pprmDlzph8j8o3o6Gi5MojVaqXMKfGXEjuL4rWou9HP71/lDo7aGlbyPfzww+LGaCfp7LGj0WgEPGWaARYsWMCCBQvk7RaLBaBDZaSPHz/OypUrGTt2LL/+9a/bfZyzzZ07V07oEDrO+2esdFpBknAaIpp9T/12lcMqvyZW7QiC/4WFhcnJmbW1tajtZhL2fkze2F8jqXv+ZKTaWkPiz/9B6fZUyenTpw+PPfZYlyZJgCeR9JFHHuGRRx7BarVS5JB4q8zBvTGagJrnybG5ebHIRrW74bUwpYOF8TpSdYFTAaPc6ea1Urv8fOTIkcyePduPEQWmrph3XLx4MRs3bmTDhg1kZGSQkZHBoUOHOHLkCAkJCaxatapdsQuCIAjd27Bhw7j00kv55ptvAIg69j3mqAHQye0vInM2yy034uPjufHGGzv1fD3N9OnTeffdd3G73RyzualwSkSqfT9Wtbgl9lsaBpwdqT4lCIL/tTtR4tVXX0WhUHDppZdyzTXXEBMTg06nQ6Xq3j3KBUEQhK4zcOBA7r33Xl566SUAQooOY4lKpSZppJ8j8w2VzUTcwXXy85EjRzJv3jw/RuRbKSkpLFy4kBUrViBJEkesbj6pdHJjZNdO3rfXZpOT72pd8vNf//rXjBs3zo8R9WydPXasrwLiXU3AW/3rSUlJ7T7H+vXrsVqtmEwm5sxpXHqzvsff+++/z6ZNmxg3bhyLFi1q97mE9gsJCcFgMFBXV4fKaUNtq8UUm4ZTG9xk+w2nNhhTbBoAWlOp/HpsbGyXxSwIwvklJiby6KOP8vTTT+NyudDXFhN76CuKh1/To5Jrz6ZwO0n4+RP5eyskJIQlS5bIiYFdrW/fvtx99938+c9/BmCb2cUQvZIZoZ23Uq8t7G7pnCQJgGo3vFhk48W++oCoLOGUJP5W4pBbvkVGRvLQQw+JubQmdMW8Y0hICOvXr2flypWsXbuWzz//nKioKObNm8fjjz9OXFycz84lCIIgdC9z585l06ZN1NXVoTOXEVJ4kNqkEZ12PnVdNeGnd8vPb7/9dnS6nld1tzOFhYUxfPhw9u3bB8Aei4tfdMJYdb/FRX09idTUVFGVVhC6uXZ/S6jVavR6PatXr2627J0gCIIgNGf69OkcOnRIztKOOfI1lsgUnIYwP0fWQZJE7KGvUNs9q9gjIiJYuHBhj5sEHTduHLfeeivvv/8+AOuqnQzRKxkRFNifs9Dh5u0yh/x8ypQpXH/99X6MqOfr7LFjeno6AJmZmU1uP3jwIABDhw7t8LkOHz7M4cOHm9yWnZ1Ndna2mNDwI4VCwcCBAzlw4AAAhoqT1CYOp2DUDSTu/bhRsoRTG0zBqBuQVBoULgf66gJ5m6guIwiBY/jw4dx55528+uqrAIQWZWINT6Q6ufu2MmtJzJFv0Nd4vpOUSiWPPvooCQkJfo3p4osvJjMzUx63v1/hYIBOSUoAVGvYZXGdkyRRr9rt2T7J6P+kjv9UOsk6U81MqVTy8MMPEx4e7t+gAlRXzTuGhISct4dzcxYvXszixYvbfd5XX31V/k4TBEEQAk94eDjXX389H3zwAQARuVupTRzeaYm64ad2opA8Y4QhQ4Ywfvz4TjlPTzd27Fg5UeJQXeckShyyNgw6u3NrZUEQPNp9pVFfcnHbtm2+jEcQBEHohX7zm9/IvV+VLgexh9eDJPk5qo4xlhzFWJolP1+wYAFhYd08+eM8Zs+ezYUXXig/f6PMjtkVuD8/lyTxWqkd25kQExMTuffeewOqdHRP1Nljx4kTJxIcHMyRI0c4fvx4o21VVVVs3rwZhULRoZKI9957L1VVVU3+ueWWWwBYunQpVVVV8mSK4B8jRjSs9AkuOQaALSyR3Cn3UjT8WsoGTqVo+LXkTrkXW5hn9UdQ+QmUbs+6kD59+hAVFdX1gQuCcF4zZ87k0ksvlZ/HHN2ArrrQjxF1HmNhJmF5e+Xnt99+O8OHD/djRA1++9vfkpKSAoBDgr+V2Klz+3/cV+JoPoaWtneFfRYXX1Q39LOeO3eunOgpnEvMOwqCIAj+duWVV6LX6wHQmcsJKsvplPMonDZC836Wn8+ZM0fMUbWT91zAYasbqRPml494JUp4n08QhO6p3elUa9euJSwsjFmzZpGYmEhcXBx6vb7ZLG+FQsHatWvbe0pBEAShh9Lr9dx///0sXrwYSZIILssmuPQY5tjB/g6tXRQuBzFHvpafX3755Ywc2TPaiTRFqVSyYMECFixY4Llp7IL3KhzcFROYvcP/V+0k50yWhFqt5ve//z0Gg8HPUfV8nT121Ov1zJs3j1deeYVHH32U1atXo9VqkSSJxYsXY7VamTVrlpyUdbYVK1awcuVKANatW8eUKVPa/iGFgDFhwgS50k1w2XEUThuSWoek0lCb0PRNqZCiQ/JjsXpHEALTHXfcwYkTJ8jOzkYhuYk/sIZTE/4fkrrnVPFRWyqJPfSV/Pyiiy7i6quv9mNEjel0Oh555BEefvhhrFYrRU6Jf5Y5uDvWv+O+WE3zNxNa2t7ZKp0Sfy+1y89Hjx4tqpm1QMw7CoIgCP5mNBq59NJLWbfO01Y3tGA/lpgBvj9P8VFULs84oU+fPowePdrn5+gt+vbtS1BQEBaLBZMbKl0Q6cOiEla3RNGZBFylUsnAgQN9d3BBEPyi3V8Rmzdvlh/n5+eTn5/f4ntEFpwgCIJwPkOGDOHyyy/nq688E8PRWRsxRw+CbtjeKfzkDtQ2k+dxeDi/+tWv/BxR5wsPD+fuu+/mueeeA2CTycVFRhfphsBqwVHqcPPfqoaVfDfddBOpqal+jKj36Iqx4+LFi9m4cSMbNmwgIyODjIwMDh06xJEjR0hISGDVqlVtjlvonvr27Uu/fv04efIkSrcTY2kWtQnDzru/wuUguKShCtBFF13UFWEKgtBGWq2Whx9+mIULF1JXV4fWUknM0W8pSb/K36H5huQm/uA6eaI8Pj4+IKteJSUlcc899/CnP/0JgM1mF8NNTib7sbVFRpCKMKWjyfYbYUrPdn9xS54kidozsUVGRvLggw+KNrYtEPOOgiAIQiD4xS9+ISdKBJdmoXTacPs4STe08KD8eMaMGWKM0AEKhYJ+/frJ7VLz7G4i1b4bBxY4JOprVCQmJoq2q4LQA7T7Krb+l4MgCIIg+Mott9zCDz/8gMViQWsuJ6Qo09P/rxtROG1E5DaUh73lllswGo1+jKjrTJgwgSlTpvDTTz8B8F65g2VJSlQBNGG5usJBfeXl1NRUsZKvC3XF2DEkJIT169ezcuVK1q5dy+eff05UVBTz5s3j8ccfJy4urtNjEALHRRddxMmTJwEwFh9pNlEiqOw4SrcD8KzgqS8rLwhC4ElISODuu++Wb9KH5e/DFHcBlujun/gYfmoXhqo8AFQqFQ8//DBBQUF+jqpp06ZNY9++fXz33XcAvFPmYKBOSZzGPxP7WqWChfE6XiyyNUqWCFPCwngdWqX/xqNfVTvJPFOiWaFQ8NBDD/XYlny+JOYdBUEQhEDQr18/UlJSyM3NRel2Yig/gTluiM+Or3TaMFSekp+L6pYdl5iYKCdKlDl923rD+3gJCQk+PbYgCP7R7kQJX66yeu2117j77rt9djxBEAShewoNDeXaa69l9erVAESc3O65sRVAN9pbEpa/D5XTBngG5r/4xS/8HFHXmj9/Pjt37sRqtZLnkPix1sX0UP+tLvR2zOpip6Vh5vzOO+9ErQ6M2HqDrho7hoSEsGzZMpYtW9amYy5evJjFixe3O6ZXX32VV199td3vF3xv0qRJcvuNoPJccLtA2fRKkmCvXrMTJ04UK1IFIcBNmzaN7du3s2XLFgBiD33JyUl3IqkDs+1Xa6jrqojK2ig/nzNnDoMGDfJfQK1wxx13cOTIEQoKCrBK8PdSB08kaFH66Ts0Vafkxb56dllclDgkYjUKMoJUfk2SOGlz83FlQzWz2bNnM3x490oE9xcx7ygIgiAEioyMDHJzcwEILs/xaaKEoeIkCskzV5Wamkp0dLTPjt1bRUVFyY8rXL5NlKj0SpQQPytB6BkCoobPM8884+8QBEEQhABx5ZVXymXLdLUl6M+squsWJImw03vkp9dccw0qVWC1nuhskZGRzJ49W36+ttqJU/LtRUl7rfFquTFlyhSGDPHdha3QtcTYUWiNxMREeYJE6bKjNZefd199dUM57xEjRnR6bIIgdNydd95JSEgIABprDRG5W/0cUcfEHP0WpdszVunXrx9z5szxc0QtMxgMLFy4UB7vZtncfFHtbOFdnUurVDDJqOa6CA2TjGq/Jkk4zrTccJ15PmjQIG6++Wa/xdObibGjIAiC0BEjR46UH+urWm4F1Rbe857iWtQ3QkND5ccWt2/nJM1ex/M+jyAI3VdAJEpIAXIDRRAEQfC/kJAQpk6d2vC86JAfo2kbXW0RWksF4Jk4nj59up8j8o9Zs2bJNy7KnBJbTa4W3tH5cmxuDtR5MvSVSiW33nqrnyMSOkKMHYXWUCgUjVpoaOoqz7uvpq5KfizabghC9xAeHs68efPk5xEntqG2nP/feSAzlJ/AWHJMfn7PPfeg0Wj8GFHrDRw4kBtvvFF+/kmlk3y7u5l39B6fVTk5fabnm1arZcGCBaKamZ+IsaMgCILQEQMHDpSrDmrNZShcDp8dW19TJD9OS0vz2XF7s/oFeAA2Hw9LbV5DCu/zCILQfQVEooQobSsIgiB4806UMBYfgW4ysWUsPio/njBhQq8dMBsMBq655hr5+Tc1/l1ZeHYMU6ZMEX0EuzkxdhRaS6/Xy48VrvN/FyncDdu83yMIQmC75JJL5PYUSslF1PFNfo6oHSSJaK+WG5dcckm3q3rl3SbECbxRZsfdTcbvneWkzc3nXtXMbrvtNpKSkvwYUe8mxo6CIAhCRxgMBuLj4wFQSBIaHybnas1l8uP+/fv77Li9mXdiqo87b+DyGuP2tirCgtBTiVR2QRAEIeAMHToUo9GIyWRCbTejMZfjMAZ+3zdDRa78ePz48f4LJADMnDmTjz76CIfDwQm7RK7NTYrOP/mZZpfEdnNDVYurr77aL3EIgtD1SkpK5McubdB593NpglDbzfJ7xM0sQegelEol8+fP5/HHHwcgpPAgFf0ndotxY73g0mPoawoBT9WBX/3qV36OqO1UKhUPPPAACxcuxOl0ctwmsaHWxaWhvXPKyS1J/KOsoeXG0KFDufLKK/0akyAIgiAIHRMXF0dhoWfMprFWYw+J7fhB3S5UNhPgSeqLiYnp+DEFnM6GZFWVj3MlVV7Jly6X/yvoCk178803OXHihL/DaKR///789re/9XcYQhN651WrIAiCENBUKhXp6els374dAEPV6YCf8Fa4HPIkt0KhID093c8R+VdoaCiTJk3ihx9+AGCLyeW3RIndFhdnqh7Tv39/BgwY4Jc4BEHoWoWFhWRlZQEgocAWEnfefa2hCRjLsgH46aefRA95QehGhg4dyujRo9mzZw8KJCJObqck/Sp/h9U6kkRkzlb56RVXXEFkZKQfA2q/5ORk5syZw4cffgjAxxUOxgapCFf3vpX839W6OGH3DD41Gg333XcfSmVAFHQVBEEQBKGdoqKi5Mf1yQ0dpbabqR8phYeHixZdPmK32+XHvh6Kev+EvM8jBJYTJ05w4nAmydrAGIOf6mBrwnvuuYfVq1e3uN/f/vY35s6d26Fz9UYB/81rMplYtWoVn332GUVFRURFRXHZZZexZMkSn2bYVVdX8/LLL/PFF19w6tQplEolSUlJTJ48mWeeeQaj0eizcwmCIAgtGzhwoJwooTWVtbC3/2ksFSjOlF+Li4sjJCTEzxH539SpU+VEid0WF7dEqv1S9na3pSHDe9q0aaL0riD0Am63mzfeeEN+bolOxd1MRQlTQrqcKLFmzRouvvhiubSqIAiB78Ybb2TPnj0AhBQcpHzgNFy6wL+G11fno68pADwlgq+77jr/BtRBs2fP5scff6SgoIA6CT6sdHB3jNbfYXWpWpfEx5UNfctnz54tqhQJgiAIQg8QFNRwPal0+uYGucLrON7HFzrGZGpIZAlS+nYOMMir24b3eYTAk6xVsiQhMNpiLy+0dej98+fP5+KLL5afr1+/nk8++YSHH36YtLQ0+fXeXuG6vQIjneY8TCYTM2fO5C9/+QuSJHHllVcSEhLCO++8w8UXXyyXOuqoEydOMHnyZF544QXKy8uZPn0606ZNQ6lU8o9//IPq6mqfnEcQBEFovT59+siPtZYKP0bSOlpzQ4zesfdmI0aMQK/XA1DilChydH2vaqckcbCuIWt33LhxXR6DIAhdS5Ik3nnnHfmmKUBF6kXNvqc27gJswZ4VQlarleXLl1NVVdWZYQqC4EODBw+WJ4iUkovQ/P1+jqh1wk7vlh9PmzaNiIgIP0bTcRqNhrvuukt+vtnkItvasdVT3c1/Kx1YznzkhIQEfvnLX/o3IEEQBEEQfEKna7jhqnA7mtmz9ZRex/E+vtAxtbW18mOjj++AhnglXnifRxA607hx47jpppvkP8OHDwfg4osvbvR6SkqKfwPtpgI6UWLFihVkZmZyySWXsGvXLt5++222bdvGzTffTH5+PosWLerwOVwuF7/61a/Iy8vjvvvuIzMzk/fee4/33nuPLVu2sG3btm4/WSEIgtAdeX/3quwWP0bSOipHQ4zi94aHRqNh2LBh8vNjtq6fKM+1SZypfExsbCyJiYldHoMgCF3Hbrfz17/+lbVr18qvVfYbjzW8hdW8SiXFw67GrfAsDzl9+jSPP/44eXl5nRmuIAg+olAouOqqhnYboQX7Qer6BM22UDptGIuPys+94+/ORo4cyYQJE+TnqyscSAH+s/CVfLub72obKpnNnz8frbZ3VdQQBEEQhJ6q8XjGV1UKGo7TW8ZLXaG8vFx+HOHj3hvhqobjeZ9HEAJNeHg499xzD/v37+e6666jT58+9OvXj2uuuUbeZ8WKFYSHh3Py5MlG773nnnsIDw8/55i5ubnceeedDBo0iNjYWMaPH88//vGPzv4onS5gEyWsVivvvPMOAKtWrZIvLhUKBc899xx6vZ5169Z1ePLyk08+ITMzk+nTp7N8+XI0Gk2j7UOGDBFljwRBEPzAu3WF0mn1YySto3Q0xCjaNTW44IIL5MdZflhRmO2VnOEdiyAIPU9ubi6LFi1iw4YN8mum2DTKBk1v1fttYYkUD5uFdGayqqCggN///vd8/fXXYtJKELqBCRMmYDAYAE81Ml1NkZ8jal5w8VGUbicAKSkppKam+jki37n99tvlHtvHbG721vWOqhL/qXRQ/9ti5MiRjB071q/xCIIgCILgO06ns+GJwje31SSv4zQ6vtAhZWUNLZwjVb5NlIj0SrwoLS316bEFwdcKCwu5+uqrSUhI4Omnn+Z3v/tduzs1ZGdnM336dDZs2MDtt9/OypUrGTFiBA8//DDPP/+8jyPvWmp/B3A+W7duxWw2M2TIEAYOHNhoW3h4OJMnT2bDhg1s2LCBefPmtfs8//3vfwG4++67OxSvIAiC4FtKpddFRze7P6VSqVreqZcYMGCA/DjfD6038u0NE/PesQiC0HNYLBY++ugj1q1bh8vVsJK3JmE4xelXgrL1k1imhHSKlCriDqxF6XZitVp55ZVX+OGHH/jNb37To25kCkJPo9PpmDBhAt9//z0AwaXHsIUl+Dmq8zOWZsmPp06d6sdIfC8+Pp7LL7+czz//HID/VDi40KBEqfDtRHUgybG52WVpGHfOmzcPRQ/+vIIgCILQ25jNZvmxS+2bNhlur+N4H1/omKKihoTpWI1v14rHeCVKlJWV4XQ65QRhQQg0Gzdu5LXXXuPmm2+WX3vwwQfbdaxHHnkEp9PJTz/9JLf4mD9/PsHBwbz44ovccccdTVah6A4CtqJEZmYmAOnp6U1ury/lfejQoQ6dp7538aRJk8jOzua5555jwYIFLF++nJ07d3bo2IIgCEL7ed/sojtMMnrF2Cj2Xq5Pnz7y40JH168mLPBKzujbt2+Xn18QhM5jtVpZs2YNd911F2vWrJG/e90KFSVDLqN42CxQtj1xzRQ3hNPj5mEPipRfy8zM5OGHH+ZPf/oT+fn5PvsMgiD4lvcK/uDSbD9G0gK3i6DyHPnpuHHj/BhM55gzZw56vR6A0w6J3ZaeXVXi08qGHuOTJ08WiXWCIAiC0MPU1tbKj90avU+O6dIYGh1fVDLsOJPJJP+sNAoI9/FaNp1SQcSZY7pcLkpKSnx7AkHwof79+3PTTTc1eq09iT0VFRVs3LiRadOmERISQnl5ufxn/Pjx1NXVsXv3bl+F3eUCNtWpoKAA8KxEAFizZg0vvfQSt912G/Pnz5df78hEpdlspqSkhMjISL788kvuv/9+HI6Gi9vnn3+eW265hb/+9a9tWh38/vvv88EHH7Rq3xUrVjBixAgsFouYdBUEQfDi3RvL7aNM7c7kHWNBQQFZWVnN7N17SJKESqXC5XJhdoPNLaFTdl3iS4Wr4SKzrq6u1/5ckpKSRCsxoceoqqrif//7H1988UWjySqAuvC+FKdfgSM4ukPnsIfGcWrib4g8/hMRJ3egkNxIksQPP/zAjz/+yMSJE7nuuutIS0vr0HkEQfCtUaNGoVQqcbvd6GqLUTqsPpvI9iV9TSFKl2fuIS4ujqSkJD9H5Hvh4eFcccUVfPrppwB8VuUgI0jZI6ssnLS5+flMexGFQtFoxZYgCIIgCD1DeXm5/NipC2lmz9aT1FpcKi0qlx2Hw0FtbS2hoaE+OXZvlZeXJz9O0Cg6paJZgkZJpcstny8xMdHn5xAEXxg8eLBPrr9ycnKQJInPP/9crhp4tu7ciiZgEyXqSw3V9xhdtWoVhw4dIjs7Wy7n4b1fe9RPrNrtdhYsWMDs2bP5/e9/T0xMDFu2bGHBggWsXr2atLQ0HnrooVYf99SpU2zevLlV+9bU1LQrdkEQhJ7OZDLJj70zrAOVS9NwE9o79t5OoVBgNBqprq4GoNolEdtFiRKSJFHjlSgREuKbC1lBELqeJElkZWXx1VdfsWnTpkbJzQAOQzhlA6dhih/qsypEkkpDedol1CSOIPrYdxjLsuVYtmzZwpYtWxg8eDCXX345kydPRqvV+uS8giC0n8FgIDU1lezsbBSAvioPS8zAFt/X1QyVp+XHQ4cO7ZHJAwDXXXcdX3zxBXa7nZN2iUNWN+mGntei7svqhp7iEydOFFXMBEEQBKEH8r4J6NT7LpnBqQ9FZS6TzyESJTrm9OmGcXaij9tuNBxXwSFrw/l6YnU4oWeIiIho1/vOVy37xhtv5NZbb21y25AhQ9p1rkAQEIkSTZUUOvu1G2+8keeff565c+c22t6RCQW325P1ZTKZGDt2LK+99pq87YorrsDtdjN37lxeeeUVFixY0OpzJScnM3ny5FbtW/+LLygoiEGDBrXxEwiCIPRcR48elR87DWF+jKR1HF4XSRaLRXyne4mIiJATJbqy6rILsJ8ZTiiVSoYNG9Zjb0T0NqIcZe9RU1PDjz/+yLfffktubu452x36MCr7T6Q6aWSr2mwoXA6MJUdR11XhNERgik1DUmmafY/DGE3h6BvRV+URmbOZ4LLj8rajR49y9OhR/vGPfzBt2jRmzJghyq0Lgp8NGTKE7GxPYpO+pjAgEyV0NYXy4+48odSSsLAwfvGLX/Dll18CnoSCnpYoUeGU2GZumEj85S9/6cdohPMRY0ehvdxuN1u2bJFXkqekpDBy5Eg/RyUIQlezWCzyvJZbocKp991CHIchHN2ZRInCwkIGDBjgs2P3Rt4VivtoO2cOsI9WiWfWsfH5BKG7qV/wY7FYGr1eWFjY6Hn//v1RKBQ4nU4uvvjirgqvywREokRRUdE5rxmNRsBTJhtgwYIFLFiwQN5e/4PrSBlp7/fecsst52y/8sor0Wq1lJaWkpOT0+pfUnPnzpUTOgRBEIT2qW/BBJ6LhkDn9IqxsLAQt9uNUtk5mcvdjUbTcBPS2YVzlA6vc2m1WpEk0YM0NXYUeg6bzcbu3bvZuHEju3fvbjKT3RqaQGW/cZjihrQqQQJAV11A4t6PUdsbKtI5tcEUjLoBW1jLpTKt4X0oGH0T2ppiIk7uIKQoE4XUkHj9xRdf8MUXX5CSksLFF1/MRRddRHR0x1qACILQdv3795cf62qL/RjJ+elqG3oZ9/TkqmuuuYavvvoKSZLYX+em0OEmoZNW9/nDhhon9XnAw4YNY+DAwEvMEcTYUWi/f/7zn3z22WeNXnvwwQeZPn26nyISBMEfvOconUHhoPDdWMYRHAmePAnRmt0HvBdY9NV2zpizr1cCRlMLOgShu6hvAbl7924uuOACwNMxYdu2bY32i4qKYurUqaxbt47MzEzS09MbbT9x4kSj6/DuJiASJZpS39fnfBcz9a93pJdnWFgYQUFBWCyWJksjKhQK4uLiOH36NGVlZSKbL8BYLBa5JQt4VguPHj2ahx56qNFNOUEQuifvjFy7MfBvNLm0QTg1BtSOOqxWKyUlJcTHx/s7rICgVjcMN1x0XaaE2+tUImlFEAKbw+Fg3759bN68mW3btsnJ0t7cSjWm+KFU9R2NLTShTS02FC7HOUkSAGq7mcS9H5M75d4WK0vUs4fGUTz8asrSphOav5+wvL1orNXy9tzcXN555x3++c9/MnToUC666CImTpxIeHh4q+MVBKH9UlJS5Mdac/n5d/QXtwuNpRLwzDkkJyf7OaDOFR8fT0ZGBjt37gTg2xonv47qGa2KHJLE97UNbTdmzZrlx2gEQfC1devWnZMkAfDKK68QFhbG6NGj/RCVIAj+cOrUKfmxPdi3c5Tex/NuGyG0nSRJjeaT+2o6Z8GUdwJGfn4+DodD3I8KQKfsbpYX2vwdBuCJJRDTCGbMmEFQUBBLliwhPz8flUrFu+++y4ABAzhy5EijfV944QVmzpzJZZddxm233cbgwYMpLS1l+/btbNiwgcrKSj99io5rd6LEypUrCQ4O5v7772/V/u+++y6FhYUsWrSoVfvXZ6RkZmY2uf3gwYOAp59neykUCgYOHMj+/fupqqpqcp/6kkp6vb7d5xF8T5Ik/v73v/Pzzz83en3Lli3ExMQwf/58/wQmCIJPuN1uTpw4IT+3GWP9GE0rKRTYjbGoKz0D8hMnTohEiTO8V4Or6LqqDkqvU9W32xL8p7PHjkL343A42L9/P1u2bGH79u2YTKYm96sLS6ImcTim+KG4Ne0bkxtLjp2TJFFPbTdjLDlGbUJ6k9vPx6UzUpk6icr+EzFU5BKavx9jyVGUbs9NM0mSyMzMJDMzkzfeeIP09HQmT57MhAkTRNKEIHSihIQE+bHaUgWS26er/jpKU1eN4kziaFRUFDqdzs8Rdb4rr7xSTpTYbHJxU4SEVtn9K33tNruoPTPEjI6OZuzYsf4NqIcRY0fBXxwOB2+99RZfffXVebcvW7aM22+/nauvvlpULhSEXsD75rvNGOPTY3sfT7Rx6JiKigpqa2sBMCggWt05388GpYIYtYJSp4TL5SIvL69br6bviQLt59GfwIsJICYmhg8//JDHH3+cP//5z6SkpLB8+XK+/PLLcxIlBg0axMaNG1m1ahWfffYZpaWlREVFMXToUF544QU/fQLfaHeixHPPPUdcXFyrL1jefvtt9u3b1+oLlokTJxIcHMyRI0c4fvx4o2oOVVVVbN68GYVCwYwZM9oVf72LL76Y/fv3s3nzZm644YZG244fP05NTQ1qtVr0mg8gbrebt956ix9++KHJ7Z999hnBwcHccMMN4mJFELqpoqIiucWSU2PAqQ/1c0StYw1LIOhMokR2djYTJ070c0SBwelsWGmn6sKvZe9i/N4xCP7R2WNHoXuw2Wz8/PPPbN26lR07dpzTB7GePSiC2vih1CYMwxEc1eHzquuaz2xvaXuzFArqovpTF9WfUqcNY/ERjEWHCCrPlW+Gut1uDhw4wIEDB3j99de54IILmDhxIhMnTiQqquOfTxCEBkFBQYSGhlJTU4NScqGymXH5sI90R2nqquTHcXFx/gukC40cOZK4uDiKi4sxu2GXxcUkY+cUOLW5JXZZXJQ6JGI1CjKCVJ2WlLGxtiEZ+NJLL0Wlal0rKKF1xNhR8IfCwkKef/55cnJy5NfsBs+41KUxEHFyOxpbrTw3efDgQR544AFCQgLn94wgCL7n3V7BHuLbxVx2YwwSoMBTncBms/WKRNrOcHbbjc68N9RX60mUAE+CSyDeBO/Nfvvb3/o7hE710EMP8dBDDzW7z/mKA5xt6tSpbNq0qdFrV199Na+++uo5+yYnJ/PXv/611XF2F4GzrOIser2eefPmAfDoo49it9sBz8qsxYsXY7Vaueqqq+jTp0+T71+xYgXh4eGEh4fz008/nfc88+bNQ61W88EHH7Bx40b59bq6Oh5//HHA8z9FUFCQjz6Z0BEmk4kVK1bw+eefy6/VJKSTfcnvMUc1/DL64IMP+Mtf/oLVavVHmIIgdNDRo0flx20tr+5PttCGFYzHjh3zYySBxftGqKELRx4aRUOyhNPpxOFwdN3JBUGQWa1WtmzZwgsvvMC8efNYsWIFGzduPCdJwqEPpbLfeE6Nn8/JyXdTMXCaT5IkAJyGiA5tby23WkdN0kgKxtzCiWkPUDLkMurCG1+vuN1uMjMzefPNN/nNb37DokWL+OyzzygpKfFJDIIgQGRkpPxYbWu6Wo2/qLzi8Y6zJ1MqlfziF7+Qn//klWDgSzk2Nw+ftvJaqYP/Vjl5tdTBwtNWcmy+ryxW5nRzyOo5rkKh4JJLLvH5OQRB6Fp79+7l4YcfbpQk4Vaq0NZVEnViM7HHvkXhdmHzKpO/Y8cOHn74YVEuXxB6MEmSGlW9tYb4NtFVUmtxBHnGhG63u1GbD6FtGrXd0HbuXLJ3+w3vBA1BELqfzknhb0JFRUWb+/QsXryYjRs3smHDBjIyMsjIyODQoUMcOXKEhIQEVq1a1eG4BgwYwNKlS3nyySf55S9/ydixY4mJiWHv3r3k5+fTp08f/u///q/D5xE67sCBA7z00kuUlZXJr9XGDaE4fRYoVRReOIfEvR8TVJELwPfff8+xY8d46KGHGDhwoJ+iFgShPbwTJazhTSfEBSJreJL8+NixY7hcLrGyjMaJEvouTHpRKBQYlGA6MzduNptFuftupD1jRyFw1NXVsXv3bjZv3szu3bvlpOezOfRhmOKGUBs3BFtYYqclxpli03Bqg5tsv+HUBmOKTfP5OV06I9XJGVQnZ6Cy1mIsOUJI0RH0VacbNSE6evQoR48e5e2332bgwIFMmjSJyZMn95qV5oLQGSIiIuQJS7XdRGB0pvXw/h6KiPBNklZ3cPHFF/PBBx942hJZ3VQ4JSJ9WA7Z7pZ4schG9Vk5EdVueLHIxot99T6tLLHF5DpTM8hTMSMmxrdluIW2E2NHoSP27dvH8uXL5UqEbpRIKjUqV+MxrNphAQVU9hlNRN4eAEpKSnj88cdZtWpVo/ZPgiD0DGVlZdTU1ADgUutwGsJ9fg5baBxaSwUAOTk5orp5O3knrfXRdu5Krb6ahnFlXl5ep55LEITO1SXrOnfu3Mnp06fb3Ks9JCSE9evXy2X2Pv/8c6qrq5k3bx4bN24kMTHRJ/E98MAD/Pvf/2bKlCkcPXqU9evXo1arufPOO/n+++/FINfP6urqeP3113nyyScbJUlU9htP0YjrQOm5CSmpNBSMvpHqxBHyPvn5+Tz66KO89957YiWxIHQjhw8flh/XeSUfBDqnPhTHmTYhNputUcZ5b+V2uzGZGlZOGrs4b8To1eujvk+hEPjaO3YU/MvhcLBt2zaef/555s2bxwsvvMDWrVvPSZKwB0VSkTKRUxPmkzvlXsoGz8AWntSp1YMklYayQdPlm1ry6+B5XdW5N1Zc+hCqk8eSN+7XnJj2O0oumIklMgXprM+cnZ3Nu+++y1133cUjjzzC2rVrqaio6NTYBKEnCg1taNumdARWlUGlo05+7B1nTxcTE8OIEZ5rdQnYavJtW7RdFtc5SRL1qs+0+/AVSZLYbGo43vTp0312bKF9xNhR6AiHw8FLL70kJ0k49KFUDLjonCSJemq7BVtEXwpG/hK3Sgt4rjVfeeWVLotZEISu411lxhYS1ynXrbaQht9fx48f9/nxewvvRIkkTecu1Er0SsQQVUAEoXtrdUWJL774gi+//LLRazU1Ndx3333nfY/L5aKwsJCtW7cCMGPGjDYHGBISwrJly1i2bFmb3rd48WIWL17c6v1nzpzJzJkz2xqe0MkOHDjAX//6V4qLi+XXXBoDxUOvxBw3GIXLgbHkEOq6KpyGCEyxaZSkX4U1oi8xR75G6XLgdrv5z3/+w44dO/jd734nqksIQoAzm83yAFNSKLCGdZ9ECfBUwNAUHQLgyJEjvf47x2Qy4XZ7Zq2DlKDu4jYqoUoFRWdujVZXV9O3b98uPX9v5q+xo9C1JEni2LFjbNiwgc2bN2M2n1uxAcAWHI0pbgimuCHYjTFd3lJJ4XIQnfU9Z59VAURnfY8p/oJOT5ao59IZqe47huq+Y1DaLRhLjmEsOUpQ+QkUUsNdvqysLLKysnjnnXcYPnw406dPZ+LEiaJfrSC0gtFolB+rvBITAoHKK3HDO87eYOrUqezbtw+AzWYXV4X77nu3xHF2KlzbtrfFSbtEwZnj6fV6xo8f77Nj92Zi7Cj4y5EjR+TEVKc2mLxxtxFSsL/Z96jrKqlMvYh8XQh9dv4LheTmwIED1NTU9KokOEHoDRolSoR2TkKe1eu4YtFV+0iS1KiyQ2InV5SI1yhQ4EkALi0txWaziWt1QeimWp0oceDAAT744INGr9XV1Z3z2vmkp6ezZMmStkUn9Fp2u5333nuPtWvXNnrdFD2QkvQrcemM6KoLSNz7caPSpU5tMAWjbqAmaSSWiGTiMj8nqNKTSXjq1CkWLVrEjTfeyJw5c0Q5fEEIUMeOHUOSPBOPNmMsklrr54japi68DyFeiRKzZs3yc0T+5b0SOkzVtTdGAUK9vuqrqqq6/Py9mRg79mxms5nvv/+e9evXn7cnsy04GlP8BQ3JEX5kLDnWZNsN8JTBN5YcozYhvYujArc2iJo+F1LT50KUjjqCS7IIKT7cKGnC7Xazb98+9u3bx+uvv860adO48sorReKXIDQjODhYfqx0BlLjDVA6e2+ixMSJE/n73/+O3W7ntF0i3+4myUeT2LEtrBpsaXtbbDU3VJMYP348er3eZ8fuzcTYUfAXl6vh37RbrcOpNeI0NN8aqX67IygcSaFsNG4TBKFn8a7w4F35wZdsIQ1tF3Nzc3E6najVrb51JwCVlZVYrZ5xdpASQju5lr5GoSBGraDEKSFJEkVFRfTr169zTyoIQqdo9bftRRdd1Oj5ypUrMRqNzWZ2K5VKQkNDGTZsGJMnT0bRxSvHhO4pNzeXP/3pT5w8eVJ+zaXWUzrkUmoThoFCgcLlOCdJAjwT3Yl7PyZ3yr04gyLIz/gVYad3EX1sI0q3A5fLxerVq9mzZw8LFiwQbVUEIQAdOXJEfmwN7+PHSNrHO2bvz9JbeScnhPshUcL7nKJ8fdcSY8eeqaysjLVr1/L111/LkxDeHPowahPSqY0fij0k1g8RNk1dV9mh7V3BrTFQmzSC2qQRKB11GIuPElJ4EEPlKbkShsVi4auvvuKrr77iwgsvZPbs2QwbNkz8WxGEswQFBcmPAy9RoqGUe2+7wR4UFMSYMWPk1f/bzC5m+yhRIiNIRZjS0WT7jTClZ7svuCWJ7V5tN6ZMmeKT4wpi7Cj4z+DBg9Hr9VitVrSWCsJP76K6zyic2uAmE22d2mBMsWkARB37HqXb07IjJSWF8PDwrgxdEIQu4F3hwRYa18ye7efWBuHQh6Kx1uBwOMjPzxc33duoqKhIfhynVnTJmCBO40mUqD+/+JkJQuCpX5DbnDYlSnhftKxcuZLg4GAee+yx9kUnCGdxOBysWbOGf//733JfQABz9ACKh16JSx8iv9bqVYEKBdXJY7FEDyTu4DoMVZ7yS0ePHuWhhx7itttuY+bMmaK6hCAEkKysLPmxNbx7td0ATxUMt1KD0u2grKyMyspKIiKaX43Sk3knJ/gjUSJCLRIl/EWMHXsWs9nMxx9/zBdffIHD4Wi0za3SUBs/lJrE4VjD+3Z5W43WaO2qwEDh1hjkShNqaw0hBQcJLdiH1tKQ0PHzzz/z888/M3z4cObPn09qaqofIxaEwOKdgKA8T495f/GOx2Aw+DES/5gyZUqjRIlfhqt9MpGtVSpYGK/jxSJbo2SJMCUsjNehVfrmd1O2zU25yzPZZjQaGTlypE+OK4ixo+A/BoOBOXPm8N577wEQkbOZqr5jKBh1w3kr2UoqDWpLJaFeLTp+9atfdXnsgiB0rtraWsrLywFwK1XYg6I67Vw2Yywaaw3gWUgqbrq3TWlpqfw4Wt01cxLe5/E+v9A0hUKBJEmiYorQpeqrfTV3zSn+bxT8zuVysX37dt577z0KCgrk191KNWVpM6juO/qcCfe2rgp0BEWQN/ZXRJzYStTxn1BIbqxWK6+//jrffvstc+fOZfTo0WL1gSD4mSRJZGdny8+toYl+jKadlEpsoXFyYlZ2djZjx471c1D+U1nZ8H0c0UUXKt68kzO8YxEEofX279/PSy+9JE8Q1bMFR1OdnEFNQjqSOrB7cdaFJCABTX0LSWe2ByqnPpTK1ElU9p+IoeIk4ad3E1xyDAWeG3UHDhzg97//PbNnz+bmm28WCcCCQONECYXT0cyeXa+3J0qMGTNGXrld5JA4aZdI0flmjJiqU/JiXz27LC5KHBKxGgUZQSqfJUkAbPdquzFx4kQ0Go3Pji0Igv/MmjWL//znP1itVtSOOrTmcmxhieROudezWKuuEqchAlNsGpLK8+/eUJ0vjy1TU1MZM2aM/z6AIAid4tSpU/Jje3A0KDuvn4M9JBbKss85r9A63vMVUV00/+h9nrKysi45Z3em1+upq6ujvLycsLAwtFotCkXXVP8Qeh9JknC73fJ3Q3PXbSJRQvCbyspKfvjhB9avX09hYWGjbdbQBIqGXY3DGN3ke9u1KlChpDJ1MpaoVOIPrkVr9vwDycnJ4Q9/+AP9+vVj5syZXHTRRYSGhrbvQwmC0CGVlZXU1Hiyp10qLY6gwFrh21q20Hg5USI3N7dXJ0p4V3EI88O9O9F6QxA65ocffuCll15q1G/ZGppA+YApWKIHBGT1iKbEHlnfZJIEeJInYo+spyDjlq4Mqe0UCuqiUqiLSkFjqSTixFZCC/ahOHPx9/HHH3P69GkeeeQRkSwh9Hq+rCihcDkwlhxFXVd1zk2ydh3PK3Gjt7XeANDpdIwbN44ff/wR8CQepOh8d9NBq1Qwydg5U11uSWqUKHF2qwhBELqfuro6tmzZwqeffiq3lZMUCpw6o+exSuOpWNsEh65h7jAnJ4cnnniCa665htGjR4skKkHoIfLy8uTHdmNMp57L+/inT5/u1HP1RN6tf8O6qKKt93mqq6u75JzdWWhoKHa7HbvdLipwCF1KpVIRGRl53u3tvnoUqzKFtpIkiYKCAnbv3s2OHTs4dOhQo0l3AJdaR8WAKVT1zWg2Q9MUm9aqXoFNsYUlcGrCb4jI3UrEia1yL8GTJ0/y+uuv89ZbbzF8+HDGjh3LmDFjiIvrnN5jgiCc6+TJk/JjuzGm29yAO5vNGCs/9v5MvZH3eMEfrTe8L1q8L5qErifGjt3PyZMnefnll+XxmlNjoGzIZdTGD+1238+auuYTpVraHmgcQRGUpF9JZco4Yg99RVClZyJt27ZtfPTRR9xyS4AnfQhCJ/Ou1KB02tp9HF11wXnLrtvC2lf5zDue3lhRAjwJBvWJEtvMLm6M8E37jc521Oqm+kyeRFhYGMOGDfNvQD2cGDsKnUGSJPLy8ti/fz979+5l//792O2NE+oqUybg1gYBzSfLWSP6Yo4eQHDZcQAyMzPJzMzEaDQyevRoLrzwQoYNG0ZsbCyCIHRP+fn58mN7cOe13Tj7+N5Vt4XWqV94BxDahvlHm1til8VFaTuqkYWKRIk20Wq1xMfHU1NTQ11dHS6XC0mS/B2W0IMpFAo0Gg2RkZGiooTgH263m/z8fI4cOUJmZiYHDhw4p2RzPZdaR3Xf0VT2Gy9fjDRHUmla7BXY/PvVVAyYQnXShUTmbiU0bx9Kt2dlj9PpZO/evezduxeAuLg4hg8fztChQ7nggguIj4/vFpM4gtAdeV8I2M9TUaajfL0qsCni4qaB94VCV2V0ewtXi0QJQWivzz//HKfTk1BqC44mf8wtuPQhfo6qfRyGSLR155+4cBjOn1keyBzB0eRn/Iroo98ScWonAOvWrWPOnDliJaPQqzVOlGhfRQmFy3HO9SaA2m4mce/H5E65t11jyN7eegNg1KhRBAcHYzabKXNKHLdJDNQH/jX2Vq9qEpMmTRLVewQhwEmSRGVlJTk5OWRnZ5OVlcWxY8eora1tcn+3Skv5wKlUJXsqQraYLKdQUDhyNlFZ3xN+eheKMzd7TCYTP/74o5wQFhUVxeDBgxk0aBADBgygf//+hIR0zzG1IPQ23lWwO7vqrffxi4qKcLlcYqzRBhaLRX4c1MpEhxybmxeLbFR7reUNUzpYGK8jtRUVz4K8TlNXV9fqWHszpVJJeHg44eHh/g5FEGQiUULwmYqKCrKzs+WLj6ysLEwm03n3l4C6iL7UJo6gNu4CJLW2TedrqVdga7j0IZQOuYzyAVMJKTxIaMFB9DWNb2oWFxdTXFzMt99+C3hWjgwaNIhBgwYxcOBABg4cSFhYWJtiFwShacXFxfJjRwstdtqjM1YFNuXsi5verL0Z3b5i9LquMZlM4kJTENrAO9Grsv/EbpskAVAyZCYpW15rsv2GdGZ7t6VQUJY2g/BTu1AgYbFYqKqqIiamc0vDCkIgCw4Olh+3t6KEseRYkxUMwZMsYSw5dt5y7OejcDnlioYqlQqdTteu2Lo7jUbDhAkT2LBhAwBbzE4G6ts2H9DVnJLETq9EiSlTpvgxGkEQzmY2mzl9+jSnT5/m5MmT8h/v69HzsRljqEkYTk2fkbg1ngS21ibLSSo1ZUMuparfWMLy9hJSmInG2vic5eXlbNmyhS1btsivRUdHk5KSQnJysvwnKSmp1/5eEIRA5d0eoLXzlO1doOVW63BqDKgddTidTqqrq5stFS805p2o0Jqubna3dE6SBEC1G14ssvFiX32LlSX0XttFooQgdF8iUUJoM0mSKC0tJScnR/5z/PjxVpVFdKl11EX0wxwzAHPMIFxnev61l8LlQF95Go2lHEewGXNU/3at6nFr9FQnZ1CdnIG6rprg0mMElx7HUHlarjRRr7q6ml27drFr1y75tZiYGFJTU+U/AwYMICIiQlSeEIQ28v4ecfr4hlxnrQpsiksbjKRQopDcWCwWbDZbr53w8F6tY2xlRrcvqRQKgpVgdnt+f5nNZkJDQ1t+oyAIJCQkkJmZCUDEia3URfbDqe+e/34MtYVNJkkAKM5srzV200koyU3MsW9R4FnFqNfrxeoModczGhuuM1WO9k1aquuav75taXtTlE6r/Dg4OLhXXy9OnTpVTpTYbnIxN1JCFcB/H/vr3JjOTKRHR0czZMgQ/wYkCL2Q2+2mtLSUgoIC8vPzyc/PJy8vj7y8vDa1anFpDNRF9MUSmYIlekCTq8TbmiznNIRTPmg65QMvRldbTFB5DoaKkxiq8lC6HOcco6ysjLKyskZziwqFgpiYGPr06UOfPn1ISkoiMTGRpKQkMccoCH7iXR27NfOUHV2g5dSHoj4zdi0rKxOJEm3gcjUktLbmpucui+ucJIl61W7P9knG5o/kvR7M+/yCIHQv7U6UqKio4IcffkCv13PFFVc02vbzzz+zdOlSfv75Z9RqNTNmzODpp58mMdF3q3WFriFJEiUlJWRnZ3P8+HGOHz9OTk7OecvUnc2pMWAN70NdeF/qIvpiC00AZStS+lohJH8/cZmfN0x6V5wk7PRuitNnUZs0ot3HdRrCqE4eS3XyWHC70FfnY6g8jaHyNPrqAlRek1v1SktLKS0tZfv27fJr4eHhctLEgAEDGDhwIFFRUeLCRhCa4d0awaUNPv+O7dAZqwLPS6HApQ1CbfNU1ampqem1K3sbl77zTwwGpQKzW5LjEYkS/iHGjt3PrFmz2LhxI06nE525jOSt/6Bs0MXUJI702Xiuq3TGDc9AoKspIubwegzVDb1zr776atF2Q+j1jEYjCoUCSZI8129uFyjbVlHK2cKqwZa2N0VlbxgX9fbxyLBhw4iIiKCyspIaNxysczMyKHCrfm0xNUx+T506FWU3+z3YHYmxY+8kSRK1tbVyMoT3fwsLC3E4zk06aI5bpcUWEostNB5raALWsEQcQZHQwtyc2lzWvu0KBbbQeGyh8VT2nwRuNzpTCbrqAvQ1Rehqi9DWlqKUzr2hVj8HW1JSwp49exptMxgMJCYmNvpTn0gRFNRyC2NBENrO4XDI90AkFC3OU/pigZZLFwK1nmq7bUkAEzzJdPVas06r0H6eLIlWbgfwHg16n18QhO6l3YkSH3zwAU899RR33HFHowuW3NxcrrnmGkwmE9KZ3mz/+c9/2L59Oz/++KNoURDgLBYLx44d48iRIxw7doysrKxWJ0W4lRpsoXHyhYctLMFTkqoTEgOUdkvjJIkzFEBc5ueYYwbi1vrgQkGpwhqRjDUimUoASUJjLkdfU4i+ugDdmYscpfvcC5yqqir27NnT6OImPDycQYMGkZaWxpAhQ0hLS+u1q8wFoSk2W0NpZHcb2/G0pKtvkrlVDfFbrecmWPUGLpcLu93Th1sBaP2UJ2bwOq934obQtcTYsftJSUnhgQce4C9/+YunbY2jjrhDXxGRu53KlAnUJqT7rBJPZ3Nqmh8XtrQ9oEgS+up8InK3YSw51mjThAkTuPnmm/0UmCAEDpVKhdFolK9lVY66NlczNMWm4dQGN5lo69QGY4pNa3tcXsfq7b/fVCoVU6ZMYe3atQBsMrkCNlHC7JLYY2m45p82bZofo+k9umrsaDKZWLVqFZ999hlFRUVERUVx2WWXsWTJEp8ku588eZK1a9fyzTffcOLECYqLiwkJCWH06NHceeedXHrppR0+R3fkcrkoKioiLy9PrgxRXyWiuTa+5+NWqHAER2I3RmMzxmAPjsEeEovDEN6ueUm1o/lr+Ja2y5RKOXFCbsjhdqE1l6M1laIzlaI1l6E1laGxVMoVws5WV1cnL2A7W0REBImJiXIVij59+tC3b1+io6PFYi1B6ADveyIujaHF7xJfLNBynWn/c/b5hZZ5t9l1N/1V2khtC3kNLW0H8N5FtPkVhO6r3YkS33zzDcA5E3Gvv/46tbW1DBo0iJdffhmLxcKjjz7K8ePH+dvf/sbjjz/esYgFn3I6nRw+fJi9e/dy4MABjh8/3qrsN5dahy0kzjPYD4nHGhqPIzgSFF2zqiIq64dmyydHZf1AafoV59mjAxQKHMZoHMZoahOHe147c4FTnzThyRAvbrK0XlVVFTt37mTnzp0AqNVqBg0axPDhwxk9ejSDBg0Sv1SFXs17dYik9G13qM5YFdgc7/jbuuqlp/D+3BoF7ZqksbkldllclDokYjUKMoJULfYIPJvaa3en09nmGATfEGPH7mnatGlER0fz0ksvUVJSAoDWUkHcoS+JzvqemsQR1CSNwG4M7Ko5+uqCFrfX9h3dRdG0j9JhJaQok9C8fehrixptU6vV3HDDDdxwww1ilbMgnBEVFSVPMKutNW1OlJBUGgpG3XDe8sntSRRTWxsmvEUpZbjkkkvkRIndFhdml0SwKvBu6m03u3CcmXBPTU2lX79+/g2ol+iKsaPJZGLmzJlkZmaSnJzMlVdeyaFDh3jnnXf45ptv+Pbbb0lISOjQ57j33nvZvHkzBoOBMWPGMG7cOE6ePMk333zDN998w4IFC3j66ac7dI5AZzab5Qq1ubm55Obmkp+f367rZKcmyJMQERyFPTgKR/1/DeE+nZN0qZpfuNHS9mYpVdhDYrGHxOKdEqJwO9GYK9BaKtCYy9CaK9Cay9FYKlA5bec9XGVlJZWVlXLLvHp6vZ5+/fqRnJxM//79SU1NpX///mLBliC0kvdCG7dG3+L+vlig5fI6j1jo0zbeVRXtrUiUCGlhbrGl7YA8PgTPNbkgCN1Tu//15uTkoNFoGDlyZKPXv/76axQKBS+++CLjx48H4JVXXuGyyy7jyy+/FJPdAeLo0aN88803bNu2rcVMbZdaL5eoq8+Cbm9Gtq/oq052aLtPeV3g1HKm5YckobFUoKs5kzhRU4iupgiVy97orfWJKocPH+ajjz4iLCyMyZMnc+mll9K/f/+u+wyCECAaJQpJvi1ZZo7qjwRNJllJZ7b7lFf8vTUByjspoT1/Azk2Ny8W2Rr1DAxTOlgYryNV1/pJMLVCAWdW5ohECf8RY8fuKz09nZdffpk1a9awdu1azGbPDUOVo46Ik9uJOLkda0g8tQlDMcVdgNMQeKukDS0kSrS03V8ULgfBpdmEFB0iqCy7ySpmEydO5Fe/+hVJSUl+iFAQAld0dDS5ubkAaKw1reoLfTZbWCK5U+71rBCsq8RpiMAUm9buajoaq7yemKioqHYdoydJSUkhNTWVnJwcHBJsNbv4RWjgTTL/UNswfrzkkkv8GEnv0hVjxxUrVpCZmckll1zChx9+iFarRZIk7rnnHj788EMWLVrEu+++26HPkZSUxIsvvshNN91EcHBD2fb169dzyy238Oc//5lp06Yxffr0Dp0nkDgcDvbt28fu3bs5ePAgp0+fbtP73SoN9qBITxJEUMSZ/0biCIps1c1KXzh7/q6t29tDUqrl+cXGGyRUdgsaSzlaSyUac/mZZIoKNJbKJtt4gKey5dGjRzl69GhD3CoVqampDB8+nIyMDIYMGSKSbAXhPOorpAJIqpbHJ75YoOV9Hu+qu0LLDIaGahzWVpSUSGih7G1L2wHqvM7jfX5BELqXdl+BlpSUYDQaGw2mqqurycnJISYmhosuukh+fezYsWi1WnmSQvCfkydP8vrrr5+TZVxPAuwhsdSF98Ea1udM777OaZ/REcoWql60tL3TKRQ4zmS2m+pLakkSWnMZ+uoC9FX56KtOozOXN3pbdXU1X375JV9++SUZGRnccccdxMXF+eEDCIJ/eGf/NlWVpSOCy080W4kmuPxEiyXw2sI7ftErvu3sbumcJAmAaje8WGTjxb76VleW8L48EqVH/UeMHbs3nU7HTTfdxFVXXcW3337LF198QWlpqbxdX1uEvraImGPfYQ1NwBQ3BFNsGo7gwLgR6G7hpmZL27uS0mEluOw4wSVHCS49jtJ97u9DrVbL1KlTmTVrFikpKV0fpCB0A7GxDTea1Jaqdh9HUml8NkbUeK0kjI+P98kxu7sZM2aQk5MDeBISAi1R4rTdTc6ZZYlqtZqpU6f6OaLeo7PHjlarlXfeeQeAVatWodV6KgQoFAqee+451qxZw7p168jLy6NPnz7t/hyvv/56k6/PnDmTK664gi+++IKPPvqoxyRKrF+/ng8++IDq6uoW93XqjNiDo7Ebo7EHRclVIlw6o9/nIV2K5lP9W9ruUwoFLl0wLl0w1ojkxtskN5q6ak8lCnOZp6XHmf+qHHXnHMrlcpGVlUVWVhaffPIJiYmJ3HHHHYwaNaqLPowgdB/eC22kVvyb90XbNu/ziIU+bWM0NlSPa03bjIwgFWFKxznzjgBhSs/2lphcDTOOISEhrYpTEITA0+4rUL1eT3V1NU6nUy4rs2PHDiRJkjO6vRkMhkZZeELXO3z4ME8//fQ52YgOXQjmmEFYolOpi+iLWxP42W+24Gi0dVXNbg84CgV2Ywx2Yww1SZ4VESq7GUPFKYLKcwguzUJtbyiptWvXLo4cOcLy5ctFaU+h1/DuJ6s6T1+/9vJFCby2UHn9e+6tPai9K2k0vcbl/HZZXE1erIAnWWKXxcUkY+uGMW6p4cJFrJbxHzF27BmMRiPXXXcdV199NT///DMbNmxgx44djSZx9DWF6GsKic76HntQJKbYNMwxA7GG9QE//RusTroQQ01hs9v9SW2pJLg0G2NpFobKUyjOU1UpNTWVGTNmMGXKFEJDQ7s4SkHoXhITGypIaC0V7T6OwuXAWHIUdV1VxytKWBrGmx0t599TTJs2jXfeeQeHw0GuXSLH5m5T5bCz+aJtm7fvahp+v02YMEF893ahzh47bt26FbPZzJAhQxg4cGCjbeHh4UyePJkNGzawYcMG5s2b17EPcx71561vb9bd7d+/n1dfffWc1yWFApsxFltoAraQWGwhsdiNMQE9/6hvZtzYmu1dRqHEERSBIygCS8yAhtclCZXdjM5Uira25EzF28Jzfh8WFBSwbNky3njjDdESShDO0taFNpJKQ9mg6cRlft5ooZYElA2a3srxo5i/aq/w8HD5cbWr5YoSWqWChfG6JirZwsJ4XavGj1Vek53e5xcEoXtpd6LE0KFD2b59O//973+56aabAPjwww9RKBRMmDCh0b7V1dXU1NSI1U5+9sYbb8hJEpJCSW3CMKr7XIg1LMnvmdptZY4ZSEhZdrPbuwOXNhhT/AWY4i8AyY2h4hRheXswFh9Bgadf5j//+U+eeuopf4cqCF0iIqKhDJ13D2dfcOqan9RsaXtbKB118gpgrVZLUFCQz47dndSvygJP3z63JKFs5e+bQnvz6d8tbfdm87o+Ev1Y/UeMHXsWlUrFmDFjGDNmDCaTie3bt7Np0yb279+Py9UwW6C1VBCZu43I3G24NAbMUalYYgZijk7t0slxU+IwnMc2oG6iTLJTpcWUOKzLYgHA7cJQlUdQ2XGCS7PRmcvOu2ufPn2YPHkyU6ZM6dCKVkHobbzb0WhNpc3seX666gIS937caGWgUxtMwagb2t7KQ5IaxSHa5XgYjUYmT57Mxo0bAU9iQmqMtvk3nYev2rbVs7olNpsafqfNnDmzXXEJ7dPZY8f6Sqvp6U1XjBk2bBgbNmzg0KFD7fsArXDq1CmAHvP73bvFQz2XxkBVcgZ14X2xhcTi1naPa+OWEuw6koDXJRQKXDojFp0RS2QKalst2toSgspPEHFqZ6NdXS4Xx48fF4kSgnAW78U/iiZaIJ5N4XIQnfX9OdVsFUB01veY4i9oMVnCO2FeJEq0TXR0w8LZMmfLiRIAqTolL/bVs8vioqQdSbblXufxPr8gCN1LuxMlbrrpJrZt28bvfvc71qxZQ2VlJdu3b0er1XL99dc32nfTpk1IksSgQYM6HLDQfnl5efLjsoEXU9V/QjN7BzhlC//rtrQ9ECmU1EWlUBeVQszh9YSf3g00/rkJQk/nvbJOe1Zrmo5raZDcukF0a3jHnpiY2GvbPahUKnQ6HTabDQlPwoKhlX8VLZXJa00ZvXpWr31Fz0D/EWPHnstoNDJjxgxmzJiByWRix44d7Nixg7179zaqZKZy1BFalEloUSYSCqzhSZijB2COGYTdGNOpibuSSkNBxq0k7v43amdDGWKn2kDBmJvavTq8LVQ2sycxouw4QeU5qJzn7zk7cOBAxo0bx8SJE+nbt2+nxyYIPZF3VT6dqRQkqU3fMwqX45wkCQC13Uzi3o/JnXJvm7471NZq+d+90WgkKiowWhMFgssvv1xOlNhqdnFzpIRR1bbfCb5s21Zvk8lF3ZlLhMTERIYN6+Kkul6us8eOBQUFQEMbnDVr1vDSSy9x2223MX/+fPn1/Px8H32ixvLz81m/fj0As2fPbtN733//fT744INW7btixQpGjBiBxWLptM9SLzk5Gb1ej9VqlV9TOeqIOv6T/NypCcIRHIU9ONJTCcEQcea/YQFVYULRQivQlrZ3uTMVJDR1VZ4/lko0lkq05go0lvJmx53R0dEYjUaysrK6MGBBCHzerSZb82/eWHKsybYb4Bk/GkuOtdjOTelsSOw3mUzi32UbOBwNP6NSR+vneLVKRasr1p6txNkw8HS73b3655WUlNRrFwoK3V+77ybPmzePH3/8kU8//ZT//e9/gOeGyLPPPntOCcmPPvoIoMf02+uu0tPT2bt3LwAxWd+hqy2mMnWSZ2K6m1Hbajq0PVDpqguJzNmEsbThl+r5VjcIQk/kfTNIV1vs02Orbc1XqGhpe1voahpi7ymrg9rLaDTKN0prXRKGVk5Qh7SwX0vb60mSRI1b9AwMBGLs2DsYjUYuueQSLrnkEmw2G/v372fXrl3s2rWL8vKGJDIFEoaqPAxVeURn/4BDF4IlZiCmmEHURfbrlMQFW1giudPu90xg1VV2uIR+iyQJramE4NIsgkuz0VcXnLO6qJ5Wq2XEiBGMHTuWMWPGiNUoguADERERhIWFUV1djdJlR2sua9O1ry8mu73pqxvKtPfv37/XJtI2ZfDgwfTv358TJ05gl+CHWidXhbftu9mXbdvAM4b81qvtxpVXXil+Zl2ss8eOZrPn33d9IvWqVas4dOgQ2dnZzJ8/n+Dg4Eb7+ZIkSSxcuBCLxcLll1/O1KlT2/T+U6dOsXnz5lbtW1PTdfNjkZGRLFy4kI0bN7Jv374m/+7UDgvqKguGqtPnbHOpdTgNYTj0YTgMYTj1YTj1oWceh+LSBndZRVy3Rg9NVCJrtL0rSW7UNhPqumrU1ho01mrUddVorDWo66rQ1FWjdDtbPo6XyMhIRo8ezdSpU+X2NoIgNNDrG/6dq5zWZvb08EXLX6VXUpOoiNo2sbGx8uMCRxtWV3VAoVdCRkxM97vHJgiCR7tHQQqFgrfeeos77riDXbt2YTAYmDJlCoMHD260n8PhIDk5mbvvvptZs2Z1OGCh/e666y4ef/xxKio85eHqV/RZIpKpTRyOKXZw1w/026krS+h3NpXdjLH4KKH5+9HXFDTalpiY2Gm9MAUhEHmvANLVFqNwOXx2A8tpiOjQ9rbQVzes1ElLS/PZcbujyMhI+eZolUsitpU/zgRt8xNgLW2vZ3F72n6A5yJXVJTwHzF27H10Oh1jx45l7NixSJLEiRMn2LVrF7t37+bYsWNIUsOkgsZWS1jeXsLy9uJWarBE9cccOwhzzEDPpLiPZAi5xQAAdiVJREFUSCpNm25stpnbhaHyFMaSYwSXZqGxnv/mRHR0NBkZGYwZM4YRI0aIiTBB8DGFQsHgwYPZsWMHAPrqgjYlSvhistubvrrhWq+3jw/PplAouOqqq/jrX/8KwDc1Li4PU6Nqww3RkhZWDra0/WwH69zkn3mPXq/nkksuadP7hY7r7LGj9zgE4MYbb+T5559n7ty5jbZ3RoLMCy+8wPr160lOTuaVV15p8/uTk5OZPHlyq/YNDfXMjwUFBXVZtbZx48bhdrs5efIkR48eJSsri5MnT3Lq1Cns9vMnH6icNlS1JehqS5rc7laqGpIn9KFyUoXTEIpDH45THwJKVZPvbSt7SBzaZsZx9pA4n5ynnsLl8CRA1FWjtlaf+W+N/F+1rQaF1P4qmEFBQaSkpJCSksKgQYMYMmQI8fHxIgFMEJrhcrlQKpW43W5Ujjpwu5r9jvHFvKPKK0l38ODBospmG7jdbrmqba0bql0SYW2sUNYWdrdEkdf4csKECWLOURC6qQ6ni06cOJGJEyeed7tGo+EPf/hDR08j+EB8fDwvvPACr7/+Otu2bZNfD6o8RVDlKWIPfYUlMsUzKR09AKch3H/BtkDRTMm41mz3K0lCY6kguOw4wSVZGKpOnXOxo1AomD59Ov/v//0/jEajnwIVhK5nNBrp27cvp0+fRiG5MVSewhI9wCfHNsWm4dQGN7ky0KkNxhTrowlrSSKo/IT8dMiQIb45bjcVFRUll54rdUq09m85I0hFmNLR5MrAMKVne2t49yWMjIwUE0EBQIwdeyeFQkFqaiqpqanceOONVFdXs2fPHnbv3s3evXsbrThUuh0YS49hLD2GhIK6iL6Y4gZjih2CSx94VWEULidB5TkYi48QXJp93tVGSqWSwYMHy8kR/fr1E99JgtDJvBMlDJWnqUka2er3+jrJ1lB5qlFcQmNTpkzh3XffpaamhnKXxE6ziwltqAARq2n++7Sl7Wf7n1c1iRkzZohSwn7UWWPH+rmWujpPS64FCxawYMECebvFYgHw+c9+9erV/N///R8RERF8/PHHREZGtvkYc+fOlRM6ApVSqaR///7079+fyy+/HPDcxCorKyM/P5+CggIKCwspKiqiqKiIkpKSZpMoAJRuF1pLBVpLRZPbJRQ49SE4DOGeP0HhDa09giLbtDjMFJvWqNprU9vbRJJQ2S1oLBWethh1lWdaZHhaZZyvglFbBAUFERcXR3x8PHFxcSQmJpKQkECfPn0IDw8X405BaCOVSkVYWBiVlZ7kWLXNhNMQdt79fTHvqLY2VLuNiPDdgq7eQKlUkpKSwtGjRwHItbkZ2cq5w/Y47ZCon7JMTEwUSRKC0I2Julq9TGRkJI899hjHjh3jk08+YceOHbjdnq90heQmuDyH4PIcAOxBkVii+mOJTKEuMjmgegWGFh5scXtNv7FdFE3LVDYThspTBJXnElR+Ao21usn91Go1kydP5vrrryclJaVrgxSEADFq1ChOn/aU4QwuzfZZooSk0lAw6oZzek07tcEUjLrBZ5UrdLXF8vFDQkIYMMA38XdX9b19AYrb2CNwYbzunF7TYUpYGK9rdY/pYq9EibNL9AqC4D9hYWFMnz6d6dOn43K5OHLkCDt37mTnzp2N+mcrkOSk3pgj33iSJuLTqY2/wL9jU7eboIpcQgozCS49dt6+z8HBwYwePZqMjAxGjx4t2v8IQhcbNmyY/NhQkQuS1Oqy7b5MslU6rOhqijyPlUqGDh3a6vf2Fjqdjssvv1xuofBltZPxwapW39jzVZItwGm7m/11Z+ZJFApR4aqHSkxMBKCoqKjJ7fWvJyUl+eyc69ev54EHHiAoKIiPP/641yVNKZVKYmNjiY2NZdSoUY22SZJEdXU1JSUllJSUUFpaes6fltqgKJDQWGs8Fb28ktPqObXB2IMjsQdHYzfGYDPGYg+JbTKBwhQ/FNexDagc5ybAujR6TPHn/x5X2UzoakvQmkrQmcrQmMvQmitaVbq/OWFhYcTExJzzp/7vVCy0EgTfi42NlRMlNHWVzSZKdHjeUZLQ1FU1OrfQNgMGDJATJY53cqJEjq1h0Nnb534FobsTiRK9VFpaGo899hgVFRX8+OOP/PTTTxw/frzRPvVZ2uGndyMBdmMsdZHJ1IX3pS6iLy6d/wbgSpejQ9s7m9pag6HyNIbKU+grT6Ezlze7/5AhQ7jooouYOnWqXBZREHqrjIwM1q5dC4Cx+AilQy4FhdInx7aFJZI75d5O7U9vLDokPx49ejQqVecNyrsD74nFgjaWPE7VKXmxr55dFhclDolYjYKMIFWrkyQA8u0NFy71k6GCIAQWlUpFeno66enp3H777RQUFLBjxw62bdvG0aNHG0pfA0GVpwmqPE3Mka8xxwykOulCLNGpPvs90RKNuZzQ/H2EFhw478q/mJgYxo8fz7hx4xg6dKjo+SwIfjRw4EAMBgN1dXWem2eWchzB0a16ry+TbIMqclHg+S7r37+/uJl1HldeeSWffvopDoeDE3aJI1Y3FxhaN5b2VZIteJI06o0fP14k2/ZQ6emeVlyZmZlNbj940LNAx1eJTVu3buX2229HpVLxwQcfkJGR4ZPj9hQKhYLw8HDCw8PP257IYrE0mUBRn1xRfzPzfNR2M2q7maDK041etwdFYA1NxBrRB0tkCo6gSCSVhvzRN5O49yPUdou8r1MbRMGoGxt+B0gSupoiDJUnMVTloa8uQG0ztfnzK5VKoqKi5KSHs5MhoqOjRZs2QfCD+Ph4+ca7xlxBXWRKs/t3ZN5Rba1B6faMQUJCQsR4sR0GDx7Ml19+CUC2rYnsWR/KsjYcv7clPgpCT+OTWbsdO3awadMmCgoKsFqtcl9JALPZTGlpKYBYIR+AIiMjue6667juuusoKSlhx44d7Nmzh4MHDzYqeacAdKYSdKYSwk/tAjwXEnXhfbFG9KUuvC+OoIhWr87pqLrwvujMZc1u7zKShNZchr7yNIaqPAyVp89bMaKeXq9nxIgRjBkzhrFjx7ar1KIg9FTp6emEh4dTVeUpPxlUnuu5CeYjndqfXnITUtgw0XbRRRd1znm6Ee/f/Sftbb9I0SoVTGpD2eWznfI6pxiHBA4xdhSak5iYKI9PKyoq2L59O1u2bCEzM7NRJTRjyTGMJcdw6EOp7jOa6j4X4tZ2Qml0yU1wSRbhp3YS1MTqRPBMoE2ePJmJEycyYMAAUdpYEAKESqVi5MiRcuvJ4NLjVLUyUQJ8l2QbVJotPx49enSb3tubhIeHc8kll7B+/XoA1lU7W50oAb5Jsi1zutlqcsnPr7/++tZ/AKHTdMbYceLEiQQHB3PkyBGOHz/eaDVoVVUVmzdvRqFQMGPGjA7Hv3//fm666SacTifvvvsu06ZN6/Axe6OgoCD69etHv379mtxut9spLS2luLhY/lNYWCj/cTiaXlSltVSitVQSWuS5lnfowzDFDaYmcQS5U+4793eAUo2h4iQhhQcJLjmG2lHXqvj1er3cDiM+Pl7+ExsbS1RUlEiuFYQAlJycLD/WmUpb9Z72zjtqvY7vfV6h9bzbH2dZ3TglCXUnXJtLksQRa8N4sbe3XRaE7q5DI7CTJ09y5513snPnTsDzBaFQKM65YJk8eTJWq5XvvvuOkSNb3xNU6FqxsbHMmjWLWbNmYbfbOXz4MPv37+fAgQNkZ2fLE9P16i8kwgr2A56VNXXhfTyJExHJ2EJiO211X/mgaYTl76WpX3PSme2dxu1GV1uEofKUp2pEVR6qFi6K1Go1aWlpDB8+nBEjRjB48GBxASQI56FSqZgyZQrr1q0DICxvr08TJTpTcNlxNDZPP8GQkBAuvPBC/wYUAJKTk1EqlbjdboodEmaXRLCq624gnrA1VLHo379/l51XaJoYOwptFRkZyRVXXMEVV1xBZWUlmzdv5ocffiArq6FntMZaQ3T2RiJzNlGTNJLKlAnNlkRtLYXbSUj+fiJyt6H1KoFaLzw8nKlTpzJ16lSRHCEIAWzMmDFyooSx5BhVKePb9P4OJ9lKboK9EiXEKvLmXXfddXzzzTe43W4O1LnJtblJ0bV+XqGjSbZfVjupn/ZOT08XKwT9rDPHjnq9nnnz5vHKK6/w6KOPsnr1arRaLZIksXjxYqxWK7NmzaJPnz5Nvn/FihWsXLkSgHXr1jFlypQm9zt+/DizZ8/GbDbz5ptvcsUVV7Tlr0BoA61WS1JSUpPtUlwuF2VlZZw+fZq8vDxOnjzJiRMnOH36NC6Xq9G+Gms1ESd3EHFyB9bQeJz6M5Vfa4owFh9GaypFazl/9QqtVkv//v1JSUkhOTmZvn370qdPHyIiIsR4URC6Ge/ELF1tcaeey/v450sIE5pXX5GntLQUq+Rpj5Gm932l3yKHROWZXx1BQUFivlEQurl2Xz1WVFQwa9Ys8vLyGDhwIFOmTOGjjz7CYrE02i82Npa5c+fyxhtvsGbNGjHZ3U1otVpGjhwp/7zq6uo4cuQImZmZHDp0iKysrHMysdV2MyElRwkp8ZSjcqn11EX0pS6yH5bIftiNsT6rOOHWBlGcPou4zM8bJUtIQHH6LN+uJpTc6GqKCKo4iaHCU0pP6bI3+xadTsfgwYMZOnQo6enppKWliRJ5gtAGl112mZwoEVx6DHVdtU9uenW2sFO75cczZsxAo/FdS4/uSqfTkZKSQk5ODhKeHoEjOrFHoLcyp5tylydRQq/XiwtNPxNjR6GjIiIi5KTevLw8vv32W77//nuqqz2VvJRuJ+GndxOa9zPVfUdTkTq5fWNCSSKk8CBR2T+eUyVMqVSSkZHBZZddxqhRo3p9eyVB6A7Gjh0rJ23qq06jspm6tI2kofI0aofnd11ERASDBg3qsnN3RwkJCUycOJHNmzcDsLbKwe/iuuZautol8UNtww3T2bNnd8l5haZ1xdhx8eLFbNy4kQ0bNpCRkUFGRgaHDh3iyJEjJCQksGrVqg5/jttvv53S0lKSk5P5+uuv+frrr8/ZJyoqimXLlnX4XML5qVQq4uLiiIuLa5Sw5nA4OHHiBEeOHOHgwYMcOHCAurqGxVD6miKoKWr22OHh4YwcOZKhQ4cyePBg+vbtK8aIgtBDDBw4UH6sqykCtwuUnfPvW19dID/2rnIktJ5CoWDEiBFs2LABgIN1nZMocdCr7cawYcPEd74gdHPtTpT485//TF5eHtdeey1vvvkmarWaL7744pwLFoCbb76ZN954g61bt3YoWMF/DAYDo0aNYtSoUYDnQiI7O5tDhw5x+PBhDh8+jNncuE+zymnFWJqFsdSz4s+pCaIuKgVzVCqW6NQOT07ZjdG4NIZGJe5cGgN2Y+tLqZ6Puq6aoLLjBJfnYKg4hcppbXb/0NBQLrjgAoYOHcrQoUPp37+/qBghCB3Qt29fhg8fzoEDB1BIEuGndlI2+Bf+DqtZ2toSgstzAM/AfObMmX6OKHAMHTqUnBzP380Ra9clShz1unBJS0sTFy5+JsaOgi/16dOH22+/nblz57Jp0ybWrVsnf88oJRcRp3YSWniQsrRLqEkc0epkXW1tCbGHvsJQnd/odaPRyMyZM7niiiuIju74WFMQhK4THh7O0KFDOXjwIArAWHyY6uSxXXZ+Y9Eh+fHEiRNRKjun6mJPMnv2bDlRYpfFTb7dTZK28//e/lftxH6mGFlqaqo8/yH4R1eMHUNCQli/fj0rV65k7dq1fP7550RFRTFv3jwef/xx4uLiOvw5qqqqADh16hSnTjXdwqtv374iUcJPNBoNaWlppKWlcc011+BwONi/fz/fffcdW7duPae6bj2dTsf06dO5+OKLSUtLE9/tgtBDhYeHyxUKlG4nutpibGGJvj+RJKGvargGTUtL8/05eolRo0bJiRL76lz8MsL3i9h+tjQk1opqwoLQ/bX7Tu5XX32FQqHgmWeeafGG8IUXXohGoyEvL6+9pxMCjEaj4YILLuCCCy4AwO12c+rUKQ4dOiRXnaisbFyGTu2wEFJ0iJAzE0XWkDjMMYMwxw7CFhLfpmoTCpeDxL0fn9MHUO2oI3Hvx+ROubdtfWMlCX11PsElWQSXZqEzlzW7e3R0NOnp6aSnpzN06FCSkpJE+TxB8LFrr72WAwcOAJ72G5X9J+LSBvs5qvOLPLFFfjxx4kQSEhL8GE1gSU9P5/PPPwcgs84FdE2ljYN1DZNa6ekdKJkt+IQYOwqdQaPRyJPUP//8Mx9++CFHj3qqm6kcdcRlfkFw8VGKh1+NW2M4/4HOJOVFHfsepdQw6REaGsovf/lLZs6cicHQzPsFQQhoF110EQcPHgQgpDCz6xIl3C5Cig7LTydPntw15+3mUlNTycjIYNeuXUjAuiond8dqO/WcJpfEtzVO+fmcOXPENb6fddXYMSQkhGXLlrU5UWHx4sUsXry4xf3qr2mF7kGj0TBmzBjGjBlDSUmJpzKiJDXaR6VSMWTIEEJDQ/0UpSAIXWno0KH88MMPABgqT3VKooTWXCZXIAsJCWmyhZDQOhdeeKFcTe6ETaLaJRHmwxbAVrfEYa+FWWPGjPHZsQVB8I92J0qcPn2a4ODgVpWxViqVGI1GSktL23s6IcAplUpSUlJISUnhyiuvRJIkCgoKOHDggPynpqam0Xv0tcXoa4uJytmEQx+KKW4ItXEXeAYbLUxIGEuOobabm9ymtpsxlhxruY+sJGGoPIWx+DDG4qPnPR54SqSOGDGC4cOHM3z4cJ+sKhAEoXljxowhJSWF3NxclC4H4bnbKU+7xN9hNUlbW9JoteAvf/lLP0YTeIYPH95wkWKXqHFJhPrwIqUpbkniYF3DzU6xItD/xNhR6EwKhYJRo0Zx4YUXsn37dt566y1KSkoAMJZlo9v2Nvmjb8IRHHXum90u4jK/JLSw4UaGWq3m2muvZc6cOSJBQhB6gEmTJvHmm2/idDoxVBegMZc3/X3gY8Gl2XJ1wpiYGHmhgdCyG264gV27dgGwxezieoebOE3nrdheX+PEeuZeaN++fZkwYUKnnUtoHTF2FPwtNjaW2NhYf4chCIKfDRs2TE6UCKo4SVWK78cIhopc+XF6erqoUtMBRqORCy64gMzMTCRgr8XFxSG+q/x9sM6N48yYMTk5WdwnEoQeoN3fEHq9HrPZjMvlarGUtcVioaamhoiIiPaeTuhmFAoFSUlJJCUlcfnll+N2u8nNzeXnn39m7969HDp0CJer4QaWxlpDxMkdRJzcgd0QTm3CMGoSR+AMCm/y+Oq6yiZfb812jbmM0PwDhBQeRGOrbXofjYZhw4bJ7Ub69OkjVpMIQhdTKBTcfPPNPPfccwCEn9pFdXIGTn3grdqIyv6R+m+IsWPHNuphKHguUgYPHszhw4eRgH0WF1N8eJHSlFy7RNWZXzMhISGiv2MAEGNHoSsoFAomTJjAqFGj+Ne//iVXs9HUVZGy+e+Yo1KRVI2/fwwVJ1E5bfLzAQMGsGDBAvr27dulsQuC0HlCQ0MZM2YM27dv9zzP30952vTOP2/+PvnxtGnTxKR3GwwePJiRI0eyb98+JGBtlZM7YjqnqoTFLfH1WdUkxM/K/8TYURAEQQgEI0aMkB8bKk6icDnPuabsqOCyE02eT2if8ePHk5mZCcAus28TJXZ5td0YP368z44rCIL/tPsb4oILLmD79u1s3bqViy66qNl9P/nkE1wuF8OHD2/v6YRuTqlUkpqaSmpqKr/85S+xWCz8/PPP7Nixg507d2I2N1Rz0NZVEZWziaicTZij+lPddwzmmIGgaJiocBqav/g9Z7vbhbH4COGn92CoOt3ke8LCwhg3bhxjx45l5MiR6HS69n9gQRB8Yvz48QwYMIDjx4+jdDuJzP6RkmGz/B1WI/rKUxhLj8nPb7nlFj9GE7jGjh3L4cOe0tO7uyBRYo/XhUtGRkaLk6tC5xNjR6Er6XQ6fvvb3zJs2DBefPFF7HY7AMHlOc2+b8aMGdx9991oNF3TIkgQhK4zY8aMhkSJgv2UD5wKys4bH6istQSXHW90fqFtbrzxRvbt8ySbbDa5uC7cTUwnVJX4psaJ5UwF5cTExBbHKULXEGNHQRAEIRDExcWRmJhIQUEBSrcTQ+UpLNGpPju+wuXEUHFSfj569GifHbu3Gj9+PG+99RbgqQBhcUsEKTu+CNYpSewViRKC0OO0+wpzzpw5SJLE4sWLqaioOO9+27dvZ8mSJSgUCubMmdPe0wk9TFBQEJMmTWLBggX885//ZOnSpcyYMYOgoKBG+wWXnyDx5//Qb9PfCc3bC27PLyJTbBpObXCTx3ZqgzHFpgGgcNoJz91Oyk+vkHDgs3OSJEJDQ7n88stZtmwZb731Fvfddx/jxo0TSRKCECAUCgXz5s2Tn4cW7EdXU+THiM4iScQc3SA/nTZtGqmpvrtY6km8Lx7217mpc0vN7N0xkiSxw9xw4TJu3LhOO5fQemLsKPjDhAkTePrpp9Hr9S3ue+2113L//feLJAlB6KHGjBkjrzZX280YS7M69Xxh+T+jwDPeGTZsGAn/v737Do+qTP8//pmZ9B5CSCW00CEECUiXIiDFRcWC8lPAr4W1fJctFr6uZXddUdi17eqqqyvrCrrYUFBERESqq+BKCS1ASCcQSK8zc35/hAyJSSBlkgnk/bquXDtnTnnu6Dq5zzP3uZ+IiBYd71LUv39/9e9fuaSmTdKaPOv5T2iCUruhz/NqdpOgwLZtIHcEALQVQ4YMcbz2dXIO6X06WWZ7haTKgs3w8HCnXr89CgsLc3SWtUnaVW2OsDkqiy4qX4eGhtK9FrhENPlxznnz5umdd97Rzp07NWbMGM2aNUslJSWSpHXr1ik9PV1fffWVPv/8c9lsNg0bNkyzZ892WuC4dLi5uTmWuLj77rv13XffacOGDfrhhx9kGJUTSx4lZxSWuFYdjm5VTs9xKgjvr4zBNyjyh/fkVn6uG4XVw1cZg2+QYbIoMHWnOhzZLLfy4hrjWSwWDR06VBMmTNBll10mN7eWfaoZQPPExcVpyJAh2rlzp0ySQg+sV9rQ/ye1geVwAjJ2yys/U1Llkj1z5sxxcURtV1RUlLp27ark5GRVGJVrBI70a5nP39QKQ5lnFwz08vKiGr+NIHeEq/Tr109/+ctfdOTIEUdu+VPBwcHq06dPK0cGoDVZLBZNmjRJK1eulCQFpu5SYVgL/Xdvtysg7b+OzauuuqplxmkHbrzxRj3++OOSpG8KbJoZZKiDm/PuAzYUWFV4dsI7LCxMY8eOddq10TzkjgCAtmLo0KFavXq1pMpCiZN9JjttXrJ6l1oe9HGekSNH6siRyu5u3xbZNNoJnW2/rVZwMXLkSJZqBy4Rptzc3CY/0nnmzBnNnz9fmzZtqvNDoWoicsyYMVq2bJk6dOjQ9EjR7pw4cUKff/65vvjiixpLc0hScXBnZfefIaunn/yyD8mt5Iys3sEq7NRL7sVnFLZ3jbwKaj51HhgYqKlTp2ry5Mn8fxG4yKSlpekXv/iFbLbKhDRz4EwVRvR3aUzmilJ12fqKoxjrhhtuoFDiAt577z0tX75ckhTvbdavw1ume8+7pyv06dknA8eMGaNf//rXLTIOGo/cEQDgSidPntTdd98tu73ym/HkUXepwrej08fxPXFAkT9+KKnyPvT111+nW00TGYahhx9+WAcPHpQkTQmw6P+FeDjl2uV2Q79KK1Xe2Tnve+65R5MnT3bKteEc5I4AgLbAarVq3rx5KiwslCSlXD5PZYGRzb+wYVe3TS865hafeuop9evXr/nXhbKysrRgwQJJkkXSX2O85GdpemFDud3QfSmlKjn7berSpUvVs2dPJ0QKwNWatbhjcHCwVq1apXfffVfXXHONoqOj5enpKU9PT0VFRWnmzJl6++239fHHH3OzgkYLCwvT3Llz9frrr2vevHkKCAhw7PM5k6rOO/4h79PHVRDRX2e6j1ZBRH/5nTiozt++WaNIIiQkRHfffbf+/ve/a/bs2fx/EbgIRUdHa/r06Y7t0EMbZLaWuTAiKeTIN44bmZCQEM2aNcul8VwMqj+ht7vErjyb85ffsBuGthWea598xRVXOH0MNB25IwDAlUJDQ5WQkODYDkrZ2SLjBKWeu+6kSZMokmgGk8mkG264wbG9scCmfCflkJsKbY4iiZCQEI0fP94p14XzkDsCANoCNzc3DR061LHtd+KAU67rfSbVMbdIl0PnCg8PdxQy2CR9X9y85Td2l9gdRRJhYWGKjY1tZoQA2gqn9LyeMmWKpkyZ4oxLAbV4e3vrmmuu0eTJk7Vy5UqtXr1aNptNFmuZIv/7nrLirlVhWB8FpO5S2P7PHed5eHjo+uuv18yZM+Xp2TJPLQNoPbNnz9bmzZt15swZuZUVqkPSNzrVZ5JLYvHMz1JgtYn1//mf/5GXl5dLYrmYhIWFqW/fvtq/f7/skrYX2nRVoHOX39hXateZs/c+gYGBio+Pd+r14RwtmTsWFhZqyZIl+vjjj5WVlaWQkBBNnjxZjzzyiEJDQ5t9/ePHj+uTTz7R+vXrdezYMZ04cUL+/v667LLLdNddd2nSJNd8LgEAGmb69On6z3/+I0nyz9ijnJ7jZHdz3v2iR+FJ+Zw+Lkkym83MlTjBkCFD1K1bNx07dkzlhvRFvlXXBzev+MRqGPos71xx7TXXXENBSxvGvCMAwNVGjhypjRs3SpL8s/Yrp+f4Zi+/4Ze13/H68ssvl9ncrOea8RNjxozR4cOHJVXOQY5rxvIb26stuzFmzBiW3QAuIXzy4qLh4+OjefPm6ZlnnlGnTp0kSSbDUMSPH6rH+mdqFEnExMTo2Wef1Y033kiRBHCJ8PHx0fz58x3bQSnfyzM/6zxntBDDrk6Ja2VSZRnxoEGDNGLEiNaP4yI1YcIEx+tvCq2OdrnOsrng3I3L2LFj5ebm3EIMtG2FhYWaMmWKXnzxRRmGoWnTpsnf31/Lli3TuHHjlJmZ2ewx7rnnHj366KP67rvv1KVLF1199dXq1q2b1q9frxtuuEFPPPFE838RAECLiYuLU3R0tCTJYiuXf8Zup14/KOV7x+vLL7/cKUV67Z3JZKrRvW19vlUl9ublkN8W2XTKWnkNf39/Ch0BAMB5xcfHy8fHR5LkXponz/xmzi/Y7fLLPteZYvTo0c27HmoZNWqUo6Bhf6ldudam5Y8ldkM/FNcslABw6aBQAhed2NhYPfPMM4qMPLcOmNmw1di/ePFix+QXgEvHmDFjFBcXJ0kyyVCnxM8lw96qMQSm/iCvszdD7u7uuvvuu6kiboRRo0bJw6NyXenUckPHyp1XKFFoM2q00qtelIH2YfHixdq3b58mTJig77//Xm+++aZ27Nih2bNnKz09XQ899FCzx4iKitKzzz6rpKQkrVmzRm+88Ya+/PJL/fvf/5bZbNbzzz/veMoEAND2mEymGku6BaXslJxUuGmuKJF/xl7H9owZM5xyXUgjRoxQRESEJKnYLn1d0PT2yYZh6NPcc90kZsyYQXc4AABwXu7u7ho+fLhj2z8rsVnX8zlzvMayG3379m3W9VBbSEiI+vfvL0kyVFko2xS7im2qOHu7EBMToy5dujgpQgBtQZMLJRr74T1+/HiFhIQ0dTighuDgYC1atEj+/v413g8JCdHDDz8sX19fF0UGoCWZTCbdfffdji4BXvkZCkzd1WrjW8oKFZL0tWP7uuuuq1G0hQvz8fHRqFGjHNubCqznObpxthWeu3Hp3r27unXr5rRro/laOncsLS3VsmXLJElLlixxFOSYTCY9/fTT8vLy0urVq5WWltaouH/qtdde0+23314r15gyZYqmTp0qSVq5cmWzxgAAtKxx48Y5ngj0KD4tn1NHnXLdgPQfZbZXSJK6du2qfv36OeW6kCwWi6655hrH9ro8q6xNLHDZW2JX6tmk0cvLS9OmTXNGiHAy5h0BAG1N9U4C/lmJzXp4yy9zn+P1qFGjZLFYmhUb6lb939mOoqbNQe4opJsEcClrVkeJxrbLdnZ7bbRvnTt31muvvabnnntOzz33nJ5//nm9/PLL6tixo6tDA9CCoqKidP311zu2Q5I2yVJW2Cpjhx5cL4u1TJIUGRlZIw403JVXXul4va3QptJmtk6WKnOMr6sVXUyePLnZ14TztWTuuH37dhUVFalPnz6KjY2tsS8oKEijRo2SYRjasGFDo2JojKpxs7OzW2wMAEDzeXt718hHglK+a/5FDXtld4qzZsyYQdcxJxs3bpwCAwMlSTk2Qzub+FTg5/nncsYrr7yy1gMYaDuYdwQAtCVxcXGOXMStrFDeZ1KbdB2T3Sq/7IOO7bFjxzolPtQ2YsQIRxFKUpmh7IrGFbcU2gztKTl3DoUSwKWn1ZbeqKioaK2h0I54e3urW7du6tatm7p27SpPT09XhwSgFcyaNcvRycFiLVPowfUtPqbPqaPyz9rv2F6wYIHc3d1bfNxLUb9+/RQVFSVJKjWk/zRxkru6I2WG48lADw8PblwuAY3NHfftq3wao6qt4k8NGDBAkpSY2Lz2mOeTkpIiSSz/BQAXgWnTpjkKGXxzjsq9KKdZ1/M9eVjupXmSJH9/f3KRFuDp6amrrrrKsV294KGh0svt2n12sttkMrE8yiWEeUcAQEuzWCwaOXKkY9u/WleIxvA5dcTxIFZYWJh69uzplPhQW0BAgOLj4x3bjZ2D/L7YpqozevbsqfDwcOcFB6BNcGuNQcrKypSSkiI/P7/WGA4AcIlzd3fXggUL9Nhjj0mS/LP2Kz8qXsUhLbPUgslWodD96xzb48aNU1xcXIuM1R6YTCZNmjTJsUzCxgKrxvo3LyWp3k1i9OjRLMF0kWtK7piRkSFJjpvWVatW6YUXXtBtt92m+fPnO95PT093fsBnr7tuXeXnxKxZsxp17vLly7VixYoGHbt48WLFxcWpuLi4xX4XAGgv+vbt6yigC0rdqZN9mt6Rqno3iaFDhzqK5+BcvXr1ksVikc1mU1KZoWNldnXzbPgzQF9WK67o16+fCgoKVFBQ0BKhXtSioqIcy9NcDJh3BAC0lrFjx2rt2rWSJL8TB5Tdd4pkbtyyGf6Z5x7gGDNmDF3IWtjo0aO1c2dlrr6jyKYZQQ1/8I1lN4BLX4O/lcjPz1deXl6N92w2m9LS0uptbWez2ZSZmalXXnlFBQUFGj58ePOiBQDgrLi4OF1xxRXatGmTJCl0/+dKGXmnDLPzawCDj22XR8kZSZKvr6/mzZvn9DHam/Hjx+vtt9+W1WpVUpmh1HK7Ons0rdFVid3Q9moV4Sy70Ta0du5YVFQkqbLblCQtWbJEiYmJSkpK0vz58x3FM1XHOZNhGPrVr36l4uJiXXXVVY1um5mSkqKtW7c26Nj8/PymhAgAqMOoUaMchRL+GXt0KnacDDePRl/HvfCUfE4nS6osCB0xYoQzw0Q1AQEBGjRokHbt2iWpsvDhztCG/TsrtRvaUm2ye9SoUS0SI5qGeUcAwMWgd+/eCg0N1cmTJ2Wxlsr31FEVdWp4RwiTtUy+Jw87tll2o+UNGzZMbm5uslqtOl5u6ESFXWHuF56DLLAZ2l96btmN6t1EAFw6Gvxt0ssvv6wlS5bUeC8nJ6dBT9RW3dAsWLCgkeEBAFC/+fPn67vvvlNxcbE8is8oKPlbnenu3AlPt+IzCk7e7ti+9dZbFRQU5NQx2qPAwEBdfvnlji+HNxZYdVtI47+YkKTthTaVn507jYmJUe/evZ0VJpqhtXPHn06g33jjjVq6dKnmzJlTY39LPKnxpz/9SevWrVNMTIxefvnlRp8fExPT4C9rAgICJEk+Pj605wSAZoqNjdVnn32m9PR0WaxlCsjcq7zOlzX6OkFpuxyvL7/8cg0dOtSZYeInbrzxRkehxI4im+aEGPIxX/jv+44im0rPpgtRUVGaOnUqT3C2Icw7AgAuBmazWWPGjNGHH34oSfI7kdioQgm/k4dltld2uOrSpYtiYmJaJE6c4+vrq8GDB+u7776TJH1XZNOMoAsXSuwstqmqTKJPnz7q2LFjC0YJwFUaXChhGEatCej6KrqrmEwmBQQEaMCAAbrzzjs1c+bMpkUJAEAdgoKCNGfOHP3973+XJHU4ulUFkQNl9Qpw2hihB7+U2V755FlsbKwmTZrktGu3d5MnT3YUSmwrtGl2sCGPBkxy/9SmastuTJo0iQnvNqK1c8eqVsslJSWSpIULF2rhwoWO/cXFxZLk9DbS77zzjp566ikFBwfrvffeU4cOHRp9jTlz5jgKOgAArcdkMmnq1Kl6/fXXJUmBabuUFz1YakQuYbKWyz9jj2N76tSpTo8TNfXu3Vtdu3ZVcnKyyo3KotmJARee3tpYLWecMmUKOWMbw7wjAOBiMXr06HOFEtmHlG2rkGFp2HIOfj9ZdgOtY+TIkT8plLjwv6/vqnWvpZsEcOlqcKHEokWLtGjRIsd2cHCwwsLCdODAgRYJDACAhrjqqqu0fv16JScny2y3quOhr5QVd41Tru2Tc0x+1drh3XXXXbJYGrfuIOo3cOBAhYWF6cSJEyqyV1Zqj/Br3NIpqeV2HT3bTsLNzU1XXHFFS4SKJmjt3DEyMlKSlJWVVef+qvejoqKcNua6det0//33y8fHR++99x7dTADgIjRu3Di99dZbKi8vl2dBtjzzMlQW1PC/Ff4n9stiLZNU+bdo4MCBLRUqzjKZTLryyisdBS7fFFovWCiRXm7X0bJzOeO4ceNaOkw0EvOOAICLRbdu3RQZGamMjAyZbRXyOXVERWF9LnieuaJUvjlHHdssA9Z6hg4dKovFIpvNpqPlhs5YDQW71V80W2I3lFhybtmNyy+/vDXCBOACTVsMHACANsJisejOO+90bPtnJcorN635F7bb1fHAesfmhAkT1KtXr+ZfFw5ms1kTJkxwbH9TYDvP0XWr3k1i+PDhjmUJ0P70799fkrRv37469+/du1eS1K9fP6eMt337ds2bN08Wi0UrVqxQQkKCU64LAGhdfn5+Gj16tGM7MP3HRp0fUO34yZMny2xmmqU1jB07Vm5ulcURR8sMZVbYz3v81sJzeebQoUPJGQEAQJOZTKYaRQ7+JxpW1Od78rBMRmXO0qNHD0VERLRIfKjNz8/PMW8kSbuKzz8HubvErqoZx27duiksLKwFowPgStzBAwAuev3796/RAq3joa+kC7RpvZCAjN3yLDolSfLy8tL/+3//r1nXQ90mTJjgaHu8r9SuU9bzT3JXZzUMbas26T1x4kSnx4eLx4gRI+Tr66sDBw7oyJEjNfbl5uZq69atMplMTvn/ye7du3XTTTfJarVq2bJldDIBgItc9aXV/LMSZbKWN+g896JT8j5boGuxWOhS0IoCAgI0ZMgQx/b2wvonuw3D0PZqrZPHjx/forEBAIBLX/VCCd+TSTLZrOc5upJftYIKukm0vmHDhjle//cChRLV91c/D8Clp8mFEg899JDuvfdeZ8YCAECT3XbbbY6nyrxz0+R78lCTr2WyVSjkyDeO7WuvvVYdOnRodoyoLTQ0VHFxcZIkQ6pR+HAhu4vtKjhbVxESEuK4Dtqmls4dvby8NHfuXEnSgw8+qPLyyi+5DMPQokWLVFpaqunTpys6OrrO8xcvXqygoCAFBQVp8+bN9Y5z5MgRzZo1S0VFRXrttddYix4ALgF9+vRxLM1ktpXLL7theWRAxh7H66FDhyooKKglwkM9xo4d63j9bZFNRj2F0kfKDJ2yVu7z9fXV4MGDWyU+NA/zjgCAtqxLly6OjhBmW7l8Th877/Ema7l8cs4dM3z48BaND7VV7wS6r9SucnvduaPdMPRjcc1uZAAuXY1bCLyahx9+2JlxAADQLOHh4Zo6dapWr14tSQo5vElFoT0lU+NrAgNTdsqtrFBS5dq4M2fOdGqsqGncuHH68cfKttVbC226OtDN0WXifLZWezJw3LhxslgsLRYjmq81csdFixbp66+/1oYNG5SQkKCEhAQlJibqwIEDioiI0JIlS5o9xrx583Ty5EnFxMToiy++0BdffFHrmJCQED355JPNHgsA0DpMJpPGjx+vt99+W5Lkn7lHBZEDzn+SYcg/89xyT9WXE0PrGDJkiDw9PVVWVqaMCkMZFYaiPGrnkN9Vm+gePny43N3dWzNMNBHzjgCAtsxkMmn48OH66KOPJEm+2Ycr5yHr4ZNzVGZ7ZdeJmJgYRUZGtkqcOCc8PFzR0dFKS0tThSEdKLUrzqf2XGJyueF4MCswMFDdu3dv5UgBtCaW3gAAXDJuuOEGeXl5SZI8i07JP2t/o69hspapQ/J2x/ZNN93kuCZaxvDhwx3/jDMqDKWUX3jZlBK7oR+qTXqz9AEkyd/fX+vWrdN9990nSVqzZo3y8vI0d+5cff31106ZiMjNzZUkpaSk6J133qnz5+OPP272OACA1nXFFVc4CjV9cpJlOVs0Wx+vM6lyL82XVPn3hy4Frc/Ly0uXXXaZY7u+taarvz9ixIgWjwsAALQPl19+ueO178nD510G2O/k4TrPQ+uKj493vN5TUnfuuLfa+/Hx8TKb+RoVuJTxXzgA4JIREBCgn/3sZ47t4KNbz3uTUpeg1F2yVJRIksLCwjRx4kSnxojavL29a6z3t6Powstv7Cq2qeLsv9quXbsqJiampcLDRcbf319PPvmkdu/erezsbO3fv18vvPCCwsLCznveokWLlJubq9zcXI0ZM6be4/bs2eM4rr6fPXv21Hs+AKBtCg0NVd++fSVJJhnyO3HwvMf7n0h0vB41ahRdClykeg75Q7G91v6sCruyziaNXl5eLNUGAACcpmfPngoICJAkuZUXyTM/q+4DDUM+J484NlnKwXWqF0okltbOHSVpX8m596sfD+DSRKEEAOCScvXVV9foKuGbff5J7upMNquCjn/r2J41axaT3q1k9OjRjtfnW2O6yo7Cc8UU5/tSGwAAoKGq5yN+J87Tmcyw1yikqH4eWteQIUMcnUCSyuwqstXMIXdXK56Ii4uTh4dHq8YHAAAuXRaLpUZXMd9TR+o8zjM/S24VxZIql3KIjY1tlfhQW//+/R1L96aUGyr4Se5Ybjd0uKxm/gjg0kahBADgkuLv769p06Y5toOTvz3P0T85N3OP3Morb1xCQkI0fvx4p8eHug0ePFg+Pj6SpJPW8y+/UWI3tLdadffIkSNbPD4AAHDpGzFihONLd+8zqTKfzQt/yisvQ27lRZIqJ7urOlGg9QUEBDi+bDBU+8nA6i2VWR4FAAA4W/VlwHxyjtZ5TPX3WcrBtby9vdWzZ0/H9sGf5I7Hyu2ODraRkZEKCQlpzfAAuACfyACAS86MGTPk5uYmSfLOS5dXbvqFTzIMBR3/j2Pz6quvpptEK3J3d1dCQoJj+/t61piWpB+LbbKefd21a1dFRES0cHQAAKA9CA4OVu/evSVVLr/hezKpzuN8sw85Xg8bNszxVBpco/qTfvtLz+WQNsOoMfk9aNCgVo0LAABc+qrnF155GTJZy2od45OT7HjNUg6u169fP8frQz8plKieO1Y/DsClq80XShQWFuqxxx7ToEGDFBYWpn79+mnhwoU6efJki4352WefKSgoSEFBQXruuedabBwAQMvo0KFDjeUYAlN3XvAc79PH5VmUI6ly/eJJkya1WHyo2/Dhwx2vfzhPoUT19aernwMAANBcw4YNc7z2zam7fXL1tsqsMe16AwcOdLw+UK3rWGq5oZKzTwSGhIRQXAsAAJwuKChIXbt2lSSZDLu8z6TV2G+yWeWVd+49Cjddr0+fPo7Xh8tqzj8erlYoQdc4oH1o04UShYWFmjJlil588UUZhqFp06bJ399fy5Yt07hx45SZmen0MfPy8vTrX//a6dcFALSu6dOnO177Ze2vt3VylcC0Hxyvx48fL19f3xaLDXWLj493dAI5Xm7otLX28ht2w9Duai2U+XICAAA4U432yaeOSUbNp8zcSvPlWVj54IabmxvrFrcBvXv3drSwTqswVGKvzCGrry/dt29fx7IqAAAAzjRgwADHa+/clBr7PPMyZLZXzmNFRkaqQ4cOrRobaqvqICdVzj9ajcrc0TAMHamWP1Y/DsClq00XSixevFj79u3ThAkT9P333+vNN9/Ujh07NHv2bKWnp+uhhx5y+piPP/64ioqKNHHiRKdfGwDQemJjYx1rzpkNm/yzEus91lxeXKOF8lVXXdXi8aE2Hx+fGm3t9pbU7ipxrNxQ4dl7luDgYHXv3r21wgMAAO1Aly5dHBPYFmupPPOzauz3rtY6uX///vLy8mrN8FAHb29vdenSRZJkSDp6doI7qdoTgdWfHAQAAHCmGoUSZ1Jr7PPOPbfdv3//VosJ9QsMDFRYWJgkqcKo7EImSaeshgrOpo8+Pj6KjIx0VYgAWlGbLZQoLS3VsmXLJElLliyRh4eHJMlkMunpp5+Wl5eXVq9erbS0tPNcpXG2bNmif/7zn/rtb3+rTp06Oe26AADXqF70FpCxp97j/LP2y2xUfinfs2dPx0QrWt/gwYMdr3eX2Gvt31NtSY74+HieDAQAAE5lMplqLOXgc/p4jf0+p5Mdr+km0XZUFUhL0rGzhRLJ5edyydjY2FaPCQAAtA/VCzI98zMl+7m5K+/ctDqPg2v16NHD8fr42ZzxeLlRY39VxzIAl7Y2+1/69u3bVVRUpD59+tS6oQ0KCtKoUaNkGIY2bNjglPFKS0v1i1/8QgMHDtT//M//OOWaAADXGj16tGMpB6/8TLkXna7zOP+sfY7X48ePb5XYULfqazXuL7HJMGouv5FY7cnA+Pj41goLAAC0I9ULJWo9FVhtu/pxcK3qk93J5YZK7YYyKyrzSLPZrG7durkqNAAAcIkLCgpydCgw223yLDhRucMw5JWX4TiOQom2o3pumFxWVShhr3M/gEtbmy2U2Lev8kur+toRVbUzSkysv5V6YyxevFhHjx7Vn//8Z1ksFqdcEwDgWn5+fjXWmfY7sb/WMZbSAkd1t9ls1siRI1stPtTWtWtX+fn5SZLy7VJGxblCiQrDUFK1tQKrtzYEAABwlupLgXnlpklnCzctpQVyL82TJHl4eLAEWBtSfTI7rdyu9ApDVVlkZGSkPD09XRMYAABoF6p3t/LKz5QkuZXmyVJRIomlHNqarl27Ol6nn517TKtWKFF9P4BLm5urA6hPRkZlpV14eLgkadWqVXrhhRd02223af78+Y7309PTmz3Wjz/+qJdeekm33Xabhg4d2uzrLV++XCtWrGjQsYsXL1ZcXJyKi4ud8rsAAGrq0aOH/vOf/0iS/LIP60z3UTX2+5087HjdvXt3nTx5UidPnmzVGFFTly5dHAWTh0rtivKorOs8VmZXVd1Ex44ddfr0aZ0+XXeXENQUFRUlHx8fV4cBAMBFISIiQoGBgcrLy5PFWir34hxV+HaUd965e/ZevXo5OpfB9Tp37ux4nVlh6Hi14tqYmBhXhAQAANqR2NhYbdmyRZLkmZ8lSfI6+79S5fwky8e2HdXzw6oCibRqD2uRPwLtR5u9qy8qKpIkeXt7S5KWLFmixMREJSUlaf78+fL19a1xXFNZrVbdf//9CggI0OOPP968oM9KSUnR1q1bG3Rsfn6+U8YEANStT58+MpvNstvt8srPkKWsUDZPP8d+35NJjtf1dTFC6+rataujUCKpzK6qxVCqd5Po0qWLCyIDAADtgclkUs+ePfX9999LkrzyMlXh21GeeZmOY6o/NQjX8/b2VmhoqE6ePCm7pI9zrY591YsoAAAAWkL17laeBdmSJI+z//vT/XC90NBQeXp6qqysTIV26eXscmVXK5SIjo52YXQAWlObLZT46ZrkN954o5YuXao5c+bU2N/cKry//OUv2r17t1588UV16NChWdeqEhMTo1GjRl34QEkBAQGSKlsvMdECAC2jb9++ji/efXKOqSCycj1pk90q79PHHcdNnTrV0bEIrlNRUaFPP/1UknSkWnHEkbJzucGwYcP4uwkAAFpMjx49HIUSnvlZKogcKM+Cc08FxsbGuio01CMyMtLRGe60zajxPgAAQEuqvlSDR+FJyTDkWUihRFtlNpsVGRmpY8eOSZK2F9kc+zp27CgvLy9XhQaglbXZQomq9clLSirXcFq4cKEWLlzo2F9cXCxJzWojfeTIET3zzDMaOnSobr311qYH+xNz5sxxFHQAAFwvPj7eUSjheypJxR26SpK88jNktldIqmyxTJFE29C9e3dHF5CMCkOldkNeZpOSqxVN9OjRw4URAgCAS12NpwLPTnJ78lRgmzZu3Dj9+OOPNd7z9/fXkCFDXBQRLgaFhYVasmSJPv74Y2VlZSkkJESTJ0/WI488otDQUKeN8/XXX+u5557TDz/8ILvdrn79+mnBggW67rrrnDYGAMB1AgMDHUu3me1WuZXkyaPwlGM/Ha7anuHDhzsKJX76PoD2o80WSlRV/GdlZdW5v+r9qKioJo+xbt06lZaWqrCwUNdff32NfYmJiZKk5cuXa8uWLRo2bJgeeuihJo8FAHCduLg4LV++XJLkn7Vf/ln7ax0zcODA1g4L9fDy8lJUVJRSU1NlSEoptyvaw6xsa+WTgW5ubiy9AQAAWlT1QgiPgmxZyovkVl659KenpycFtm3Q+PHj1bt3b2VnVxa0mEwm9erVy7GkK/BThYWFmjJlivbt26eYmBhNmzZNiYmJWrZsmdavX68vv/xSERERzR5nxYoVuvfee2U2m3XFFVfI09NTGzdu1O23366kpCQ9+OCDTvhtAACuFh0drby8PEmVhbbuJWcc+5rzPRZaxvXXX6++ffsqJyfH8V5QUJDi4uJcGBWA1tZmCyWq1omvegL4p/bu3StJ6tevX7PH2r9/v/bvr/2lmSQlJSUpKSlJnp6ezR4HAOAaPXr0kI+Pj6MbUV1IgtuWrl27KjU1VZL0+qkKeVRbaSs6Olru7u4uigwAALQHoaGh8vDwUHl5udwqShS18x3HvujoaJnNZhdGh/pERkay1AYabPHixdq3b58mTJigd999Vx4eHjIMQz//+c/17rvv6qGHHtJbb73VrDGys7P1m9/8RmazWR9++KGuuOIKSZXznZMnT9bixYs1bdo0DRgwwBm/EgDAhSIjIx3fZ4UeWC/T2eXjQ0JCKNxsgywWC/PBANRm7+xHjBghX19fHThwQEeOHKmxLzc3V1u3bpXJZNLEiRObPMY999yj3NzcOn9uvvlmSdLjjz+u3NxcrVixolm/DwDAddzc3HT33XcrMjJSwcHBNX46dOigcePGacSIEa4OE9VUX9sxs8LQ8fJz60zTTQIAALQ0s9lc48m/6stuREdHuyIkAE5UWlqqZcuWSZKWLFkiDw8PSZWdSJ5++ml5eXlp9erVSktLa9Y4//znP1VcXKzrrrvOUSQhVT4gdscdd8gwDL366qvNGgMA0DZU70LkXppX5/sAgLalzRZKeHl5ae7cuZKkBx98UOXl5ZIkwzC0aNEilZaWavr06fVOUCxevFhBQUEKCgrS5s2bWy1uAEDbdMUVV+jll1/Wm2++WePnH//4hxYuXCiLxeLqEFHN6NGj5eXlVet9s9msCRMmuCAiAADQ3tT1YIbZbNb48eNdEA0AZ9q+fbuKiorUp08fxcbG1tgXFBSkUaNGyTAMbdiwoVnjfPnll5Kk6dOn19o3Y8aMGscAAC5uo0aNqnMui3ksAGi72uzSG5K0aNEiff3119qwYYMSEhKUkJCgxMREHThwQBEREVqyZImrQwQAAC0gLCxMb7zxhpKTk2u8HxERoQ4dOrgmKAAA0K7MmDFDQ4YM0enTpx3vkYsAl4aq1uhVS//+1IABA7RhwwYlJiY2a5yqpX7rGqdquY3MzEzl5uYqKCioWWMBAFyrrrmsjh07KiwszHVBAQDOq00XSvj7+2vdunV65pln9Mknn2jNmjUKCQnR3Llz9X//93/8gQEA4BLm6+tb78QlAABAa4iIiKBdMnAJysjIkCSFh4dLklatWqUXXnhBt912m+bPn+94Pz09vclj5OfnKz8/3zFOUVGRFixYoNLSUr300kvq1KmTAgMDlZeXp7S0NAolAOASwFwWAFxc2nShhFRZLPHkk0/qySefbNR5ixYt0qJFi5o87t/+9jf97W9/a/L5AAAAAAAAANqeoqIiSZK3t7ckacmSJUpMTFRSUpLmz58vX1/fGsc1ZwxJ8vHx0Zo1a7R69WpJ0sqVK3XffffJ19dXeXl5jRpn+fLlWrFiRYOOXbx4seLi4lRcXNysog8AAID6REVFycfHx9VhAE3S5gslAAAAAAAAAMBZDMOosX3jjTdq6dKlmjNnTo39JpPJaWMMHz5cPXv2VElJia688somj5OSkqKtW7c26NiqjhYAAAAAaqNQAgAAAAAAAEC74efnJ0kqKSmRJC1cuFALFy507C8uLpakZj0dWTVG1fXCwsL03Xff1TimKePExMRo1KhRDTo2ICDAcf2ePXs2eAwAAACgPaBQAgAAAAAAAEC7ERkZKUnKysqqc3/V+1FRUU0eIyAgQAEBAcrPz1dWVpb8/f1r7C8pKVFeXp4kKTo6usHXnTNnjqPzBQAAAICmM7s6AAAAAAAAAABoLf3795ck7du3r879e/fulST169evWeP07du33nGqxoiIiFBQUFCzxgEAAADQeBRKAAAAAAAAAGg3RowYIV9fXx04cEBHjhypsS83N1dbt26VyWTSxIkTmzVO1fmfffZZrX1r1qyRJF155ZXNGgMAAABA01AoAQAAAAAAAKDd8PLy0ty5cyVJDz74oMrLyyVJhmFo0aJFKi0t1fTp0+tdEmPx4sUKCgpSUFCQNm/eXO84c+fOlbe3tz744ANt2rTJ8f6+ffv0+uuvy2Qy6a677nLibwYAAACgodxcHQAAAAAAAAAAtKZFixbp66+/1oYNG5SQkKCEhAQlJibqwIEDioiI0JIlS5o9RlhYmJYsWaL//d//1XXXXadx48bJw8NDGzduVGlpqR566CENHDjQCb8NAAAAgMaiUAJoo3bv3q38/HwFBAQoLi7O1eEAuAjwuQEA7Rd/AwA0Fp8baO/8/f21bt06PfPMM/rkk0+0Zs0ahYSEaO7cufq///s/hYWFOWWcW2+9VVFRUXruuef03XffyWazacCAAfr5z3+uWbNmOWUMoLH4GwCgsfjcAHApMuXm5hquDgJAbdOnT9fWrVs1atQoffrpp64OB8BFgM8NAGi/+BsAoLH43ACA9ou/AQAai88NAJcis6sDAAAAAAAAAAAAAAAAaC0USgAAAAAAAAAAAAAAgHaDQgkAAAAAAAAAAAAAANBuUCgBAAAAAAAAAAAAAADaDQolAAAAAAAAAAAAAABAu0GhBAAAAAAAAAAAAAAAaDcolAAAAAAAAAAAAAAAAO0GhRIAAAAAAAAAAAAAAKDdoFACAAAAAAAAAAAAAAC0G26uDgBA3W655RaNHj1aMTExrg4FwEWCzw0AaL/4GwCgsfjcAID2i78BABqLzw0AlyJTbm6u4eogAAAAAAAAAAAAAAAAWgNLbwAAAAAAAAAAAAAAgHaDQgkAAAAAAAAAAAAAANBuUCgBAAAAAAAAAAAAAADaDQolAAAAAAAAAAAAAABAu0GhBAAAAAAAAAAAAAAAaDcolAAAAAAAAAAAAAAAAO0GhRIAAAAAAAAAAAAAAKDdoFACAAAAAAAAAAAAAAC0GxRKAAAAAAAAAAAAAACAdoNCCQAAAAAAAAAAAAAA0G5QKAEAAAAAAAAAAAAAANoNCiUAAAAAAAAAAAAAAEC7QaEE0AoMw6h32zCMWvsBAADQfpE7AgAAoDHIHwEAABqPQgnAyeq68TCZTPVum0ymWvsBAADQPpA7AgAAoDHIHwEAAJzDzdUBAJeKgoIC+fv7y2QyKTMzUz4+PgoMDFRGRoby8vIUHh6u0tJSHTt2TO7u7goJCVFqaqpyc3Pl4eGhmJgY9e/f39W/BgAXqprsqJrAsNvtjgkNwzBkt9tlsVgkSTabTWazmckOALhIkTsCaC5yRwBoX8gfATQHuSMA1EahBOAEBQUFuuOOO5Senq6goCDZbDZlZGTIbrerQ4cOysnJUXp6usLDw+Xp6anU1FTHvry8PNlsNj366KPcrADt3E9vPsxmc419VTcrkmq8BgBcXMgdATgDuSMAtB/kjwCai9wRAGqjUAJwgk8//VRffPGF3N3dFRgYqODgYJ05c0YFBQWyWq3y9vaWj4+PioqKlJOTI0kKDg5WWFiYBg0apOPHj2vKlCku/i0AtLbs7GwVFRWpU6dOyszM1MmTJ9WhQweZzWYdOXJEdrtdHTt2VGZmprKysuTr6yt3d3elpqaquLhYnp6e+sUvfiEvLy9X/yoAgEYgdwTQFOSOANB+kT8CaCxyRwC4MAolACc4cuSIpMrKy169emnevHkaPXq0ysrKlJmZqZCQEPXq1UubNm3S7bffrqioKH3zzTc6fvy4fHx8FBoa6uLfAIAr/PnPf9Y777wju92ugIAA5efnq6ioSB4eHvLy8lJ+fr4kydvbW3a7XWVlZZIqq7ptNpsk6aGHHnJZ/ACApiF3BNAU5I4A0H6RPwJoLHJHALgwCiUAJ7jpppuUn5+vv//979q2bZs8PT0VGBioyZMnq2vXro7jiouLdfr0ad18882SpC5dukiqXB+M9b6A9ue1116TJIWFhalfv36yWCxKTk6WxWJRVFSUbDabiouLlZmZqZSUFA0ePFgdOnRQdHS0PD09FRsb6+LfAADQFOSOAJqC3BEA2i/yRwCNRe4IABdGoQTgBLGxsXrmmWd0ww036Pnnn9e6dev0zTffaOrUqbrjjjuUkJAgX19fbdmyRZI0bdo0SZLVapWbmxs3KkA7lJWVpd69eys5OVnFxcXq1q2b5s6dqwEDBig3N1fFxcWKjIyUJN17771asWKFVqxYofDwcBUUFMjf39/FvwEAoKnIHQE0FrkjALRv5I8AGoPcEQAaxuzqAIBLgWEYkqSEhAQtXrxYv/zlL+Xp6ak1a9bogQce0Hvvvafi4mIdOHBAbm5uGjFihCTJzY1aJaC96tixo/70pz9p/PjxKigo0Ntvv60XX3xR//3vfxUUFOS4WTlz5owOHDggf39/hYeHS5L8/f0dnzsAgIsPuSOAxiJ3BID2jfwRQGOQOwJAw5hyc3P5xANaQEpKiv7617/q3XffVUFBgWJiYpSRkaFhw4bp008/VXl5udzd3anoBqANGzboueee09atWyVJc+bM0a233qrLL79cO3bs0HXXXadx48ZpxYoVjqdBAACXFnJHAA1F7ggAkMgfATQMuSMA1I9PPMCJDMOQ3W6XyWRSTEyMHnjgAcXGxurll1/W8ePHJUnBwcEqKyuTp6eni6MF4Gp2u11ms1kTJ05Up06dtGzZMi1fvlzLly9XUlKSFi1apH379qmkpERTp06VJCY4AOASQu4IoDHIHQEA5I8AGorcEQAujI4SQCsoKirSX//6V61YsUIpKSkKDg7WPffco9mzZys6OtrV4QFoQ3744Qc9++yzWrNmjSQpICBA+fn5OnDggMLCwhw3OQCASxe5I4CGIncEAEjkjwAahtwRAGqiUAJwguLiYhUXFysrK0sdO3ZUWFiYTCaTKioqZDabZbFYlJ+fr40bN+qVV17Rjh075Ofnp8mTJ+vVV1+lnRXQztntdtlsNlksFpnNZqWkpOjDDz/UG2+8obS0NLm7u+vJJ5/UrFmzFBIS4upwAQDNRO4IoDnIHQGg/SF/BNBU5I4AUD8KJYBm+te//qWXXnpJeXl5ioqKUteuXTVx4kTNnj27zlZVNptNb7zxhv7whz/I3d1dR48edUHUAC4Ghw8f1gsvvKDly5dLknr37q37779fP/vZz+Tv7+/i6AAATUHuCKClkDsCwKWJ/BFASyB3BAAKJYAms9lsevXVV/XII4/UuX/q1Kn629/+psDAwBrnWCwW2Ww2bdu2TYWFhY71vwC0L1lZWcrKylJ2drY8PT3VrVs3de7cWZIc642azWbl5eXpq6++0muvvabdu3eruLhYK1as4LMDAC4y5I4AmoPcEQDaH/JHAE1F7ggADUOhBNBE33//vWbNmiVPT0/NnTtX06ZN0969e7V27VqtXbtWFotFS5cu1fz5810dKoA25rPPPtMzzzyj3bt3KyAgQKGhoYqLi9Mtt9yiK6+8ss5zjh07ptdff10vv/yyNm3apLi4uFaOGgDQHOSOAJqK3BEA2ifyRwBNQe4IAA1HoQTQRIsWLdIrr7yiF154QbfddluNfX/5y1/02GOPaezYsfr4449lt9tlNptrHFPXewAufatWrdJjjz2m1NRUdezYUUVFRSopKXHs/+Mf/6h77rmnxjmGYTjaae7Zs0cDBw5s1ZgBAM1H7gigKcgdAaD9In8E0FjkjgDQOGRKQBN9+umnGjRokMaPHy9JslqtqqiokCRNmzZNkZGRcnd315kzZ+q8KeFGBWifXn31VaWmpur+++/Xli1btGvXLi1btkyTJ0+WJC1btkzJyck1zjGZTDKMyrrGgQMHOl4DAC4e5I4AmoLcEQDaL/JHAI1F7ggAjePm6gCAi9GJEyeUmpqqadOmOdb2slgsMplMstvt6t69u+M9AKiSlJSkHTt2aOrUqfr973/veH/mzJmaMGGCpkyZov379+v06dPq2rVrjXOrKrt/+hoA0PaROwJoCnJHAGi/yB8BNBa5IwA0HmWlQBN89dVXkqSoqCjHe1UJhNlsVnZ2tjIyMhQTE6Pg4GCXxAig7Vm7dq2kyhsUqbINpmEYstvt8vf31+zZs+Xm5qbMzExXhgkAcDJyRwBNQe4IAO0X+SOAxiJ3BIDGo6ME0ASff/65pMrko6ioSN26dVOvXr0UHh6uiIgIbdu2TZI0aNAgSZWt8aqqvgG0X2vXrlW3bt10+eWX13jfarXKw8NDxcXFMpvNjidCqq8RCAC4eJE7AmgKckcAaL/IHwE0FrkjADQehRJAE3Xu3Fk//PCDtm/fLn9/f3Xu3Fm9e/fWyJEj9f777ys4ONjRGs/Njf/UAEg7d+5UfHy8CgsLVVpaKi8vL0mSh4eHJGnbtm0KCwtTTEyMK8MEALQAckcAjUXuCADtG/kjgMYgdwSAxjPl5uYarg4CuNhkZWXp8OHD2r9/v/bs2aMDBw4oOTlZp0+flmEYMgxDPj4+mjFjhoYOHaru3burW7duCg8Pl7e3t6vDB+ACu3bt0sSJE+Xv769BgwapT58+6tevn3r27KkuXbooIiJCnTt31qRJk/Tmm2/KYrHIbrfLZDJR3Q0AFzlyRwCNRe4IAO0b+SOAxiB3BICmodQUaILw8HCFh4drzJgxkqTU1FQdPHhQe/bs0d69e5WcnKyUlBStXLlSH374ocLCwhQbG6v+/fsrNjZWt956K5XeQDtTUFCg0aNHKzc3V7t27dKWLVvk6emp8PBw9evXT/7+/iotLVXHjh1VVFQkHx8fPicA4BJB7gigscgdAaB9I38E0BjkjgDQNHSUABopNzfX0fIuISHB0cKqSllZmY4ePaoDBw5o79692rt3r5KSknTixAkVFRWpd+/e2rFjh4uiB+BKhYWFSk5O1r59+7R7924lJibqyJEjysrKktVqlWEYioqK0siRIxUbG6u+ffuqR48eioiIUHBwsKvDBwA0AbkjgKYidwSA9on8EUBTkDsCQONRKAE00h/+8Af985//1IIFC3TffffJy8vL0fKurlZV+fn5SkpK0r59+7Rt2zYNHDhQ99xzj4uiB9CWnD59WocPH9bevXu1e/duHT58WEePHtXJkydlGIaCg4PVs2dPhYaG6v7779ewYcNcHTIAoJHIHQE4C7kjALQP5I8AnIHcEQAujEIJoBH27Nmj6dOnq3Pnzlq7dq0CAgLqPK7q5sVsNtfaV15eLg8Pj5YOFUAbUzWhIUl2u73Oz4fU1FQdOnTI8UTI/v37lZmZqdOnT+vLL7/UkCFDWjtsAEAzkDsCaCpyRwBon8gfATQFuSMANA2LEAGN8PHHH6u0tFQLFy5UQECArFZrnWt5Va/utlqt+vbbb9W1a1dFRUVxowK0Q1lZWVq9erWsVqtmzpypyMhIxz673e74zOjcubM6d+6siRMnqqKiQsnJyUpMTNT+/fu5WQGAixC5I4CmIHcEgPaL/BFAY5E7AkDT1S4rA1Cvb775Rj169HAkDhaL5YLnlJSU6MMPP9Qf//hH5eTktHSIANqgV155RQ8++KBycnLk6+tbY5/ZbHZMbhiGIbvdLsMw5O7urp49e2rmzJl6+OGHXRE2AKCZyB0BNAW5IwC0X+SPABqL3BEAmo5CCaCBysrKlJ+fL6vVqu7du0tSrTUBf8pms8nf31+FhYVavXq1jh071hqhAmhDsrOz9dZbb6lPnz769a9/rcDAwHqPNZlMNW5gAAAXL3JHAE1B7ggA7Rf5I4DGIncEgOahUAJooNLSUsXExKikpESnTp1q0DlVa4G5u7vLZrPVu64ggEvXl19+qTNnzmjevHny9vaWzWZr0Hkff/yx1q9fr7KyshaOEADQEsgdATQFuSMAtF/kjwAai9wRAJqHQgmgAQzDUGBgoPr06aP09HS98sorslqtstvtstlsstvtdZ5nMplUUFCgnJwceXl5qVevXq0cOQBX27JliwIDA3XZZZdJOjeJcSEpKSn67W9/q3379rVkeACAFkDuCKCpyB0BoH0ifwTQFOSOANA8FEoADVDVjur222+Xn5+fnn32Wf3lL3+RVLlWYPUEpOompsr+/fu1detWDR06tHWDBtAmFBUVqbS01NE20zCM8x5fVfnt7e2tQ4cO6eDBgy0eIwDAucgdATQVuSMAtE/kjwCagtwRAJqHQgmgEbp27arnnntOISEh+v3vf6+4uDj97ne/0+bNm5WXlydJcnNzc9y87N27V3/4wx9UWlqqW265xZWhA3CRgQMHqqysTNu2bZN04cruqv1FRUWSpA4dOrRsgACAFkPuCKCxyB0BoH0jfwTQGOSOANA8bq4OALjYXHfddTp9+rRefPFFpaen6/nnn9ff//53de7cWV26dFFsbKw6deqkb7/9Vj/88IMyMzP1wAMPaMKECa4OHYALVLW+e+GFF9S5c2fFx8dLkuPpj5/ewFQ9RXL06FGZTCYNGTKk9YIFADgduSOAxiB3BACQPwJoKHJHAGgeU25u7vl78QCoU25urlasWKGvvvpKBw4c0IkTJ2S1Wmsc4+XlpV/+8pd68MEHXRQlgLbglltu0dq1azVu3Dj96le/0pgxY2odY7Va5eZWWb948OBBTZkyRd27d9dXX33V2uECAFoAuSOAhiJ3BABI5I8AGobcEQCajkIJoBkMw1BeXp6SkpL0448/KicnR7m5uTp16pTGjx+v4cOHq1u3bq4OE4CLnTlzRnfddZe+/PJLSVL//v01efJkjRgxQgMHDlR4eLgk6cSJE9q9e7eWLl2qvXv3avHixZo7d64rQwcAOBG5I4CGIHcEAFQhfwRwIeSOANB0FEoATmQYhqN9FQBUd+jQIb3xxhv69NNPlZ6eLkny9PRUYGCg/P39FRsbq8zMTO3Zs0eGYeiJJ57Q7bffLn9/fxdHDgBoKeSOAOpD7ggAqAv5I4C6kDsCQNNQKAEAQCvasWOHNmzYoP/+9786evSoTpw4oaKiIklSYGCggoKC9Oijj2rWrFkujhQAAACuRu4IAACAhiJ3BIDGoVACAIBWUFFRIXd3d0lSUVGRMjIylJGRoaKiIrm5uSknJ0dRUVEaOXKkY81AAAAAtE/kjgAAAGgockcAaBoKJQAAaCVnzpyRr6+vPDw8XB0KAAAA2jhyRwAAADQUuSMANB6lYwAAtJCqtUPPnDmjlStXasuWLSoqKlJYWJji4+M1YsQIxcXF1TrPZrPJYrG4IGIAAAC4CrkjAAAAGorcEQCaj44SAAC0EKvVKjc3N73++ut64IEH5O3tLbvdrrKyMkmSyWRS9+7dNWzYMI0dO1YjRoxQly5dXBw1AAAAXIHcEQAAAA1F7ggAzUehBAAALcRut8tsNuvaa6/V999/r48++kgJCQnasWOHtm3bpq1bt+rHH39UTk6OJMnPz0+hoaH6xS9+oblz57o4egAAALQmckcAAAA0FLkjADQfS28AANBCzGazJGnSpEnKyclRdHS0JGn48OEaPny4fvWrXykvL0/fffedNm3apO+//147duxwVH4DAACg/SB3BAAAQEOROwJA89FRAgCAFmSz2bR69WrdeeeduuOOOzRjxgzFxsYqICBAnp6ejpuaKqmpqerQoYN8fX1dFDEAAABchdwRAAAADUXuCADNQ6EEAAAtoGqdwDfeeEPPP/+80tLSJFW2uevTp49GjBihYcOGqXfv3goNDZW3t7c8PT1dHDUAAABcgdwRAAAADUXuCADOQaEEAAAtwDAMmUwmjRw5UklJSZo7d658fX2Vnp6uxMREJScnq7i4WB07dlR8fLxGjRqlAQMGaPDgwQoJCXF1+AAAAGhF5I4AAABoKHJHAHAOCiUAAGghZWVlmjdvnioqKvT+++9LknJzc5Wenq5jx47p4MGD+u9//6u9e/fqxIkTKikp0cqVKzVp0iQXRw4AAIDWRu4IAACAhiJ3BIDmc3N1AAAAXGpsNpssFosOHjyo/Px85efnKykpSV27dlVQUJCCgoLUv39/zZgxQ9nZ2UpLS1NSUpJ2796tkSNHujp8AAAAtCJyRwAAADQUuSMAOA8dJQAAcDK73S6z2az7779fb7/9tiTJ399fV111lYYMGaL+/furV69e6tSpU43zqtYXBAAAQPtB7ggAAICGIncEAOehUAIAgBaSlpam7du369tvv9XGjRt19OhRSVKHDh3Uu3dvDRo0SAMGDFD//v0dVd9VawwCAACgfSF3BAAAQEOROwJA81EoAQBAKygvL9ehQ4e0efNmbdq0Sd9//71ycnIkSV26dFFYWJheffVVde3a1bWBAgAAwOXIHQEAANBQ5I4A0DQUSgAA0Ap+WrGdn5+vvXv3avPmzfr666+1e/dupaSkyGKxuDBKAAAAtAXkjgAAAGgockcAaBoKJQAAcLKqmxOr1aoNGzYoIyNDFotF7u7uio2N1YABA+Tt7V3jnDNnzig4ONhFEQMAAMBVyB0BAADQUOSOAOA8bq4OAACAS43JZFJycrIWLFigb7/91vG+t7e3ZsyYod/97ne1bli4WQEAAGifyB0BAADQUOSOAOA8FEoAAOAkVRXdKSkpuuOOO7Rz507dfPPNio2N1enTp/XSSy/JZrMpNDRUkvTee+/p4MGD+vnPf66QkBAXRw8AAIDWRO4IAACAhiJ3BADnM7s6AAAALhU2m02S9PHHH2vnzp164IEH9PLLL+tXv/qVRo4cKUlKSEiQm1tlnaJhGPrzn/+sXbt2uSxmAAAAuAa5IwAAABqK3BEAnI9CCQAAnMRsrvyz+tlnnykmJkbXX3+9Y9/nn38uX19fDRw40PGep6enzGazTpw40eqxAgAAwLXIHQEAANBQ5I4A4HwUSgAA4CRms1lWq1VZWVny8/NTbGysY99XX32lfv36qVevXo730tLSZLFYFBQU5IJoAQAA4ErkjgAAAGgockcAcD4KJQAAcKKCggJFRESooKBARUVFkqSsrCylp6dr0KBB6tSpk+PYI0eOqKKiQpdddpmrwgUAAIALkTsCAACgocgdAcC5KJQAAMBJDMNQcHCwhg4dqtTUVC1dulSStGHDBknSgAEDHMempaVp/fr16t69uyIjI10SLwAAAFyH3BEAAAANRe4IAM5HoQQAAE5iMpkkSddcc438/Pz0yiuv6OWXX9a7776riIgIXXHFFZKkzMxMPf/880pLS9Mtt9ziypABAADgIuSOAAAAaChyRwBwPlNubq7h6iAAALjUfPLJJ/rNb36jkydPSpKCgoJ0/fXXKzo6Wv/+97+1f/9+3XDDDXrssccUHR3t4mgBAADgSuSOAAAAaChyRwBwDgolAABoARUVFfriiy+0bNkybdq0SRUVFY59FotF8+fP16JFi9ShQwcXRgkAAIC2gNwRAAAADUXuCADOQaEEAAAtLDMzUwcPHtS+ffvk6+urMWPGKCYmRu7u7q4ODQAAAG0MuSMAAAAaitwRAJqOQgkAAAAAAAAAAAAAANBuuLk6AAAALhVFRUU6fPiwUlNTZbPZ1LlzZ3Xv3l3BwcE1jjMMQ3a7XRaLxUWRAgAAwNXIHQEAANBQ5I4A4HwUSgAA0Ax2u11ms1mJiYl64YUXtHLlSnl4eMjDw0MdOnRQ9+7dNWDAAMXFxalfv37q1q2bfHx8uFkBAABoh8gdAQAA0FDkjgDQslh6AwCAZrDZbLJYLFqwYIH+/e9/KyoqSj179pSvr6+OHDmi48ePq6SkRN7e3oqOjlbfvn3Vo0cPTZkyRZdffrmrwwcAAEArIncEAABAQ5E7AkDLoqMEAABNYBiVdYZVFdpr165Vly5dtH79egUEBOjMmTM6deqUjh07pn379unHH3/Uvn379MUXX6i0tFQRERHcsAAAALQT5I4AAABoKHJHAGgdFEoAANAEJpPJ8frAgQMyDEPXXHONQkNDJUnh4eEKDw/XgAEDNHnyZJ0+fVoZGRk6cuSIvv32W1111VWuCh0AAACtjNwRAAAADUXuCACtg0IJAAAaaffu3XJ3d1dERISCgoIUERGhHj16yG63S5LKysrk7u4uk8kkk8kkT09PRUREKCIiQkOGDNH06dPl6+vr4t8CAAAArYHcEQAAAA1F7ggArYdCCQAAGunWW2+Vv7+/hg4dqgEDBqh///7q1auXjh49quLiYvn4+NQ4vupGpuoGhpsVAACA9oPcEQAAAA1F7ggArceUm5truDoIAAAuFtnZ2br22mt1+vRpnThxQoZhKDw8XGFhYfrxxx81ceJE3X777YqPj1dISIg8PT1dHTIAAABchNwRAAAADUXuCACti0IJAAAaKT09XUePHtXu3bu1Z88eJSYmKisrS6WlpSooKFB4eLji4+MVHx+v/v37q1u3bgoPD1dgYKDc3GjmBAAA0J6QOwIAAKChyB0BoPVQKAEAQDPYbDYlJydr37592rdvnxITE3Xw4EGlpqaqtLRU3t7e6tq1qwYOHKh+/fpp6NChGjlypKvDBgAAgAuQOwIAAKChyB0BoGVRKAEAQCMZhiHDMBxr/1VXXFyso0ePKjExUXv27NHevXt1+PBh5eTkqLS0VPfee6+efPJJF0UOAACA1kbuCAAAgIYidwSA1kOhBAAAzXD69GkdOnRI0dHRio6OrrX/zJkzOnTokBITE7V582YtWLBAw4YNc0GkAAAAcDVyRwAAADQUuSMAtCwKJQAAaCS73S6z2azk5GQ9/vjjysnJ0e9+9zsNGTJEhlH5Z9UwDJnNZhdHCgAAAFcjdwQAAEBDkTsCQOvhkxQAgEaquin517/+pU8//VQTJkzQkCFDJMnRFq/qZiU3N1d79+5VYWGhy+IFAACA65A7AgAAoKHIHQGg9VAoAQBAI1ksFknSypUrlZCQoDvuuEPSuRuZ6ioqKvTSSy/pk08+adUYAQAA0DaQOwIAAKChyB0BoPVQKAEAQCNU3ZQcOXJEaWlpSkhIUEBAgKTKqu6fHhsaGqotW7bogw8+UH5+fqvHCwAAANchdwQAAEBDkTsCQOuiUAIAgEaoumE5cOCAJCkoKEiSZLVaax1rMplUWlqqiIgInTx50nFjAwAAgPaB3BEAAAANRe4IAK2LQgkAABqhag1APz8/+fv7Ky0tTZLk5uZW4zibzSZJOnz4sE6ePKnw8PDWDRQAAAAuR+4IAACAhiJ3BIDWRaEEAABNMGzYMLm7u+uzzz7T6tWrHTcoVarWE9ywYYOSk5M1adIkV4QJAACANoDcEQAAAA1F7ggArYNCCQAAmsDb21sPPPCATp48qXvuuUcvv/yy9uzZo1OnTun06dOyWq1677339Ne//lVdu3bV9OnTXR0yAAAAXITcEQAAAA1F7ggArcOUm5truDoIAAAuRkVFRVq8eLGWL1+u3NxcRUVFqX///rJYLNq9e7eys7Pl5uamF198Uddff72rwwUAAIALkTsCAACgocgdAaDlUSgBAEAzlJaWav369Xr55Zf17bffyjAMeXl5qbS0VIMGDdIvf/lLzZw509VhAgAAoA0gdwQAAEBDkTsCQMuiUAIAACcpLCzUkSNHlJqaqu7duysiIkLBwcGuDgsAAABtELkjAAAAGorcEQCcj0IJAAAAAAAAAAAAAADQbphdHQAAAAAAAAAAAAAAAEBroVACAAAAAAAAAAAAAAC0GxRKAAAAAAAAAAAAAACAdoNCCQAAAAAAAAAAAAAA0G5QKAEAAAAAAAAAAAAAANoNCiUAoAWsXLlSQUFBCgoK0hVXXFHvccePH3ccV9/PVVdd1eBx09PTFRUVpaCgIPXq1eu8x27atEmzZ89WbGysOnXqpL59++r222/Xrl27GjweAAAAmmb58uWOfK8+hw8fVmxsrIKCgnTzzTfLarU6JX8sKirSn//8Z40bN04xMTGKjIzU4MGDdffdd+v777+vdXx5eblWrVqlu+66S0OGDFF4eLjCw8OVkJCgBx54QMnJyc38pwEAAID6VM/zvvjii1r77Xa7evXq5Thm8eLFdV4nLy9PS5cu1fjx49WlSxdFRkYqISFBd955pzZt2lTr+M2bN18w76z6yc3NdZw3cODABp+XkpLitH9OAAA0lpurAwCAS9G6deskSR4eHvrxxx+VkZGhyMjI857TqVOnOt8PDg5u8LiLFi1SUVHRBY97/vnn9cQTT0iSLBaL/P39lZWVpQ8//FAff/yxXnrpJc2ePbvB4wIAAMC50tLSdO211+rUqVMaNWqU3nzzTbm51byFb0r+eOzYMc2cOdMxKe3h4SEPDw8dO3ZMx44dU0REhBISEmqc89BDD+nNN990bHt5eclsNispKUlJSUlasWKF/vGPf2jKlClN/XUBAADQAKtWrdLkyZNrvLd582ZlZ2ef97xdu3bp5ptv1okTJyRV5oBeXl6OfO69995TcnJyvUW8ISEhslgs9V7fbD73TG7Hjh1VVlZW77FFRUUqKipSaGjoBedLAQBoSRRKAICTWa1WbdiwQV5eXpo9e7aWLVumL774QvPmzTvveYcOHWrWuF999ZU++eQT9ezZU4cPH673uO+++06/+93vJEkLFizQokWLFBgYqOzsbD388MP68MMP9b//+78aMWKEunTp0qyYAAAA0Hg5OTm67rrrlJaWpkGDBumdd96Rl5dXreMamz+WlpZq1qxZSklJUXx8vJ566imNGDFCJpNJOTk5+vLLL2tMclexWq3q3Lmz/ud//kczZsxQbGysDMPQnj179Mtf/lI7d+7U/Pnz9Z///EfR0dFN/r0BAABQv65du+qzzz5TRUWF3N3dHe+vWrVKJpNJMTExOn78eK3zkpOTde211yovL08DBgzQ008/rVGjRslkMunkyZP66KOP9Nxzz5137K+++qrB84QbN2487/5rr71WGzdu1KxZs2oVAgMA0JpYegMAnGzHjh3Kzc3V8OHDHW2PP//88xYds7y8XA888ICio6O1YMGC8x7797//XYZhaODAgXr66acVGBgoqfKJxFdffVVdunRReXm5XnrppRaNGQAAALUVFhbqhhtu0KFDhxQbG6sPPvhAAQEBTrn23/72Nx09elR9+vTRmjVrNHLkSJlMJkmVTwnedNNNuuGGG2qdd/vtt2vnzp1auHChYmNjJUkmk0lxcXFasWKFAgICVFxcrH/+859OiRMAAAC1XXPNNcrNzdXXX3/teM9ms2n16tVKSEiot2D1wQcfVF5enrp166Y1a9Zo9OjRjhwwNDRUd911l7Zt2yZfX98W/x3S09Mdy3zQzRYA4GoUSgCAk1UtuzF+/HiNHj1a7u7u+uabb1RaWtpiY77wwgs6cuSIHn/88TqfNqxu+/btkqQbb7yx1j53d3fdeuutkqTPPvvM+YECAACgXmVlZbrlllu0a9cuRUVF6aOPPlLHjh2ddv23335bkvT444/Lz8+vwecNHjxYHh4ede4LCwvTkCFDJEm7d+9ufpAAAACo09VXXy2LxaJVq1Y53tu8ebNOnTqlmTNn1nnO0aNH9cUXX0iSHn744XqX1ggODq7RpaKlvPPOO7Lb7erbt6/i4+NbfDwAAM6HQgkAcLKq7hFXXHGF/Pz8lJCQoOLiYke1tLMdP35czz77rBISEnT99ddf8PiqNQtjYmLq3N+9e3dJletiX2h9QwAAADiHzWbTHXfcoW+++UYhISH66KOP1LlzZ6dd/9ixYzpy5Ij8/f115ZVXOu26khwdL6qeTAQAAIDzdezYUSNHjtSnn36qiooKSdJHH30kSfUWSqxevVqS5OHhoenTp7dOoOexYsUKSXSTAAC0DRRKAIATHTt2TIcPH1ZISIgGDRokSRo3bpykc50m6jNx4kRFRkYqIiJCQ4cO1cMPP6y0tLQLjvnwww+rpKREixcvbtDkdNUxNputzv3V3z9y5MgFrwcAAIDmW7hwoVavXi1/f3+9//776tWr1wXPaUz+uHfvXklSv379JElLlizR4MGD1alTJ/Xu3Vu333679uzZ0+i4DcPQzp07JUkDBw5s9PkAAABouOrLb1itVq1Zs0YJCQn1Ftj+8MMPkqSePXs2qqNYS9i2bZuOHj0qs9lc53JvAAC0NgolAMCJ1q5dK6mym0RVQcL48eMlydHmrj67du2Sh4eHysvLdfjwYb3yyisaOXLkeTtRrFu3TmvXrtX111+voUOHNijGiIgISZWdKOpy+PBhx+vTp0836JoAAABouscee0z/+te/JEm33XabBg8e3KDzGpM/ZmZmSqpcKmPOnDl66qmnlJqaKh8fH504cUIffvihJk6c2Ojl195//32lpaXJzc1NN998c6POBQAAQONUX37jm2++UU5OTr3dJKRz83/1dZZtqAkTJqhXr151/nz55ZcNusby5cslVc6bRkZGNiseAACcgUIJAHCiqq4RVV0kJGnIkCEKCAhQWlparaf0vLy8tGDBAn399dfKzMxUcnKy0tPT9dZbbykqKkr5+fm69dZblZ6eXmus0tJSPfTQQ/L29tbjjz/e4BhHjRolqXJNQMMwauwrLi7WP//5zxrbAAAAaFkvvvii4/U//vGP83b1amr+WFhYKEn65ptvtH79ev32t79VSkqKkpOTtXv3bo0bN07l5eX6+c9/rtzc3AbFffLkSf32t7+VJC1YsMCxhBsAAABaRqdOnRzLb6xcuVJSZZeJ+hQUFEhSs7tJ5OTkKDs7u86f0tLSC55fVFSkjz/+WBLLbgAA2g4KJQDASfLz87Vt2zZJNQslLBaLRo8eLan28hthYWF6+umnFR8fLy8vL0mVk98/+9nPtGbNGvn6+io/P18vvfRSrfGeffZZJScn6957723U+tV33XWXLBaLDh06pAULFig5OVkVFRVKTEzUzTffrIKCAsfNk9nMnwkAAICWZjab9be//U29e/dWSUmJ7rvvvloFrVWamj/a7XZJUm5urq677jr95je/kY+Pj6TKJwxff/11eXt7Ky8vT++9994FY7Zarbrjjjt04sQJDR48WI899lhz/hEAAACggaqW31i5cuV5l92oriHL9Z7Pjz/+qNzc3Dp/ZsyYccHzV61apcLCQvn5+enqq69uViwAADgL34ABgJN89dVXqqioUPfu3Wu1s6sqnPj8888bfL1u3bpp1qxZklSrhd2xY8f04osvKjw8XL/85S8bFWdcXJyefvppmUwm/fvf/1Z8fLxCQ0M1cuRIffPNN/rjH/8od3d3Sc2vNgcAAMCFLVmyRDfffLOef/55mUwmbd++Xa+99lqjr3O+/NHb29vxet68ebXO7dixoyZOnChJ+vbbby841v33369NmzYpOjpaK1askIeHR6PjBQAAQONdffXVMpvNstvt5112Q5L8/f0lness4SpVy25cffXVjmJdAABcjUIJAHCSqiKIY8eOKSQkpMbPww8/LKlyHemTJ082+JpxcXGSpNTU1BrvP/bYYyotLdWjjz4qX1/fRsd65513av369brxxhvVq1cvxcTE6Morr9R7772nm266ydFumfUCAQAAWt4dd9whSRoxYoTmzp0rSfr973+v5OTkRl+rvvwxJCTE8bq+JTKqnkbMyso67xiPP/643nnnHQUHB+uDDz5QREREo+MEAABA03Tq1EmPPvqo7rzzTl133XXnPbZLly6SpJSUlNYIrU7Hjh3T9u3bJbHsBgCgbXFzdQAAcCmw2+2Op/YMw5DNZqv3uC+++EJz5sxp0HWr2uL9tD3esWPHJEn33nuv7r333jrPzc7OVlBQkCTp7bffrtUGLyEhQQkJCbXO+/bbb2UYhtzd3dW7d+8GxQkAAADneOKJJ7R27VqdOHFC999/vz755JNGtUquL3/s1q1brWMudI26/PWvf9ULL7wgHx8f/fvf/yZfBAAAcIGGdpiNj4/XqlWrdPjwYcfSF61t+fLlMgxD0dHRGjNmTKuPDwBAfegoAQBO8P333+vUqVNyc3NTWlpanev1zZ8/X5K0bt26Bl933759klRrKY+W9MEHH0iSxo4dSwtlAACAVhYUFKRnnnlGkrR582a9+eabjTq/vvxxwIABjtzu6NGjdZ5b1YUiPDy8zv3vvvuuHn30Ubm7u+utt97SsGHDGhUbAAAAWlfVg1Pl5eX67LPPWn18u92ud999V5J04403ymzmKykAQNvBXyUAcIKqZTcuu+yyeiuzx44dK0nauHGjysvLJanezhOSlJGRoffff1+SNGnSpBr7tmzZUmcxRm5url566SVJlW34qt77aTeJ+iQmJuqtt96SJN12220NOgcAAADOdc011+iqq66SVLnMRfVlNJqaP/r6+jqe4Fu2bFmtc0+dOqUNGzZIkoYPH15r/+eff6777rtPJpNJr7zyiq688srG/VIAAABodbGxsY68bfHixcrLy6vzuNzcXFVUVDh9/E2bNiktLU0Sy24AANoeCiUAwAmqCiXO1z5uzJgxMplMKigo0NatWyVJ06ZN05///GcdOHBAdrtdklRRUaH169drxowZys/PV3BwcL3LazTV888/r02bNqm4uFiSVFZWpvfff1/XXHONSktLNWbMGM2cOdOpYwIAAKDh/vSnP8nPz08FBQVauHCh4/3m5I+/+MUvJFV2EHvuuedUUlIiqXLN6jvvvFMlJSXq0KGDrr/++hrnbd++XfPnz5fVatXSpUs1a9asFvqtAQAA4GxLly5VQECAjh07phkzZmjLli0yDEOSdPr0ab355psaOXKkioqKnD728uXLJVU+XNarVy+nXx8AgOZwc3UAAHCxS01NVWJioqTzF0p07NhRffv2VWJioj7//HONHz9eGRkZ+sMf/qA//OEP8vDwcEyGV1Vwh4SEaPny5fW2P26q9evX64knnpAkBQYGqrCw0PF04mWXXaZ//etfTh0PAAAAjRMdHa1HHnlEixYt0oYNG/Svf/1Lt956a7Pyx7Fjx+qBBx7Q0qVL9bvf/U5PPfWU/Pz8dObMGUmSt7e3XnvtNQUGBtY476mnnlJJSYnMZrOeeeYZx9IgPxUVFaWNGzc6+Z8EAAAAmqNbt2764IMPdMstt2jPnj2aMWOGPDw85O3tXW+HCWfIy8vTmjVrJNFNAgDQNtFRAgCaad26dZIkDw+PC67TXFVIUXXOE088oRtuuEE9e/aUv7+/8vPz5enpqYEDB+o3v/mNduzYUWfr4+a66667dNVVVyk6OlolJSUKDAzUyJEj9eyzz2r9+vUKCgpy+pgAAABonLvvvluXXXaZJOmRRx5RRkZGs/PHRx55RCtXrtSVV14pf39/FRYWKjIyUjfddJM2btxY55IaVZ0r7Ha7srOz6/05depUy/yDAAAAQLMMHTpU3333nRYtWqRBgwbJy8tL5eXl6tGjh2644QatWrXK6fOBH3zwgUpLS+Xu7k5HMgBAm2TKzc01XB0EAAAAAAAAAAAAAABAa6CjBAAAAAAAAAAAAAAAaDcolAAAAAAAAAAAAAAAAO0GhRIAAAAAAAAAAAAAAKDdoFACAAAAAAAAAAAAAAC0GxRKAAAAAAAAAAAAAACAdoNCCQAAAAAAAAAAAAAA0G5QKAEAAAAAAAAAAAAAANoNCiUAAAAAAAAAAAAAAEC7QaEEAAAAAAAAAAAAAABoNyiUAAAAAAAAAAAAAAAA7cb/B/zgmWVGU4h7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows, cols = 1, 3\n", "fig, ax = plt.subplots(rows, cols, figsize=(10 * cols, 6 * rows))\n", "\n", "# for i, y in enumerate(\n", "# (\"result.training_mean_de\", \"result.val_mean_de\", \"result.test_mean_de\")\n", "# ):\n", "for i, y in enumerate(\n", " (\"split_baseline_A549\", \"split_baseline_K562\", \"split_baseline_MCF7\")\n", "):\n", " sns.violinplot(\n", " data=results_clean[results_clean[\"config.dataset.data_params.split_key\"]==y],\n", " x=\"config.model.embedding.model\",\n", " y=\"result.test_mean_de\",\n", " hue=\"config.model.load_pretrained\",\n", " inner=\"points\",\n", " ax=ax[i],\n", " scale=\"width\",\n", " )\n", " # ax[i].set_ylim([0.3,1.01])\n", " ax[i].set_xticklabels(['CPA', 'chemCPA'])\n", " ax[i].set_xticklabels(ax[i].get_xticklabels(), rotation=75, ha=\"right\")\n", " ax[i].set_xlabel(y.split(\"_\")[-1])\n", " ax[i].set_ylabel('test_mean_de')\n", " ax[i].legend(title=\"Pretrained\", loc=\"lower right\", fontsize=18, title_fontsize=24)\n", "\n", "ax[0].get_legend().remove()\n", "ax[1].get_legend().remove()\n", "ax[2].legend(\n", " title=\"Pretrained\",\n", " fontsize=18,\n", " title_fontsize=24,\n", " loc=\"center left\",\n", " bbox_to_anchor=(1, 0.5),\n", ")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACEoAAAGLCAYAAADa0OWRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gUVffA8e9sSycJSUhI6F0QEMUCqCgoiqDw6iuI2OBnb4AFpVgQEIgCUm2oiAK+oIiAiAICIqiAFCkinRDSe986vz+WTLISkpC2m3A+z+Pjzr27MycEkjt3zj1XycjIUBFCCCGEEEIIIYQQQgghhBBCCCGEuATo3B2AEEIIIYQQQgghhBBCCCGEEEIIIURNkUQJIYQQQgghhBBCCCGEEEIIIYQQQlwyJFFCCCGEEEIIIYQQQgghhBBCCCGEEJcMSZQQQgghhBBCCCGEEEIIIYQQQgghxCVDEiWEEEIIIYQQQgghhBBCCCGEEEIIccmQRAkhhBBCCCGEEEIIIYQQQgghhBBCXDIkUUIIIYQQQgghhBBCCCHKISkpic8//5xnn32W6667juDgYIKCgli8eHGVX2vz5s0MGDCAJk2a0KhRI/r06cOKFSuq/DpCCCGEEEJcigzuDkAIIYQQQgghhBBCCCFqg/Xr1zNixAjtWFGUarnOkiVLeOaZZ9DpdPTs2RMvLy82bdrE8OHDOXbsGKNHj66W6wohhBBCCHGpkIoSQgghhBBCCCGEEEIIUQ6RkZE8/vjjLFiwgL1799KrV68qv0ZSUhIvvfQSOp2OFStWsGLFCpYuXcrGjRvx8/NjypQpHDhwoMqvK4QQQgghxKVEEiWEEEIIIYQQQgghhBCiHG6++Waio6P573//S7NmzarlGp9//jl5eXncfffd9OzZU2vv0KEDjz76KKqq8uGHH1bLtYUQQgghhLhUSKKEEEIIIYQQQgghhBBCeIgNGzYA0K9fv/P6+vfv7/IeIYQQQgghRMVIooQQQgghhBBCCCGEEEJ4iL///htwVpD4t8svvxyA+Ph4MjIyajIsIYQQQggh6hSDuwMQQgghhBBCCCGEEEIIAVlZWWRlZQEQERFBbm4uTz75JAUFBcybN48GDRoQGBhIZmYmsbGxBAUFleu8ixcvZsmSJeV675QpU+jUqRN5eXmcPXu2ol+KEEIIIS4BUVFR+Pr6ujsMISrE4xMlcnJyiI6O5rvvviMhIYGQkBD69OnDuHHjCAsLq5JrZGdnM2vWLFatWsXp06fx8vKiQ4cOPPLIIwwePLjEz5R1E7J7925atGhRJfEJIYQQQgghhBBCCCHqvtzcXO21r68va9asYfXq1QAsW7aMZ599Fj8/PzIzM13eW5aYmBi2bdtWrvcWJmoIIYQQQghRl3l0okROTg633XYbBw8epEmTJtxxxx0cOnSIhQsXsn79ejZs2EDDhg0rdY3s7Gxuu+02Dh06REhICDfddBO5ubns3LmT3377jd27dzNt2rQLfn7IkCEltgcEBFQqLiGEEEIIIYQQQgghxKVFVVWX4+uuu47WrVuTn5/PLbfc4vIeRVHKfd4mTZrQo0ePcr23Xr16gDNRo3Xr1uW+hhBCCCGEELWJRydKTJkyhYMHD9KrVy+++uorTCYTqqry1FNP8dVXX/HKK6+waNGiSl1j6tSpHDp0iCuvvJJvvvmG4OBgAPbt28fAgQP58MMPGTBgAN27dy/x8++//36lri+EEEIIIYQQQgghhBAA/v7+2uu8vDzCw8PZuXOny3vy8vIALqrM9dChQxk6dGjVBCmEEEIIIUQdoHN3ABdSUFDAwoULAYiOjsZkMgHOTOmpU6fi7e3N6tWriY2NrdR1vv76awBef/11LUkCoHPnzjz33HMAfPLJJ5W6hhBCCCGEEEIIIYQQQpSlXr16WkWHhISE8/rz8/PJzMwEoFGjRjUamxBCCCGEEHWJx1aU+O2338jNzaVdu3a0atXKpS8oKIgePXqwceNGNm7cyMMPP1yha6Snp5OYmAhAly5dzusvrCKxadOmCp1fCCGE5zpz5gwnT568YL/RaKRjx44uq3mEEEIIIcSlKz4+nqNHj5bY17RpU5o2bVrDEQkh6qrLLruMP/74g4MHD5639cWBAwcAaNiwIUFBQW6ITgghhKhbVFXl6NGjJCQk0KBBA9q2bXtR21sJIWovj02UOHjwIAAdOnQosf/yyy9n48aNHDp0qMLXyM/PB0Cn0xEQEHBef2GFibS0NFJSUggNDT3vPXPnzuXEiRPo9Xratm3LnXfeSXh4eIVjEkIIUf2OHDnCmDFjsNvtpb6vcePGzJw5E4PBY39dCiGEEEKIGnDmzBlefPFFLBZLif2KojBp0qQLzmEIIcTF6N27N3/88Qdr165l4MCBLn1r1qwB4JZbbnFDZEIIIUTds2HDBubNm6cdDx8+nLvuusuNEQkhaorHPvmJi4sDICIiAoCVK1cya9YsHnroIYYNG6a1nz17tsLXCA4ORqfT4XA4SExMpGHDhi79Z86c0V7Hx8eXmCgxfvz4844nTZrEo48+elGxLF68mCVLlpTrvVOmTKFTp07k5eVV6usXQohL1aJFi8pMkgDn74GVK1fSuXPnGohKiOoTFRV1UfsXCyGEEMLVDz/8cMEkCXCuQlu9erUkSgghSjVlyhSmTZsGwOrVq7nhhhtKfN/DDz/MzJkz+eabbxg6dCg9e/YEnAvLFixYgKIoPP744zUWtxBCCFGX7dy587xjSZQQ4tLgsYkSubm5APj4+AAQHR3NoUOHOHbsGMOGDcPPz8/lfRXh4+NDp06d2Lt3L6tWreKJJ55w6V+6dKn2Oi8vz6Xv/vvvZ/DgwbRt25aAgABOnDjBggULWLRoES+99BJhYWEMGDCg3LHExMSwbdu2cr03Kyur3OcVQgjhKj09XataBJAd3g4Unct7DPkZ+GQ6E/a2bdsmiRJCCCGEEJcwi8XC1q1btePc0FY4DCbngeogIPEwALt27SIzM5PAwEB3hCmEqCEJCQk88MAD2vGRI0cAeOedd/jss88A6Ny5M9OnT6/wNcLDw4mOjub555/n7rvv5qabbsJkMrFp0yYKCgp45ZVX6NixY+W+ECGEEEIAkJmZWeqxEKLu8thECVVVXY4HDRrEO++8w9ChQ136K7tP0FNPPcUTTzzB5MmTCQoKok+fPuTk5PDpp5/y7bffUr9+fdLS0tDpXB+izZ8/3+W4Y8eOzJo1i6ioKN5++23eeuuti0qUaNKkCT169CjXe+vVqweAr6/vefsUCiGEKN2HH36o/Q7Jq9+UhM53n/cefUE2zbfOQ1EdnDx5EovFIqsDhaglcnJyiI6O5rvvviMhIYGQkBD69OnDuHHjCAsLq/T5y7sP9P79+2ncuHG5P7d7925atGhRiciEEEJUl19++YXs7GwArN71iOtyLxSbizD88Tk+mWex2WysW7eOwYMHuytUIUQNMJvN7Nq167z2U6dOcerUKQC8vLwqfZ0HH3yQqKgoZs6cyc6dO7Hb7Vx++eU89dRT3HPPPZU+vxBCCCGcMjIyXI4lUUKIS4fHJkr4+/sDkJ+fD8DIkSMZOXKk1l9Y4aGyZaQHDx7MoUOHmD179nkVJcaPH8/q1atJS0sjICCgXOd76qmniI6O5vjx45w+fZqmTZuW63NDhw7VkkCEEEJUj5SUFNavX68dpzfvXuL77N4BZDW8nMC4vwD43//+x1tvvVUjMQohKi4nJ4fbbruNgwcP0qRJE+644w4OHTrEwoULWb9+PRs2bDhvq7WLNWTIkAv2nTp1it9++41mzZrRqFGji/p8eceaQgghapbD4WDVqlXacUbjri5JEgCZTbris9+5LeYPP/zAwIEDq+QhqRDCMzVt2vS8ByrlNWbMGMaMGVPu9/fq1YtevXpV6FpCCCGEKJuqqqSlpbm0ZWZmYrVaMRqNbopKCFFTPDZRIjIyEnCWsytJYXtUVFSlrzVhwgQGDRrE999/T1xcHMHBwfTv35+rrrqKefPmodPpaNKkSbnOFRAQQEhICImJiSQmJpY7UUJUP4vFQk5OjnZsMBi06hxCiEvDF198gc1mAyA/MIq8+s0u+N70Ft2pF78fRVX566+/2LVrF127dq2hSIUQFTFlyhQOHjxIr169+OqrrzCZTKiqylNPPcVXX33FK6+8wqJFiyp1jffff/+CfY8//ji//fYb999//wWrnpX2eSGEEJ7n119/JSYmBgCH3khWo/O3ZMsOb0fIkZ8xmrPJyMjQkiWEEEIIIYQQni07Oxur1Xpee1paGuHh4W6ISAhRkzw2UaKwxHnxfeSLO3DgAADt27evsuv9u6z64cOHSU9Pp3379uWuXGG1WklNTQUqX+1CVJ2DBw8yefJkrRJJod69e/Pcc8+5KSohRE06fPgwW7Zs0Y5TW/c8bzVgcVbf+mRFXUFg7B4APv30Uzp37iyZxEJ4qIKCAhYuXAhAdHQ0JpNz73hFUZg6dSorV65k9erVxMbGXrDaQ2VkZGSwevVqdDpdqVUnhBBC1B4Wi4XFixdrxxlNrsZh9Dn/jTo96S260+DvHwH45ptv6NWrlyTmCyGEEEII4eFSUlIu2C6JEkLUfTp3B3Ah3bp1w8/Pj8OHD3P8+HGXvoyMDLZt24aiKPTu3bvaYvjggw8ALmrfv59//hmbzYa/vz9t2rSprtDERVq1atV5SRIAGzduJCkpyQ0RCSFqktVqZd68edpxToO25JdSTaJQaqsbsRucZZPj4uJYtmxZdYUohKik3377jdzcXNq1a0erVq1c+oKCgujRoweqqrJx48Zquf6yZcvIz8/nxhtvpHHjxtVyDSGEEDVrxYoVJCYmAmA3eJPe7LoLvjcz6gosPkGAc1XaF198URMhCiGEEEIIISqhcLxf3nYhRN3isYkS3t7ePPzwwwCMHj0ai8UCOPcLGjNmDAUFBfTr1++CKwKnTJlCUFAQQUFBbN26tdRr7d271+VYVVXef/99Pv/8c8LDw3nsscdc+pcuXcrff/9d4nleeuklAIYPH66tZBTud/ToUe21zeSLQ1dUTOXYsWPuCEkIUYO++uorzpw5AzhLJie3LV+Snd3kR2qrntrxN998Iz8zhPBQhVXI/l0hrNDll18OwKFDh6rl+oUPxIYOHVrq++bOncsLL7zAyy+/zIIFC+TGWwghPFRMTAzffPONdpzauicOo/eFP6DTk9L2Fu1w/fr17N+/vzpDFKVISkpiy5YtbN68mZ07d2pzSkIIIYQQQhQXHx9/Ue1CiLrFY7feABgzZgybN29m48aNdO3ala5du3Lo0CEOHz5Mw4YNiY6OrpLr3HbbbTRt2pRWrVphMpnYs2cPp0+fJjAwkCVLlpxXLnP16tU89dRTNG/enPbt2+Pl5cXJkyfZt28fDoeDW265hfHjx1dJbKLyUlNTSUtLA8ChM3Ky5/OEHN1C/VO/AXDkyBG6d+/uzhCFENVo3759rFixQjtOaX0ztnOr/cojs/FVBCT8jU/GGRwOB9OnT2f69OmyvZIQHiYuLg6AiIgIAFauXMmsWbN46KGHGDZsmNZ+9uzZKr/23r172b9/P/Xq1aN///6lvvffY8Tx48czadIkHn300Yu+7uLFi1myZEm53jtlyhQ6depEXl5etfwZCCFEXWKz2Zg9e7a2V3FBvYZkNupS5udyG7QhJ6w1/snORP3p06czatQoGTfWsIyMDN555x2X5IjOnTvzwAMPuDGq2iUqKkr+3gohhBDiklB8jqS5SeGkRT2vXQhRd3l0okRAQAA//vgj06ZNY9WqVaxZs4aQkBAefvhhxo4dW2X7Az3++ONs3LiRX3/9FYvFQmRkJE888QSjRo3SJtWLGzx4MHq9ngMHDrBt2zZycnLw9/enR48e3HfffQwZMgSdzmOLdVxyDhw4oL0uCGwIio6CoCitrXAFqhCi7klLS2PGjBmoqnOAm1e/KZmNr7q4kygKiZf3o8lvn6KzW4iPj2fu3Lm8/PLLKIpSDVELISoiNzcXAB8f597x0dHRHDp0iGPHjjFs2DD8/Pxc3leVFi1aBDi3ayu8/r/df//9DB48mLZt2xIQEMCJEydYsGABixYt4qWXXiIsLIwBAwZc1HVjYmLYtm1bud6blZV1UecWQohL2apVq7QVZA6dgcTL+4NSvnv8pMtuxycjFr01n4yMDJYtW8ZDDz0kcwQ16ODBg+dVkNi/fz8Wi0UqfwohhBBCCBexsbHa6y6+ek5abOe1CyHqLo9OlABnssSkSZOYNGnSRX1uzJgxjBkzplzvnThxIhMnTiz3uQcMGHDRE9nCfYonSuTXb+r8f3BjVEABjh8/Tl5enqyWEKKOMZvNvP3222RmZgJgM/mR0HEAVCC5wepbn8T2fWm4/zsAtm/fzvLlyxk0aFCVxiyEqLjChKhCgwYN4p133tG2wijsr+oEp7y8PL7++mug9G035s+f73LcsWNHZs2aRVRUFG+//TZvvfXWRY8vmzRpQo8ePcr13sIKab6+vrRu3fqiriOEEJeS9evX89tvv2nHKW1uxuIfVu7P270DSGzfl8h9zopmBw8eZO/evQwePLjKYxUlK/y9XJzD4cBsNl9wiy4hhBBCiOrgcDhYs2YNR44cAZxbzt92221yX+4hHA4Hp0+f1o6v89ezIsOZKHH27FmsVitGo9Fd4QkhaoDHJ0oIURmqqrJ7927tOO9cooTD6IM5IBzv7EQcDgf79u2jW7du7gpTCFHFHA4H7733HseOHQNAVRQSOg3A7uVf4XPmNOxARsYZgs44f6YsWbKEyMhIrr/++iqJWQhROf7+zn/f+fn5AIwcOZKRI0dq/Xl5eQBVnhi5cuVKsrKyaNu2LV27dr3ozz/11FNER0dz/PhxTp8+TdOmTcv92aFDh5aanCGEEOLi7Nu3jw8//FA7zg6/jMzGF/+zPTe8HelNryH49A4Ali5dSkREBD179qyyWEXJzGYze/fu1Y47+ej4K98BwI4dO7jyyivdFJkQQgghLkU7duzg008/dWnbt28fH330kVSq9QCJiYkUFBQAEKCDCINCA4NCkk3Fbrdz5swZWrRo4eYohRDVSWo/ijrt1KlTpKamAmA3eFMQ2Ejrywttqb3etWtXjccmhKgeqqry0UcfuawETG7Xh/z6zSp97uS2t5JX7Dzvvfcee/bsqfR5hRCVFxkZCUBCQkKJ/YXtUVFRJfZX1BdffAGUXk2iNAEBAYSEhADOG3QhhBDucezYMaZMmYLN5lxBZvZvQGKHfhWqRgaQ0rqXlqgPMHv2bBk31oA//vgDs9kMQKRRoX9g0fqgbdu2YbVa3RWaEEIIIS5Bhw8fPq8tOTmZ9PR0N0Qj/q2w0gdAMy8diqLQ1FQ0/j969Kg7whJC1CBJlBB12vbt27XXeaEtoNi+sLlhReWtduzYIRMmQtQBqqqyaNEi1q1bp7WlN7mazMZXVc0FdHriO/8Hi5/zoabNZmPKlCn8/fffVXN+USKbzcbvv//O2rVrWbt2LVu2bNGqBghRqLCU9sGDB0vsL9yKq3379lV2zaNHj/Lbb7+h1+srXFLdarVqSZ2yDZgQQrjH8ePHmTBhgraazOoVQNyVg1ANpoqfVKcjvvPdmP1CAbDb7UyZMoV9+/ZVRcjiAn788UftdTc/PW29dYTonZPd2dnZLsnUQgghhBDVLS4ursT2s2fP1nAkoiTFEyFaejmfHbX0LnqGVDyRQghRN0mihKizVFXll19+0Y6zw9u59BcERmL1du7XnZ2d7VKeUwhR+6iqyhdffMG3336rtWU17EBK21uq9DoOow9nrxqi/fywWCxMmDDhgg9nReX973//Y+rUqXz00Ud89NFHzJw5kzlz5rg7LOFhunXrhp+fH4cPH+b48eMufRkZGWzbtg1FUejdu3eVXXPRokUA3HLLLYSHh1foHD///DM2mw1/f3/atGlTZbEJIYQon2PHjvH666+TnZ0NgN3oQ9xV92E7N9arjJLGjZMnT5bKEtXkn3/+0cbkeuDGAAM6ReGmAL32nhUrVqCqqpsiFEIIIcSlJjY2Vntt9g/TXp85c8Yd4Yh/KT6f2+pcokTh/wEOHTpU4zEJIWqWJEqIOuvvv//WSljbDV7khbZyfYOikB3RQTvctGlTTYYnhKhCqqryySefsGLFCq0tJ6w1iR36V7hccmls3vU4e9X92Ex+ABQUFDBhwgRZIVgN7HY769evP6/9999/Jysryw0RCU/l7e3Nww8/DMDo0aOxWCyA8+fDmDFjKCgooF+/fjRq1KjEz0+ZMoWgoCCCgoLYunVrmdezWq189dVXQNnbbixdurTEyjN79+7lpZdeAmD48OGYTJVYuSyqRX5+Pvv27WP//v1SfUyIOmjv3r2MHz+e3NxcwLld49kr78NSbBK7suzeAZztej9WrwCgKFmiPL9rRPkVJk0Xus5PT32D8z6gVz0DhRWUT506xbZt29wRohBCCCEuMWazmfj4eABUFHKKLeSMiYlxV1jinOzsbE6dOgU4H5S2OVdJooWXThs7xsfHk5KS4p4AhRA1QhIlRJ31ww8/aK9zwi9D1RvOe0925OXa6z/++IO0tLQaiU0IUXVsNhuzZs1izZo1WltOWGsSOv8HdPpSPlk5Vr/6nO16PzYvf8A56T1x4kR+/fXXarvmpWjv3r1kZGSc1+5wOFyqBgkBMGbMGNq3b8/GjRvp2rUrw4cPp1u3bixdupSGDRsSHR1dZddau3YtycnJhISE0Ldv31Lfu3r1arp160aXLl0YOnQow4cP5+abb6ZXr16cOXOGW265hfHjx1dZbKJq5Ofn89RTT/HGG2/w2muv8eKLL2K3290dlhCiimzZsoWJEydq223YDd6c7Xo/5sCGVX4tq299Yq9+QKssYbPZmD59OitXrpTqBlVk27Zt2jZbOmBAcNH9fz29wq31io4XLlwo27gJIYQQotqdPn1aG+tZfYMpCIzU+k6cOOGusMQ5f/31l/b9aeal4KNzZkcYFYXWxapKSCVyIeo2SZQQdVJaWprL3qMZja8q8X0W/zDyghsDzlXL69atq5H4hBBVIz8/n0mTJrF582atLTu8HfGd70bVnZ8cVdUs/mHEdn1AWyFYOOm9evXqar/2pWLVqlXa6771DDwSYtSO16xZIw8thYuAgAB+/PFHnn32WcD5dyQzM5OHH36YzZs3ExkZWcYZyu/LL78E4N5778VoNJb63sGDB3PnnXcCzgc5q1at4uTJk/To0YN58+axbNkyqSbhgQ4ePOiSqBUTEyPlUYWoAxwOB19++SUzZ87UxhFWrwBir34Ac72IaruuzTeY2GsewuwXqrUtXLiQ+fPnS8WaSsrIyODjjz/WjnvX09PQ6DrddVeQgYBzTSkpKXz++ec1GaIQQgghLkFHjhzRXhcENnQZa548eVLGgG72559/aq87+bgutuvoqyvxfUKIuqf6nyIJ4QarVq3CZrMBkB/UCEu9C+8bntn4KnzTnZPea9eu5T//+Q8+Pj41EqcQouKSk5OZPHmyViINIDPqCpIuux10NZcHaPWrT+w1DxH151JMeWnaNiAJCQkMHz4cvb76qlrUdX/99Ze2nYkC3FJPTz29wvJ0K7kOSEhIYMOGDdx2223uDVR4lICAACZNmsSkSZMu6nNjxoxhzJgx5X7/8uXLy/3eAQMGMGDAgIuKR7hfenr6eW0lVbgRQtQeeXl5vPfee+zYsUNrM/uFEnfVfdjOVXuoTjbvesRe8yCRe5bjk+Hcr3r9+vWcPXuW0aNHExQUVO0x1DUOh4M5c+aQmZkJQLAe/ht8fgKjr05haIiRD5KdDyTWrVvHFVdcwXXXXVej8QohhBDi0uGSKFEvErvJD6tPEMb8DKxWK6dOnaJ169ZujPDSZbfbXRIgOv8rUeIKHz1f4Xy+tGfPHsxmM15eXjUaoxCiZkhFCVHnZGVluVSGSG9W+sRHToN2WHyCnK9zcly27BBCeKbDhw/z0ksvuSRJpLa8gaT2fWs0SaKQzSeQM9c8RH5QI63t+++/Z+LEieTk5NR4PHWB2Wzmgw8+0I57+OtpYNThrVO4I7Aoz3PRokWybZIQolqUlBRRUvKEEKJ2OHXqFC+99JJLkkRuSAtir3moRpIkCjmMPpy96n6yGhZtA3no0CFeeOEFDh06VGNx1BVfffWVyyT3o6EmfM+VTf637n56uhZbHThr1iypFCSEEEKIaqGqKgcPHtSOC87NGeYHRmltxftFzTpw4ICWaBukhxZeruPHSKNChMHZVlBQwJ49e2o8RiFEzZBECVHnLF++XNtn1uzfgNywMrIydTrSm3fXDr/99lt5sCmEB1u/fj3jx4/XBrOqoiOxQz/SWt4ASsmTojXBYfLl7FVDyA5vp7Xt3buX0aNHywTsRVJVlY8++oi4uDgAvBW4t9jKwNvqGQg7d7OSm5vLjBkztCpCQghRVVJTU8vVJoTwfJs2bWL06NHa2AIgvek1xF05CIfRu8bjUfUGEi+/k5TWN6Oea0tLS2P8+PGsXLkSh8NR4zHVRhs3bmTZsmXacb9AA518L1zNTVEU/i/UROi5cWR+fj4TJ06UpFshhBBCVLmEhATt/tFu8MIc4Kx4nV+/ifaeAwcOuCU2Ab/++qv2+mo/Pbp/zSkrisI1fvoS3y+EqFskUULUKXFxcaxdu1Y7Tm15fbkenGZFdtSqSmRnZ7tMtgghPIPVamX+/PnMmzdPeyhuN/oQe9X9ZEV1dnN0TqreSEKn/5Da4nqtLS4ujpdffpnt27e7MbLa5dtvv2Xjxo3a8dAQI/UNRT/LvXQKj4YaKWw5cOAAH3zwAaqqIoQQVSUlJaVcbUIIz5WXl8fMmTOZNWsWFosFAIfOSELHAaS0vQUUN06JKArpzbsRd+V92I3OrR8dDgcLFy5k0qRJstVPGbZv3868efO0444+Ou4NLnt3WX+9wsgGJgoXDSYlJfHmm29qSdhCCCGEEFWheAWCgqDGWgXc/PpNtfYDBw5gtVprPLZLndlsdkl8uM6v5ETb6/yL2v/44w9ZXCtEHSWJEqLOUFWVTz75BLvdDkB+UGNyG7Qt34d1elJb36wdrl27VlaAC+FBEhMTGTt2LD/99JPWZvYPI+baRygolontERSFtFY3Et9pIA6dswpCQUEB0dHRfPrpp1L5oAzfffcdixYt0o57+Ovp6X/+DUt7Hz13BxVNhm/YsIGPPvpIVmAKIapMQkLCeW2JiYluiEQIURH//PMPo0aNYsuWLVqbxS+EM9c9QnbDDm6MzFVeaAtiuv0f+YGRWtvu3bsZMWKEy5YSosgvv/zCu+++q437mpgUnmtgQl/O6nJNvXTO9587jomJYfz48VJZQgghhBBVZteuXdrr3NCW2murb30svsGAc75Qtt+oedu3byc/Px+ACKNCa6+SH5M2NuloZnKOL61WK7/88kuNxSiEqDmSKCHqjG3btmkTSSqQ3Lb3RZXhzwlvR/65vcJsNhvz5s2TB25CeICdO3fy4osvcvToUa0tO6I9Z655GNu5GwtPlBPRnjPXPozFpyjGVatWMW7cOJKTk90YmWey2+189tlnfPbZZ1pbO28d/xdqRLnAz/IBQQauL5ZE8cMPP/Duu+9iNpurPV4hRN3mcDhISko6r72k5AkhhGex2WwsXryYMWPGuCQ3ZUZ2IubaYVj8w9wYXcls3vWIvfpB0ppdp7VlZmYyceJEPvjgA21rSQHff/89M2fO1O7VGxoVRkd44aO7uC34OvvqeSKsqELZmTNnGDNmjMv2LEIIIYQQFZGXl8f+/fu14+KJEv8+/uOPP2osLuFcbFu8IvmN/voLzjsC3BhQtEhr7dq1Us1WiDpIEiVEnZCZmcnHH39cdNz4SszFVuSUi6KQdNntqOfKrx4+fJgffvihKsMUQlwEq9XKwoULmTx5slbaTFV0JLe9hYSOA1ANJjdHWDZLQAPOXDeMnNBWWts///zDCy+84JJZfqnLzMzkrbfe4rvvvtPa2njpeCHchLGUmxVFcW7B0a1Yibzt27fzyiuvEB8fX60xCyHqtuTk5KIy/XojhVMhiYmJUhpVCA925swZXnnlFZYvX649SLcbvIjvNJCky/t79vhRpye1TS/OXjUEm8lPa163bh0vvPAC//zzjxuDcz+73c4nn3zCxx9/rE1QRxoVxkZ4Eai/uCSJQt38DTwVZtQmxhITE3nllVdkv3AhhBBCVMrOnTu1+8aCgHBsvkEu/cWrYP/2229ahWxR/Y4cOaItxjMq0DOg9K3bevjr8T431IyNjWXv3r3VHKEQoqZJooSo9VRVZe7cudqeolavAJdtNC6GJaABac27aceff/45MTExVRKnEKL8CrfaWLlypdZm9Qog9uoHyGh6zUVVi3E3h9Gb+C73ktL6ZtRzcWdnZzNp0iQ+++yzS/6B244dOxgxYgT79u3T2q701TE6wlSulYF6ReHJMCN96hUlS5w6dYpRo0bx448/Sqa3EKJCim/BVlCvIVafIMBZaeLs2bNuikoIcSF2u50VK1YwatQojh8/rrXnBTchptv/kRPR3o3RXZy8kObEdH+UnAZttLa4uDjGjBnDokWLtCSuS0lWVhZvvfUWq1ev1tpaeimMb+hFkKFy9wXd/A2MCjdxrqoy2dnZvPHGG6xZs0bGkUIIIYSokK1bt2qvc8LbndefH9xYS4zNyMiQJM0atGLFCu11Nz899cpIuPXVKdwQUDTn+O2331ZbbEII95BECVHr/fDDD+zcuVM7Tmp/Bw6DV4XPl968B2b/BgBYLBamT58uZdyFqEHbt29n1KhRLltt5Ia2JKbb/1FwbnucWkdRSG/ejdiuQ7F5+WvN3333HWPHjr0kS7mnpaXxzjvv8Pbbb5ORkaG1DwgyMKKBCa+LKJ+sUxQeDDExLMRIYR54QUEB77//Pq+99hqxsbFVG7wQos47efKk9triH+pSqr94nxDC/c6ePcvYsWNZtGgRNpsNAIeiJ7lNb852HYrtXKJTbWI3+RHf+R4SOvTHrndWwXA4HKxYseK8LenquoMHDzJq1CiXpNqrfXWMifAioIKVJP7tCl89Yxt6EXhuDtxut7NgwQLeeecdcnNzq+QaQgghhLg0pKWlsXv3bu04u6SEXUXn0r5x48aaCO2Sd+rUKZetTm4PLL2ahPa+egbtQepff/3F4cOHqyE6IYS7SKKEqNUOHz7Mp59+qh2nN7mavLCWpXyibKreQEKnATh0zl+Up0+f5oMPPpDVJEJUM7PZzPz584mOjiYvLw84t9VGm17EdRmEw+Tr5ggrr+DcqsbiexEePXqUUaNG8csvv7gxsppjNpv5+uuvefrpp9m2bZvWHqSHl8NN/DfYiK6CFUN61TPwRqQXkcaizx84cICRI0fy6aefalu4CCFEWYqvSDfXa4g5ILzEPiGE+9jtdr799ltGjhzpsi1FQb0IznQbTkaza2tVFbLzKArZUZ2I6f4YefWbas2F24t88cUXdbq6hM1mY/Hixbz22mukpqZq7f8JMvBsOZJqzQ6VbTk2VqZb2Z5jw+Io/X6+pZeOCZFetDAVnXf79u2MHDmSgwcPVu6LEUIIIcQlY/PmzdoWcHnBTbD5Bpf4vqzITtrr33//XeasasBXX32lvb7KV0djU/kejzYw6ujmX1RVYunSpVUemxDCfZSMjAx5+itqpbS0NF588UXS09MB535fsdc8jKovXyZgWQLP7KbB3+u040cffZT+/ftXybmFEK5Onz7Nu+++61Lq3OodSHyngZiDotwYWTVRVYJO7yD06CYU1aE19+7dm8ceewxvb283Blc9bDYbGzduZNmyZS6T3eDc729ofWOVrQq0OFS+ybCxLtOGo1i7n58fAwcOpH///vj4+FTJtYQQdY+qqvzf//0faWlpAJzu9n8YC7KI3LMcgDZt2hAdHe3OEIW45J05c4Y5c+Zw5MgRrU1VdKS2vJ70Zt1Apy/l07WQqhIYu5vQIz+jsxdt29aoUSOef/552rRpU8qHa5+TJ08yZ84cTpw4obX56+CJMBNX+Jb9vT1hdjAjwUxmsYFgoA5eiPCihVfpE+IWh8riNCs/ZxftFa4oCnfeeSdDhw7Fy6vi1SuFEEIIUbfZ7XaefPJJkpOTAUi4/E6yIzte8P2Nf/sE7+xEAIYNG8aAAQNqJM5L0T///MMrr7yiHU+M9KJZGePC4uItDl45a6bwYeqECRPo3LlzFUcphHAHSZQQtVJBQQHjx4/n2LFjANiNPsRcOwybb1DVXURVCT/4PfXi/gJAp9Mxbtw4rrrqqqq7hhCXOFVV+fHHH/n0009dVsRlR1xG0mV9cRjrXsJAcV6Z8UT8tRJTfrrWFhUVxUsvvUTz5s3dGFnVsVqt/Pzzz6xYsYLExESXviijwoMhRjr4VM/DjNNmB4tSrRwxO1zaAwMDufPOO+nbty9+fn7Vcm0hRO0VHx/PU089BYBdb+JErxfQWQtoufk9APR6PYsXL66TSW1CeDq73c53333H0qVLsVqLEgYKAsJJvLw/lmLVX+oiQ1464Qe/xzc9RmvT6XQMHDiQ++67D5PJ5MboKq+w8tiKFSuw24sSFdp563gyzEiIoezJbItD5YUzBS5JEoUCdTCjsTemcmzx9keunc9SLOQWO09ERARPPfWUTIoLIYQQokS///47U6dOBZzPK07e+Fypizrrxe4l/NBaAMLDw5k/fz56fR1L+PUAqqoyduxY/v77bwCu9dPzbIOLHzd/kmxhc45zjNq8eXPeffdd+X4JUQdIooSodex2O1OmTGHXrl0AqCicveo+8kOq/qGiYrfRaOcXeGfFA+Dt7c3kyZNp2bJy23sIISAnJ4d58+bx22+/aW0OnYHkdn3Iiupcu0slXwTFZqbB3z9SL/6A1mY0Ghk2bBh9+/ZFqaV/Djk5Ofz000+sWbNGW5VdKFAPA4OM3BygR1/NX5+qquzKc/C/NCuJNtchj6+vL7fffjv9+vUjJCSkWuMQQtQe69evZ968eQDkhrYk7srBADTZ/jFeOc6VQW+88QZdunRxW4xCXIrOnj3L7NmzXbbZqNNVJC7kAtUlGjduzIgRI2jVqpUbg6u4Xbt2sWDBAhISErQ2owL3BBvoW89Q7q3ZtufYeD/ZesH+p8KMdPcvXxXKNJvKghQL+/Ndsy5uvPFGHnnkEerXr1+u8wghhBCi7lNVlVdffVUbq6Y170Zq65tL/Yxit9J8yxz0tgIARo8eTffu3as91kvN5s2bee+99wDQA9MaeRFuLH81iUJpNpWXYwuwnJtefOKJJ+jbt2/VBSqEcIsqSZTIzMzk9OnT5ObmavsvXUiPHj0qezlxCXM4HMyfP58NGzZobUmX3U5m4yur7Zp6cw6N/1iIsSALgKCgIN5++20iIyOr7ZpC1HXHjh3jnXfecakwYPYPI77Tf7D6h7oxMvcJiNtPg7/XuUx4d+/enWeeeaZWVT2IjY1l7dq1/PzzzxQUFLj0+eugX6CBW+oZ8C7HSr7izA6VXXl2kq0qDYwKXX315VoNWMimqvyaY2dluo1Uu+vQx2Aw0KNHD/r161fnSlcLIS7etGnTtCS+5Na9yGh+HQChh38iOMaZqHvXXXcxfPhwt8UoxKXE4XDw/fff88UXX7hUICsIiDhXRaKBG6NzH0NexrnqEqe1Np1Ox7333su9996LwVA1W1JWt7Nnz7Jw4UJ27tzp0t7aS8djoUYalnPv6ELfpFlYmWm/YP/AQD331C//CkJVVfklx86SNCt5xaa7vL29GTRoEP3796/1lTyEEEIIUXkHDx5k3LhxgDOZ9+QNz2D3DijzcyFHN1P/5HYAWrZsybvvvltrF015otzcXJ555hkyMjIAuCPQwJD6xgqfb2W6lW8ybAD4+/szb948AgMDqyJUIYSbVCpR4qeffmLq1Kns3bu3fBdTlPP2JReivFRVZcGCBXz//fdaW1rz7qS2vqnar23MSaHxjkVadmdoaChvv/02DRpcmpNyQlSUqqqsXbuWzz77DJvNprVnNL6SlDa9UfUVH6jWBcbcVCL+WqntTwjO0nujR4/26Eo2drudnTt38sMPP7Bv377z+oP00DfQQK+Ai0+QAOc+09MTzGQVm5yup4MXy7HP9L/ZVJXtOXZWZ9pIsJ4/BGrdujW33347119/vexBLcQlyGq18vDDD5OXlwfA6e6PYfEPA8A35QRRu78CIDIyknnz5skElhDVLDk5mdmzZ7N//36t7ZKsInEhF6gu0aJFC0aNGkXjxo3dGFzpsrKyWL58OWvXrnXZZsNXB4ODjdwUoC93FYniFqZY2Jh94USJ3gF6Hgm9+MSGDJvKkjQrv+W6njs8PJwHH3yQHj16yO8EIYQQ4hL2xhtvaHNimVGdSerQr1yf05tzabZ1HjqHc550/PjxdO3atdrivNTMmzeP9evXAxCsh2mNvPGpwNxkIYtDZcxZM0nnqtbecMMNvPjii1USqxDCPSqcKPHdd98xfPhwVFVFVVW8vLwIDQ1Fpyv9gcVff/1VoUDFpU1VVRYtWsS3336rtWVFdiKxQ78aK8/vnX6GqD+XaoOW8PBwJk+eTGjopbn6XYiLVVBQwLx589i6davWZjd4kdT+DnIiLnNjZJ5FsdsIPbKBoDO7tTaj0ciTTz5J79693RjZ+ZKTk9mwYQMbNmwoMRGykVGhb6CBbv56jBX8WW1xqDx/psBlf+hCfjqYXc59pv/NoarsznPwQ6aNI+bzT+7v78/NN99Mnz59PPohgxCiau3cuZPJkycDYPUJ4tT1T2ljTcVuo8XmmdrDyJkzZ9K8edVv/SaEcNq2bRvz588nNzdXazP7NyCh412XbBWJCzHkpRNxYA0+GWe0NpPJxLBhw7j99ts96gF+QUEBa9asYcWKFVpSWqGe/nrurW8kUF/xeL9Js7Iy03bB/oGBBu6pxCrCg/l2vki1cvZfCbetW7fmoYceomPHjhU+txBCCCFqpwMHDjB+/HjAuU346R6PY/Ur/xavxasXtmjRgunTp3vU+K222rdvH2+88YZ2/FwDE9f4VT7R+q88O+8kFlW6e/XVV7nuuusqfV4hhHtUOFHixhtvZP/+/Vx99dVER0dzxRVXVHFoQjipqspnn33GqlWrtLbsiMtI6DgAlIvfS6oyfFJPErlnGTqHcxVJeHg4b731FuHh4TUahxC1TVxcHFOnTiUmJkZrKwiIIKHzf7D6BrsxMs/ln3CIBgfXorcXDbz79OnDY489htHovsobNpuNXbt2sX79enbv3o2qug4jFKCLr44+9Qy099ZV+sbul2wbH6dceJ/px0KN3BhQudLSJ8wO1mfZ+D3HTknT6pdddhm33norPXr0kCoTQtRxM2fOZMuWLQCkNetGahvXPWUj/lpJQMIhAO6++24eeuihGo9RiLrObDbz0UcfsXHjRq1NRSG9eTdSW94gVSQuRHUQdHonIcc2a/erANdccw3PPfccAQFll36uTlarlfXr17N8+XLS09Nd+tp66bg/xHjRlcJKsj3HxvvJFx47PhVmpLt/5caONlVlU7adFelWcv6Vb9u5c2eGDh0q27kJIYQQlwhVVRk7dix///03cG5x5+X9L+ocenMOzbbO1xZojh49mu7du1d5rJeSnJwcRowYoS3sutpXx/PhVTen91Gyha05zjF3YGAgs2bNIigoqMrOL4SoORVOlIiIiMBisXDgwAEiIyOrOi4hAOd+tB999BHr1q3T2nLCWhPf+W63TZD5JR+l4d5vUFTnjEhoaChvvfWW/DsQ4gL27t3LO++847IaMLPRFSS37YOqrx17J7uLMTeNhvu+wSsnWWtr164dr776ao0Pvs+ePcuGDRvYtGmTtq9fcfV0cFOAgZsC9IQZqy6JbU6imR15JZSTOOcaXx3PVdGNTpZd5ZdsG5uy7VoJveJ8fX258cYbueWWW2jZsqVk9wtRx+Tk5DB8+HAsFmeCWsx1wzHXi3B5j1/SESL3fg1AcHAwCxYsQK+Xh7ZCVJWzZ88ybdo0l+Raq3cgCR3voiBYKjyVhyk7iYj937mMH8PCwhg9ejStW7eu8XisVis///wzy5cvJyUlxaWvoVHh3mAjXX0rn1xbqLqqkZUk166yOtPGT1k2/r2jW9euXRkyZIhHb58nhBBCiMr77bffmDZtGuDcIu5Ujyex+QZd9HlC/9lI8Ok/AOeztzlz5rh1oVRtpqoq77zzDtu3bwfAXwdTorwJMlTdPF6uXeXVswVknMtPvvLKK3nttddkrlCIWqjCiRJt27aloKCA06dPV3VMQgDOCZW5c+dqq/oAshu0JaHTQLevIvJNPkbDfd9oK3WCgoJ4/fXXadGihVvjEsLTrF27lgULFuBwOGcqHTo9yZfdTlZUZzdHVnsoNgvhh9ZqK5jBOdk9btw4mjVrVq3XNpvNbN++nfXr13Po0KES39PBW8fNAXqu8tNjqIabgdmJZnaWkihR1Rnh4NyW40C+g83ZNnbnOShpl+tmzZpxyy23cNNNN+Hv71+l1xdCuMeaNWtYsGABAAUB4Zy5bvj5W7w57DT/ZS4GizP5T0psClF1fvvtN2bNmkVBQYHWlhXRgeTLbsNh9HZjZOdT7Fb8k/7BkJ+BzSeYnAZtUPWeM5Gt2G2EHP1ZK+EMYDAYeOyxx7jttttqJIbCBImvv/6a5ORkl75gPQwMMtIzQI++isePFofK8zEF5JYw0+WnwOwmVZcoUSjF5mBluo1fcuz8+7JXX301gwcPplWrVlV6TSGEEEK4n9Vq5fnnnyc+Ph6A9CZXk9Lu1gqdS2fNp9nW99HbnGPh4cOHc9ddd1VZrJeSn376ifnz52vHIxqY6FrGlhtmh8quPDvJVpUGRoWuvvoyx4z78+1EJxRVAh42bBgDBgyoXPBCiBpX4USJxx9/nG+++YbDhw8TFhZW1XGJS1x+fj7Tpk1j7969WltWRAcSL78TdDW73caFOLfhWK6VxPLx8WHs2LGyJ6kQOKvBfP7553z33Xdam83Ln7gr7sUc2NCNkdVSqkrQ6R2EHtlI4RDd29ubsWPH0qlTpyq/3MmTJ/npp5/YsmXLeXtHg3Ny+wZ/Az0D9DSowuoRJfkl28rHKRfeZ/qxUAM3BlTfg4lMu8rWbBtbsu0klFBlwmg00r17d/r06UP79u0lc1yIWsput/Pss89qE1xJl91OZuMrS3xvyNHN1D/pXJnSoUMHJk+eXGNxClEXqarK119/zeLFi7U2h05PcrvbnMm1Hva71Sszjsg9y7WEKQCbyY+4LvdiDvSsKoN+Sf8QfmANeptZa+vfvz/Dhg2rtmo4VquVDRs28M0335xXQSJAB3cGGegdYKjyZIVCNbH1xoXEWxysyLDxR+75CRNdu3Zl0KBBsiWHEEIIUYesWLGCRYsWAWA3eHPq+idxmHwrfL6gU38QdsS5/Zyvry/z58+X7Rwu0vHjx3n11VexWp3jwZsC9PxfqKnUz5wwO5iRYCaz2DqtQB28EOFV5tZwS1Kt/JDlnLfU6/VMmjSJyy67rHJfhBCiRlU4USImJoZevXpx7bXXsmDBAnx8fKo6NnGJysjIYPLkyRw9elRry2zUhaTLbgPFM5IkCnmnnyFyz3It09NgMDBy5Eiuv/56N0cmhPvYbDbmzp3L5s2btbaCeg2Ju+K/2L3duzdySTx9RWBxvsnHiPhrJXq7M1vZYDDwwgsvVMm+hWazmW3btrFu3TqOHDlyXr8O6OKro2eAgU4+uipf/XchFofKMzEFFJQwWvFWYF41rAosiaqqHDE72JxtZ0euHUsJ8TRq1Ijbb79dqkwIUQtt27aNd955B3BOcJ288RlUQ8nVagwFWTTbOl/bhi06OloefAlRQTabjXnz5rFp0yatzeITTHznu7HUC3djZCVT7FaabZ3vkiRRyGby49QNT3vcONKYl07EvhV4ZydqbVdeeSWjR4/G27vqKnWYzWbWr1/Pt99+q+0FXShAB3cEGrilngHvah63rUy38k3GhZNs7wkyMDC4er9HsRYH32bY2FlCwsQVV1zB4MGDZQJdCCGEqOVSU1N55plntGpoSW1vJbPp1ZU6p+Kw0WT7Akx5aQD07t2b5557rtKxXiqysrJ4+eWXSUx0jnsbGxXeiPTCq5Txp8Wh8sKZApckiUKBOphRxrZtVlVlUryZE2bnqK9+/fpMnz6d4ODgyn0xQogaU+FEiaVLlxITE8OsWbPw9vbm7rvvplmzZoSEhJT6uSFDhlQoUHFpOHPmDBMnTiQpKUlrS215A2ktrve4lUSFTNlJRO3+CoM5R2t74IEHuOeee2Rlsbjk2Gw2oqOj2bFjh9aW06ANCR0HeNykMZxbEbh7GQZrUdUEm9GXuCsHedyKwEKm7CQid/8PozkbAEVReO655+jVq1eFzpeSksK6dev48ccfyc7OPq8/3KBwU4Ce6/0NVbqXX3m5o3xyWfIcKr/l2NmcbeNUCRkTXl5e3HzzzfTv359GjRrVaGxCiItnt9t54YUXtC0F05p3J7X1TaV+Jnz/aurF7wecDxxff/316g5TiDrHarXy7rvv8scff2htecFNiO98d6VW4lWngPiDROz/7oL9CR0HkN2wQw1GVD6K3Ur4gdUEJB7W2i677DJee+01fH0r92dtNpv58ccf+fbbb0lPT3fpC9BBv0ADvWsgQaKQOytK/FusxcHKDBs7SkiY6NixI/fddx8dOnje3xchhBBClC06Oprt252VBs3+YcRc939VUgnbN+U4Ubv/px1PnjxZxgvlYLfbmTBhAn/99RfgXFz1VpQXDcuohFsVY8cUm4PXzprJOZds0bZtWyZNmoTR6Hlz4UKI81U4USI4OBhFUVBV58fL+0A4LS2tIpcTl4C//vqLqVOnamXeVRSSL7vtgmWPPYkhP5Oo3V9hyi1aOXPrrbfyxBNPYDDUzCSMEO5ms9mYPn06v/32m9aWGXUFSZfd7jFb5hSn2K002zIHg63gvD6bwZtTPZ/zyOQOOPcz58+lWoa5oiiMHDmSnj17lvscZ86cYcWKFfzyyy/Y7XaXPj1wtZ+emwP0XOatc2vSlydNdpfklNnBpmwb23PsJVa9uPrqq7nnnnto165dzQcnhCiXTZs2MWvWLAAceiOnrn8au5dfqZ8x5qTQdPvHKOcefU2cOFG2XxPiIlitVqZMmcLu3bu1tsyozufGjdWzJURVCD62hdAT2y7Yn9KiB+mtyj8eq1GqSsixLdrWQQCtWrXirbfeqlCyhMViYd26dSUmSATqoV+gkV4B+lJX8FWHyq4KrA5nLQ5WZdj47QIJE/fff79UmBBCCCFqkV27djFp0iTtOLbrUPLrN62y8zfc+zX+Sc5qr40bN2bGjBny0L0MH3/8Md9//712PKKBia5+Zd9XVFU1sv15dt5JtGhjvd69e/Pss8/KQlohaoEKJ0r069evQv/I16xZU5HLiTruxx9/5KOPPtIe1jn0RuI7/Ye8sFZujqz8dNZ8Gu79Bt/0GK3t8ssvZ/To0dSrV8+NkQlR/VRV5b333mPLli1aW1qz60htfbPHVoMJOPsXEQcv/DspoUN/sqM61WBEF0dnyaPRn0vwynZW4NHpdLz66qtcc801pX7u7NmzLF68WMt6Ly7UoNA7QM8NAQYC9Z7xffOE8snlke9Q2Z5jZ0OWjVjr+UOrjh078uCDD0p5fiE8TEFBAc8++ywpKSkApLboQVo5H3I2OLCGwDjnapWWLVsSHR2NXu+5D3iF8BQljRvTm15LSpteHjtuLBR28AeCzu65YH9GVBeSO/StwYguXtDpHYT9s0E77ty5M+PHjy/35LvNZmPjxo0sW7bsvC02gvVwZ5CRnv76Gk9GKK4y+0xXpwSrM2FiW46df+dxdOnShQceeICWLVu6JTYhhBBClE9+fj7PP/88ycnJAGRFdiLx8v5Veg1DQRZNt32E7tzWu/fffz+DBg2q0mvUJWvWrGHBggXa8X+CDNxdzrnCqlyg9UOmlSVpRXOYDz74IPfcc0+5PiuEcJ8KJ0oIURXsdjuffvqpS7afzcufuC6DMNeLcGNkFeSwE35wrVaKGSAiIoJx48bRuHFjNwYmRPVavnw5ixcv1o7Tm15DSpveHj3ZHfHnVwSknrhgf3ZICxKuuq8GI7p4OksejXYtxivHeXPm7e3NlClTaN68+XnvzcnJ4csvv+Snn37C4XCdmm3rreP2egau9NWh87DvmadXlPg3VVX5u8DBj1k2duedv5Sxe/fuDB8+nNDQUDdEJ4T4t88//5xvv/0WAJvRh9M3PI3D4FWuzxoKsmj66wfoHM6JkMcff5w77rij2mIVoq5YsmQJy5Yt045TW/QgreWNHj1uLBSxexkBKccu2J8d2oqEKz1/EjvwzG4a/L1OOy7P/teqqvLHH3+waNEi4uLiXPqC9XBXkJGeAXqMHvJ9tDhUduXZSbKqNDAqdPV1b/JGcYnnEiZ+LSFh4sYbb+SBBx6gQYMGbolNCCGEEKX76KOPWLt2LQB2ow+nejxRLdvGFU9uNRgMzJw5U54vlGDHjh1MnTpVm+u82lfHsw1M5Z7frMpqZKqq8nGKla05RZV7X3zxRW644YZyfV4I4R6eVwtdXDKys7N56623XJIkCgIiOHPtI7UzSQJApyfx8v6kFFuJmJCQwCuvvMKuXbvcGJgQ1eePP/5wSZLIjLrC45MkAHyyEirV7wkcJl/OXjUEi08Q4FwZPXnyZLKyslzet3PnTp599lnWrVvnkiTRxVfH6w1NjG/oRVc/vcclSQB09dUTeIHRSqDO2e9JFEWhvY+eUeFeTI3y4np/vctga/v27Tz77LP8+OOP2vZlQgj3OHXqFKtWrdKOU9r0LneSBIDNux7pzbtrx19++aVWmUIIUbL9+/ezfPly7Tgz6opakyQBYDDnVqrfU2Q2vpLUlkUTths3buSXX3654PtPnTrF66+/ztSpU12SJAL18GB9I+828uaWegaPSZIAKHCo/FPg4O8CB0cKHFgcnjPuCjfqeCzMRHQj51ix+J/aL7/8wrPPPsvixYsxm81ui1EIIYQQ5zt48KCWJAGQ3O7WakmSAMho0pWCepGAs6LXnDlzzts691L3zz//MH36dG2us6WXwhNh5U+SADDpFF6I8Dpv7rGwGtnFJNoqisLwUCOXeRedbNasWezfv7+UTwkh3E0SJYRbnDlzhtGjR7Nv3z6tLTu8HbFXP4DNu5ZvU6EopLfoQVznu3HonCWe8vLymDx5MitWrJAHY6JOSU9PZ+7cudpxXv2mJF12W62Y7FbVElKFL6LfU9i9/Invci/2cw/3UlJS+OCDD1BVFVVVWbp0KZMnTyYjI0P7THtvHW9GevFCuBetvT0r0eDfTDqFK3xKHq5c4aPzmJWBJYky6XgizMTURl5cW2xfxIKCAt5//31mz56NzXbhbUWEENXHYrEwc+ZMbaIpL7gx2ZEdL/o86c2vw+Jb33mOvDxmz559XtUeIYRTfn4+s2bN0u6H8uo3I+my22vFuLFIWf++a8+//7QW15PV8HLt+IMPPjhvKw2LxcKXX37Jiy++6DLB66uDQcEGpjfypk+gwePGY1uzbTx7xszP2XYOFTjYmG3n6TNmtmZ71rgr3OgcK06J8uIq36LxrsViYfny5Tz//PMucyZCCCGEcJ+CggJmz56tHeeGtiI7okP1XVDRkdjhDlTFOUY4cuQI3333XfVdr5Y5c+YMkyZN0hJLwwwKo8K98KrAuLSFl44Zjb15KszIPUEGngozMqOxd4W2bDMoCiMamIg0OuOw2WxMmTKFEycuXNVYCOFekighatzOnTsZPXo08fHxWltqi+tJ6PQfVIPJjZFVrdzwdsRe8yDWc4kfqqqyaNEi3nvvPVkZIuoEVVV5//33yc7OBsDqXY/4zneDzrMfvBcqvNGoaL8nsfiHkdjxLu14+/bt/PLLLyxZsoT//e9/WnuQHp5vYOLVCBMt3bg/88VIs9jZklvyQ4ctuQ7SLJ6fTd/Q6Cz7Ny6i6EYJYNOmTcyaNUseqgrhBl9++SWnT58GwKEzkNT+jgo9rFV1Bufk1bnjv/76izVr1lRhpELUHatXr9aqrtiNPiRcfifoasd4RFNW0nttSopXFJIuuw3rucpkeXl5LluixMTE8NJLL/H1119rSWU6oE89Pe828ubOIGOFJqKrW47NwccpVv79nVCBj1Os5Ng8b9wVZdIxMtyL8Q1NNDcV/ZkmJibyxhtvsGDBAqzWC29FJ4QQQojqt2jRIhITEwGwG7xIal/9Cb+WgAaktrxeO16yZAkxMTHVes3aIDk5mQkTJmhz0gE6eDncRKC+4t8Pk06hu7+BgcHOLX4rkwjsp1d4OdxE8Lkp8ry8PN566y2X52FCCM9R6VmJtWvX8n//93/cfPPNXH311VxxxRV07ty5xP+uuOKKKghZ1FaqqrJ8+XLefvtt8vPzAXDojMR3+g9prWpPudWLYa7n3EokP6iR1rZlyxbGjRsnpZlFrffXX3+xY8cO7TixQz8cRh83RnRxlPOmTy+u39PkhrUmM+oK7fiTTz5xKW19ubeOt6O8udpPj1KLft5+kFL6pHBZ/Z6knY+eiZFe3OBflEy0detW1q9f78aohLj0bN++/bwtN6x+IRU+X0FwE9KbddOOP//8cw4fPlypGIWoa/Ly8v71764Xdu8AN0ZUMXpb6QnvZfV7GtXgRVL7vtrxxo0bSUpK4vfff+ell15ymYhv46VjcpQXD4aYCKjEJHR1+zrDdsFRvHqu31O19dbzZqQX/xdqpFiBCdasWcPYsWNdKsQJIYQQoubs3bvXdcuNtrfWWFXs9GbdKTi3TbnNZuO99967pBMoMzIyeOONN7RnK14KvBThRUOTZyVghxp1vBzhpY3pMjIyeP3110lOTnZvYEKI81Tqp8fYsWN54IEHWLFiBXv37uXYsWOcPn2amJgY7b8zZ864HItLk9ls5t1332Xx4sVaqVWrdyBnrn2InIjL3Bxd9bJ7+RPbdajLA8xjx47x0ksvySS6qLVUVWXx4sXacWZUZ/JDmrsxoouns5d+U1FWvydKbtsbm8kPgKysLK29o4+OFyM8e1L7QmIspSeslNXvaUw6hcdCjfQKKEqWWLZsmWzLJEQNiY2NZc6cOdpxbmgrMhtfWenzpra6UZu8stvtTJs2jfT09EqfV4i64vfffycnJwcAi28wWQ0vfqsbT6CWUTmtrH5PlFe/mZbYb7PZ+PTTT5k2bRoWiwUAowIPhxgZ19BEIw+bgC5JvLX0MVVZ/e6mUxRuCjAwLcqbLsWyJY4ePcqrr75KWlqaG6MTQgghLj05OTku95A5Ya0rtG1jhel0JF5+J45z48wTJ064VAG7lOTk5PDmm28SFxcHgAEY0cBUoS0yakJjk44Xwk0UFgxLTk7mzTfflORXITxMhX+C/Pjjj7z//vv4+fkxfvx47YdzcHAwK1eu5JNPPuHRRx/Fz8+PevXqMXv2bJcVJOLSkZyczJgxY9i2bZvWlhfchDPXPYIlINyNkdUgnZ6k9n1JanebVs4/IyOD8ePHs3HjRjcHJ8TFO3z4MEeOHAHAodOT1vIGN0d08erS1huFVIMXaS26n9f+SIgRQy2qIlGcrYy57LL6PZGiKNxf34jXuW9JamqqVBkSogZkZmYyadIkrbKZxSeIhI53Vk1VM52e+M73YD9XWSk9PZ23335btlsT4pxdu3Zpr7Oirqh9W26cYzP6VqrfIymKS8LY77//riVwNjAoTIj04pZ6BnS1ZCwZoi99cFhWv6cIMiiMamBiaH0jhX/yCQkJvPXWW/K7RQghhKhBH330EampqQDYjD7Oalw1PC6y+IeR2uom7fibb7655BZg5ubmMmHCBE6dOgWAAjzdwERHX89OVG7rrWdEAxOFUZ49e5Y33njDZYGbEMK9Kjw7sXDhQhRFYdasWbz44ovceuutAJhMJnr27Mndd9/NO++8w7Zt2wgJCWHSpEm0atWqygIXtcPhw4d56aWXOHHihNaW0fgqzl41BPu5Vc+XDEUhs4nza7edm0S32WzMmTOHTz/9VNv3VYjaYOvWrdrr7IYda6zcXFVyGLwq1e+pshp1wW7wdmmrrUkSAGXtIu15u0yXj06B4t8Vh6O2fiVC1A5ms5m3336bhIQEABw6A/Gd76nSLaNsPoEkdByAeu5f99GjR5kxY4aM8YQAl4nc3NCWboykcnR2S6X6PVVuSIvz2pqaFN6I9KJxLagiUVxZaRC1I03CSVEUbg808HyxyfVTp05dsqtIhRBCiJq2detWfvnlF+04qX1f7F7+F30exW4lIP4AwSd+JSD+IEoFqthmNL2GvOAmgHMO6b333tMWAdR1+fn5TJw4kaNHj2ptj4UaudrPs5MkCnXy1fNMA5M2D3j69GnefPNNreKeEMK9KnzHu2fPHgDuvPPOUt/XpEkTZs6cSVJSEtHR0RW9nKiFNm3axPjx48nMzAScq7MT2/cl+bLboBaWJK0q+fWbcua6YZj9w7S2VatWMWnSJHJzc90YmRDl98cff2ivsxu2d2MkFVdWslZtTeZSdQZywtu5tC1Os+KopVs7lLVbSC3cTQSAlek2Cs59S4KDg2nQoIF7AxKiDrPZbLzzzjv8888/gPMhWUKngVjqVX1ls7zQFiS366Md//HHH3z44YeyvY64pDkcDpfysla/+u4LppIMltLv18rq91QOky92nVE7DtDBS+Fe1KuFA63j5tJ/3pbV74m6+ul5IKTo+7N69Wry8vLcGJEQQghR9yUnJ/PBBx9ox1mRncj913xbeXhlxtFs63wi9q8i9NgvROz/jmZb5+OVGXdxJ1IUEi+/E/u5hV0JCQl88sknFx1PbVNQUMCkSZNcEq+HhRi5IcDgxqgu3tV+ep4IK6oUduLECSZMmCDPg4TwABVOlEhPTycoKAijsehmzWAwlPgP+8Ybb8THx4f169dX9HKiFnE4HCxevJhZs2Zhs9kAZ1mq2KvuJ6tRF7fFVRWZm1XF5hPEmWseJqdBG61tz549jBkzhsTERLfFJUR5ZGZmaiXnHDoD+eeymWsbm0/pVTDK6vdk/16puSPXzicpVmy18EFdI2Pl+j2NqqqsTLeyKtOmtd1zzz0otbjqhxCezG63M3PmTJey/8ltbyW32BisqmU2uYr0ptdqxz/99BOffvqpJEuIS5bZbNYqJzl0elRd7ZrULE4powJUWf2eTClWa2FgkJEgQ+0cm+TYKtfvqXoF6GlkdH5PLBYLf/31l5sjEkIIIeouu93OrFmztGddVu9AktvdetHnUexWIvcsPy+Z1mDJJXLP8ot+PmHzCSS53W3a8YYNG/j9998vOq7awmw2M3nyZA4ePKi1PVDfSK96tfN+ooe/geGhRROZR48e5a233rpkKoMI4akqnCgRHBx83j/g+vXrk5ub67JaBJzlAnU6HUlJSRW9nKglLBYL06dPZ/ny5Vqb2S+UM9cNo6C++x6mVlnmZhVSDSbiO99DWvPuWltMTAyjR4/myJEjbotLiLLExsZqry3+oaDUrnK8hXLDWleq35NZilWsKfRLjp234y0kWWvXBH5oGQWIyur3JNl2ldlJFr7JKJqhv+KKK+jbt68boxKi7rLb7cyePZtt27ZpbWnNu5HZ9Opqv3ZKm15kNbxcO169ejWLFi2SZAlxSfL29sZkMgGgc9jR2cxujqjiVF3p496y+j2WqqI4isYnrbxr6deBc3uzyvR7Kp2i0Mqr6Pvy73k3IYQQQlSd7777jgMHDgCgopDQ8a4KbdHrn3TkghXHDJZc/JMu/hlAdsMOZEdcph3PmzePtLS0iz6PpyvcPnP//v1a233BBm4LrJ1JEoVuCjDwcLFKYf/8848kSwjhZhW++23UqBFms5lTp05pbR06dABg5cqVLu/ds2cPubm5BAUFVfRyohbIyclhwoQJLpPRuSEtiL32YWw+QW6Lq6ozN6uUopDa+iYSLr8Th+J82peZmclrr73msvJRCE9SfOBWW7enAMiJaI9dX/JNjl3vRU5E7dxSBMDuVfR90euLMgmOmh2MO2tmfZat1mzFccZW+mx2Wf2eQFVV/sixMeZsAbvyihJVOnbsyKuvvuryPRJCVA2bzcb06dPZsmWL1pbepCuprW6qmQAUhcQO/clu0FZr+vbbb/nkk08kWUJcchRFISysKInTlFV7K+jZvMuoSFZGv6cy5GdQfEQVY6ldibXFmcqY5Sqr31OpquryfalXr3b+XRNCCCE83fHjx1myZIl2nNaiOwXBjSt0LkN+eqX6S6QoJF12O9Zz487s7GxmzZqlVXCrCywWC1OnTmXfvn1a273BBvoF1bKyshdwSz0DD9Yv+lr+/vtvJk6cKMkSQrhJhW8Rr7/+egB+/vlnrW3gwIGoqsprr73GokWLOHz4MD/88AOPPfYYiqJw8803X/R1cnJyeP311+ncuTPh4eG0b9+ekSNHkpycXNHQz5Odnc2kSZO45pprCA8Pp0mTJvTt25f//e9/pX7u5MmTPPbYY7Ru3Zrw8HCuueYapk+fjtXqxgfvbpKSksLYsWNdyiBlNL6KuC6DKpRtWZWqI3OzqmVHduRs1yHYjT5AUcbkhg0b3ByZEGWo9Q97LhR/Lf+6in1fjEYjDz30ELpzKxwLVFiUauXNODNHCuzuirDcvMrIgyir393OWhy8k2hhbrKVzGJ/3HfccQdvvPEG3t7e7gtOiDrKbDYzbdo0tm/frrVlNupCSttboSa3udHpSOg0kJxiFYrWrFnDvHnzsNs9/+evEFXp8suLKqz4pRxzYySVkxnVuVL9nso/+ajL8eoMGwWO2jkejjCW/nO+rH5PtSfPwQmL83ui1+u1hUpCCCGEqDpms5kZM2Zo24kX1IskrcX1FT6fzSe4Uv0X4jD6kHj5ndrs5b59+1i9enWFzuVprFYrU6dOZc+ePVrbPUEG7qojSRKF+gQaGFosWeLQoUNMmjSJgoICN0YlxKWpwokSd955J6qqsnDhQq3tgQce4LrrriMnJ4eRI0fSvXt3hg4dyvHjxwkJCWHs2LEXdY2cnBxuu+02Zs+ejaqq3HHHHQQEBLBw4UJuuukm4uPjKxq+Jjs7m9tuu413332X1NRUbrrpJjp16sTu3bt54okneOWVV0r83KFDh+jZsyfLly+nUaNG9O3bl/T0dCZOnMjgwYMvqcnP+Ph4xowZQ0xMjNaW3LoXye36gAeUHq2WzM1qUBDchDPXPITVOxAAh8PB3LlzWbVqlZsjE8KVv7+/9tpgznZjJJXjn3AIvd1SYp/ebsE/4VANR1R1in9fAgICuPvuu5k2bRqNGjXS2k9aVCbGW5ifZCHF5rlZ5z0DSv89Ula/u2TbVRalWhh71sz+/KI/3+DgYMaPH8/jjz+OwVC7ywUK4Ymys7N544032Llzp9aW3uRqki67vWaTJArp9MR3vpvs8HZa04YNG5g2bRpmc+3dfkCIi3X11UVb3tQ7+5d7q/pVQk5kR+y6kidp7TojOZEdaziiKqCq1Ivd49KUZFP5MNmCvRYmRVvKSPAoq98TxVocfJRSdN/Sq1cvAgMD3RiREEIIUTd99tlnnD17FgCH3khCp7tAV/EqoDkN2pRezbZBmwqfO79+U9Kbd9OOv/jiC06ePFnh83kCq9XKtGnT2L17t9b2nyADA4PrVpJEodsDDdxfv2hu8ODBg0yePFnmCoSoYRV+unDVVVcRGxvLDz/8UHQynY6vv/6akSNH0qRJEwwGA/Xr1+e///0v69evp0mTJhd1jSlTpnDw4EF69erFrl27+Oyzz/j999+57777OHv27AWTGC7G1KlTOXToEFdeeSW7du3if//7H2vWrOGnn34iODiYDz/80GU1WqGnn36arKwsXn31VTZt2sTChQvZtWsX7du35+eff+aTTz6pdGy1wdmzZxk3bpxW4UNVdCR0vIuM5te5ZzK6BNWVuVkdrH4hnLn2YQoCwrW2Tz/9lOXLl7sxKiFcNW5cVG7OlJsKjtqZGOaXcrxS/Z7MlJ2kvS783du6dWtmzpzJ/fffr+0TDvBbrp3RsWaWp1nJ98CJ4+v9jVyo5oL3uX5PYlNV1mXaeDm2gPVZdgpTJHQ6HXfccQdz586la9eubo1RiLoqKSmJMWPGcPjwYa0trXl3UtreUqFxqWK3EhB/gOATvxIQf7DiD3Z1ehI6DiSrYdED1B07dvD666+TlZVVsXMKUctcccUVhIaGAmCw5lEvdq97A6oE9QKT5Rdq93R+Sf/glZsKOCuRFdqV52B+srXWJRZkl5H/W1a/pzltdjA1wUzuubhDQkJ48MEH3RuUEEIIUQf98ccfrFu3TjtObtcHq2/9Sp1TsVvR2Ut+6K2zmyudPJza8kYK6kUAzu0nZ8yYUWsfslutVqKjo122Ix8YZODuGkqSyLI5+CzFwpR4MwtTLOTU0KKyvoFG7gsuSpbYv3+/JEsIUcMqtQzTz88PPz+/89reeOMN9u7dS1JSEseOHePjjz+mWbNmF3XugoICrVpFdHS09lBHURSmTp2Kt7c3q1evJjY2tjJfAl9//TUAr7/+OsHBRQ/MO3fuzHPPPQdwXtLDb7/9xt69e2nUqBEvv/yy1h4YGMiECRMAeP/99ysVV21QmCSRlpYGgENnIK7LvWQ3vLyMT9asnAZtsJn8SuyzmfwqlblZHexe/py9+gHyg4pWfi9evLjMrWCEqCl+fn5ERDgH4YrqwDftlHsDqii1jAFvWf0ezC/lhPa6RYsW2muj0cigQYOYM2cO3bt319qtKqzKtDE6toBfs22oHrR60KRTGBPpRcC/2gOAMZFemHSekZQHsC/PztizZhanWbXJbHCWG58+fTqPP/74eeMmIUTV+Oeff3j55Ze1ewMVSG57C6mtb6pQkoRXZhzNts4nYv8qQo/9QsT+72i2dT5emXEVC1CnI/Hy/qQ1u84l5tGjR1f6fkaI2sBgMDBw4EDtOOT4VvTmHPcFVEH+SUcw2Eouh2uwFXjEto4XQ7FZCPtno3bcv39/7rrrLu14R66daQkWMmyeMzYsi3cZY8Oy+j3J7lw7k+LN2vZt3t7evPrqq9SrV8+9gQkhhBB1TFpaGvPmzdOOs8PbkRXZqdLnDTm+lQuNPJRz/ZWi05PQcQCOcxXPzpw5w+eff165c7qBzWZj+vTpLpUh7wo0cHdQzVRi3Zpt49kzZn7OtnOowMHGbDtPnzGzNdtWI9fvF2RkULFkib/++otp06ZhtdbOKnxC1DaeWa8aZzJCbm4u7dq1o1WrVi59QUFB9OjRA1VV2bhx4wXOULb09HQSExMB6NKly3n9hQ+RNm3a5NK+YcMGAG6//Xb0etdVI7169cLPz4+TJ09y/HjtXY1cluTkZN544w0yMjIAcOiMxHUZRF5oS/cGVgJVbySuy73YTL4u7TaTL3Fd7kXVe9ZqZACHwYuzV95HXv1mWtvSpUtZs2aN+4ISophrr71Wex1QS7eosBt8KtXvqRS7Fb/kokn64t+rQuHh4YwePZrJkye7/I7NsMOHKVYmxVuItXhOokgLLx3vNfXmqTAj9wQZeCrMyHtNvWnh5RnDmDSbyqxEM+8mWoi3Fj1IiIiI4JVXXmHixIk0b97cjREKUbdt3bqV8ePHk5mZCZyrcNZpIBlNr6nQ+RS7lcg9yzFYcl3aDZZcIvcsr/iqH0UhtU0vktveou0lm5CQwCuvvMK+ffsqdk4hapFbb71VS7bV2woIO/wTeFByZnkYclMq1e9pQo7/grHA+bMzICCA//znPwwbNox+/fpp7zlidvBaXAGH82tHFbme/qVX9iir3xPYVJX/pVmZmWSh4Nw/EV9fX15//XVat27t3uCEEEKIOsbhcDB79myt2p/VK4Ck9n2rpFq2sYyxYVn95WH1CyG53S3a8dq1a12qMng6u93OrFmz+P3337W2/oEG/htsQKmBiuU5Ngcfp1j5912JCnycYq2xyhJ3Bhn5b7Fkid27dxMdHS3JEkLUgCp7wuBwOEhJSeHMmTNVcr6DBw8C0KFDhxL7L7/cWbXg0KGKP6DLz88HnOWwAwL+vVYVrcJEWloaKSlFv7RKi02v19OuXbtKx+bJMjMzefPNN7U/E4fOyNmr7iM/pJl7AytLSb/tPJhqMBHX5V5yQ4oeri1YsOC8xB0h3KFHjx7aa//4Q+gLst0YTcXobfmV6vdU9c7uQ29zlmcLDw+nZcsLJ7B16NCB6OhoRowY4VJV6YjZwfizZlZnWHF4yAMMk06hu79zX8Lu/gaPqCShqipbs228GlvArryiGydfX18eeeQR5syZQ7du3Wrkxk6IS5HdbufLL79k+vTp2uSB3ehDbNf7yYloX+Hz+icdOS9JopDBklvpFeMZTa8hvvPdOHTOSZDc3FwmTJjAmjVrPKqijxBVzcvLiyeeeEI7Dkg8TL2ze90XUAUYrCVXkyhvvyfxTT5G8Okd2vEjjzxCvXr1UBSFRx99lEceeUQbw2TY4e0EC9+kW7F7+M+p6wMM+Fxg6OWjOPs9WZLVweR4M2syi1YwhoWFMXXqVNq3r/jvNiGEEEKUbM2aNezduxdwPi5I7HgnDmPVLJ6y+oVWqr+8sqKucKmaPWfOHG2BqydzOBzMnTuXrVuLKmv0rWdgUA0lSQB8nWG74GMi9Vx/TRkQZOQ/xapo7Ny5kxkzZmC3146EZSFqq0rfIf7888/MnTuX33//nYKCAhRFITU1Ves/efIkU6dORafT8e6775a75HRcnLOsbeGKk5UrVzJr1iweeughhg0bprWfPXu2wrEHBwej0+lwOBwkJibSsGFDl/7iSR/x8fHanqr/jm3ixIn88ssvTJo0iWuvvbZCsS1evJglS5aU671TpkyhU6dO5OXlVerrrwi73c5HH32kXVdVdMR3+S8FwY1rNI6Loa0KtOa5tBuseUTuWc6pG572yKoS4KyGEd/5HqJ2f4VPhrMs89y5c7HZbBe9nY0QVa1JkybExMSgU+0En/qdlHa3ujuki6OUkStYVr8HUuw2gk8VZWBfe+21HDt2rMzPNWrUiBdffJGNGzeyZcsWHA4HdmBZuo2D+Q6eaWAiQC8P+4uzOFQ+S7Xya47rzUrXrl3p168f/v7+nDp1yj3BlSAqKgpfX9+y3yhELZGbm8vMmTNdVspY/EKI6zIIq29wKZ8smyE/vVL95ZEb3o5Yn0DnGNWcg8PhYMGCBZw8eZInnnhC23ZQiLqmS5cu3Hrrraxfvx6AsMM/YQ6IwBzYsIxPegZ7GZPmZfV7CmNeOhEHVmvHV155Jb169dKOFUVh4MCBNG3alBkzZpCdnY0KrMywsT/fzlNhJsKNnjlWNukUXm3oxbsJZrKLLQAM0MFLEZ61bVtxqqqyNcfOF6lWrYoEOL83I0eOlO02LlJmZianT58mNzcXh6P0laDFFwGUV05ODtHR0Xz33XckJCQQEhJCnz59GDduHGFhYRUN20VBQQHz5s3j22+/5cSJE9jtdqKioujTpw8vvvhilV1HCCEuZSdPnmTRokXacXqzbuQXq/BcWaktbyDwzJ8lbr+hnuuvEopCYvs78M6Mw2DOITMzk9mzZ/Paa6957OIdVVXPWxR6az09Q+rXXJIE4FIZtiL9Ve0/QQasKlrS7G+//cbcuXN57rnn0Ok8c/wtRG1XqUSJyZMnM3369FJXPjVv3pyjR4+yd+9ebrzxRoYMGVKuc+fmOldx+fg4Jxqio6M5dOgQx44dY9iwYVrCReH7KsLHx4dOnTqxd+9eVq1a5bK6BZxbHRTKyyt6yF54TV9fX9LS0pg+fToAM2fO5KuvvqpQbDExMWzbtq1c7y0sA+UOq1ev5sSJE4Dzl3lCxwHkhXh2OfHyrArMblhy5RJPUFhZotHOL/HKScZut7No0SJGjBhBYGCgu8MTlyhFUejduzefffYZAEFn/iQrqjOWgAZujqz8ckNbEpB4uNT+2ib41G8YC5y/I/z8/ErcduNCvLy8uOOOO7jyyitZtmyZlix4sMDBW3Fmxjb0ItjgmTdXNa3AofJOgoUj5qJJ15CQEAYNGkSLFi3cGJkQl4aYmBimTp2qJS8D5Ia0IKHTQBxG70qf3+ZTeqJFWf3lZa7XkJhrhxG592u8s+IB2LhxIzExMYwePVoegIg669FHH+XIkSOcPn0ancNO5N7lnLn2EWzenv8g2OoXUql+T6Cz5hO5Zxl6q7N6WkhICCNHjixxQrpLly689957vPfee+zfvx+A42aVcWfNPBRi5AZ/vUdOvrfw0jEtyotvMmzEW1UaGhX+G2TA3+CZk8u5dpVPU63syC1KwNXr9TzwwAMMGDBAJsUvwk8//cTUqVO1lcFl+fdir/LIycnhtttu4+DBgzRp0oQ77riDQ4cOsXDhQtavX8+GDRvOW4h1sQoKCujXrx9//vkn9erV44YbbsBoNLJr1y4++OADvvvuO3766ScaN/bcRUtCCOHpzGYzM2fOxGZzPpAuCIggtdWNVXoNh8mXxA79CT+4xiVZQgUSO/THYaq6BS0Oky8Jl99Joz+dz7R2797N999/T//+/avsGlVp8eLFrF27Vjvu6a/ngfrGGh9bhhsUSqsLH17Dc6GKojAo2IBVVfkxyzk23LRpEz4+Pjz22GMeOfYWorarcKLETz/9xLvvvktQUBCTJ0/mlltu4YYbbiA5Ofm89/7f//0fzz77LD/++GO5EyX+nXwxaNAg3nnnHYYOHerSX9kfDE899RRPPPEEkydPJigoiD59+pCTk8Onn37Kt99+S/369UlLS3O5MS0eW3BwMH379mXbtm3ce++9FY6tSZMm5c5iL1xJ4OvrW6P7U/76668uyRyprW4iJ+KyGrt+RdXEqsDq5jD6ENflXhr//hkGaz7Z2dl8/fXXTJ48Gb3e8/dYFXVTq1at2LFjBwcPHkRRHTT4ex2xVz9Qayox5ES0x35kI/oSSiTbjd6VKtvuDsbcVIJPbNeOH3jggQtuX1Wa1q1b0717d7766iuWL18OQIJNZWqCmTcjvfDx0FV4NcWhqryX6JokcfPNN/P4449ryZ1CiOqzdetW5s6di9ls1trSmnUjtXXPKvv9k9OgDTaTX4mJtjaTn0tJ08qyewcQe/WDNPj7B+rFOR9CHj16lBdffJEXX3yRzp07V9m1hPAUXl5ejB49mtGjR5Obm4vBnEPk7v8Re/WDVZLsVJ1yQ5qjwgVXBeZ6+CICxW6j4d4VmHKdD4aNRiOjR48utVpBSEgIb775Jt999x1LlizBZrNhVp17Nu/PdzAs1Iivh40PT5gdzEgwk3luuHaoAHbl2nkhwosWXp51r3KkwM78JCup9qJ5psjISF544QVatWrlxshqn++++47hw4ejqiqqquLl5UVoaGiVJ5pMmTKFgwcP0qtXL7766itMJhOqqvLUU0/x1Vdf8corr7isTq6Izz//nD///JOWLVuyfv166tevDzi3EB4yZAibN2/m7bff5v3336+KL0kIIS5JixYtIiYmBgCHzkBCpwGgq/p59uyoTuTVb0b4wTUY89Ox+tQnsUM/7D5VnyScH9Kc9KbXEnz6D8D5+6RTp040adKkyq9VGatWreLrr7/Wjq/z0zM81IjODUkAzbyAnDL6a5iiKAytb6TAAVvOVbJdu3YtgYGBDB48uOYDEqKOq3CixIcffoiiKEyfPp2777671PfedtttAPzzzz/lPr+/vz/gvAkAGDlyJCNHjtT6Cys8VLaM9ODBgzl06BCzZ88+r6LE+PHjWb16NWlpaQQEBJwXW15eHoqiuFSeqGhsQ4cO1ZJAPFFGRgYffvihdpwd3o705t3cGFH51dSqwOpm8wkiofN/iPpzKYqqcvjwYb7//nvuuusud4cmLlGKovDEE08watQo7HY7Phmx1D+xnbSW17s7tHJR9UbOXnkfkXuWYbAUVQ2ymXyJ6zLIY7fkKYnisBHx10p0qnPw3Lp1a/r06VPh8+n1eoYOHUrz5s2ZPn06drudOKvK/9KsPBJ6aZeD/zHLzsGCoiSJRx55hAEDBkhGtxDVzGq18vnnn7NmzRqtzaEzktjhDnKquDKYqjcS1+Ve57YYxZIlbCY/4rrcW+W/H1S9gcQO/SkIiCDsyEYU1UFWVhYTJkzg/vvv5+6775bVxKLOiYqK4tVXX+XNN9/EbrfjlZNM5J5lnL1qiEePwfxST5aYJAHO5Am/1JOeW63Q4SBi/0p8009rTc8//zxt27Yt86N6vZ67776bzp07M2PGDG0rzt9z7ZwyOxgRbqKRyTN+TlkcqkuSRKFMB8xIMDOjsbdHbL+hqirrsux8lWaleKh9+vRh+PDheHt7dtKQJ5o+fToOh4Orr76a6Ohorrjiiiq/RkFBAQsXLgSclW8Lt8pSFIWpU6eycuVKVq9eTWxsLI0aNarwdQoXKT300ENakgSgrSbdvHkzu3fvrvgXIoQQl7hdu3bx/fffa8fJbW+ptspgXplxLveWpvxMmvzxGXFd7sUcGFnl10tt3RPftJN4ZSdhtVqZMWOGy+8sd9u0aROffvqpdnyFj44nwtyTJAGQZS/9umX1VxdFURgeaqRAhT/OVR1bunQpgYGB3H777W6JSYi6qsJ3srt370ZRlHKV7gkNDSUgIEC7mS6PyEjnL4mEhIQS+wvbo6Kiyn3OC5kwYQK//vorY8eO5ZFHHmHUqFFs3LiRl156iZiYGHQ6nUvWXU3G5ik++ugjsrOzAbB61yOpQz+oJQ+Fchq0wa4veSBg15uqdFVgdcuv34y0FkUPob/88kvi4+PdGJG41DVp0kSrpgNQ//hWfNJOl/IJz2IOjOTUDc+Q0HEAKa1uJKHjAE7d8Ey13KhUp9B/NuKdnQg4VwY+/fTTVVJtpnv37jz99NPa8eZsO9n2mt2bz5PYVZW1mVbt+L///S8DBw6UJAkhqllKSgrjx493SZKw+NbnzLUPV3mSRCHn74en//X74enq+/2gKGQ2vZrYrkOxmZzb+DkcDr788kvefvttcnJKWeIiRC3VsWNHnn32We3YJyOWhvtWoDhsboyqdLW2WqGqEn5oLf5JR7SmBx54gBtuuLh9sVu2bMn06dO59dZbtbYEm8qbcWb25tlL+WTN2ZVnPy9JolCmw9nvbjZV5aMUK0uKJUn4+/vz6quv8vTTT0uSRAUdOXIERVFYuHBhtSRJgHOf8NzcXNq1a3dexY+goCB69OiBqqps3LixUtcp/DtQUqJkYVvxBAohhBDll5GRwZw5c7TjnLA2ZDXqUi3XUuzW8xLwwbkdeOSe5Sh26wU+WXGqzkBCxwE4dM410qdOneKLL76o8utUxL59+5g7d6523MZLx7MNTBjcOK/WwFj6tcvqr046ReHJMCMdfYrGAx999BE7duxwW0xC1EUVTpTIy8vDz8+v3JloDocDu738N6SF5cIPHjxYYv+BAwcAaN++akqjd+jQgdGjR/Pee+/xxhtvcNVVV3H48GHS09Np166dS3WI0mKz2+0cPny4SmNzt8OHD7N9e1E598QO/XAY3FBzqIIUuxWd3VJin85uqZYBSXVKa94dc0ADACwWC0uWLHFzROJSd++992o/FxVUIvatwJCX4d6gLoKqN5LdsAPpLa4nu2EHj17FWJJ6sXsJOvOndjxs2DCaN6+6ss+9evXStnmyA4fy3T+57C5nLCoZ5778wMBA7rvvPvcGJMQlYN++fbzwwgsulelywtpw5tpHsJwbD1UXd/x+KAhuTEy3/yM/qGjP8V27dvHCCy9w7Nixar++EDXt5ptvZvjw4dqxX8pxIv5aCQ7PHG/UymqFqkrY3+uoF/eX1nTXXXdxzz33VOh03t7ePPPMM7z44ot4eTnnBcwqzEy08Gu2+5NckqylJ/WW1V/dLA6VGYkWfs0p+jvepk0bZs6cyXXXXefGyGq/wMBAAgICtMVN1aFwHvBCWxxefvnlABw6VNpu52UrTEZavHgxmZmZWrvZbGbBggUAPPzww5W6hhBCXIpUVWXOnDnaz1abyY/EDndU24JQ/6QjJW7pCM5kieJJrFXJ4h9GSpte2vHq1avZs2dPtVyrvE6dOsW0adO0Z4SNjQovhJvwcnOlr66+egIv8JQ0UOfsdyeDovB8AxMtTM4/J4fDwbvvvsvRo0fdGpcQdUmFt94IDw8nNjaWlJQUQkNDS33v4cOHyc3N1R60lEe3bt3w8/Pj8OHDHD9+nJYtW2p9GRkZbNu2DUVR6N27d0W/hDJ98MEHAOdNIPTu3Zvp06ezbt06pk2b5rJq9+effyY3N5dmzZq5xFybffXVV9rrrIgO5Hv4vqv/FnJkU6nlUUOObCL58n41GVLl6PQkXtaXJjs+B+DXX39l0KBBNG7cuIwPClE99Ho9o0aN4sUXXyQzMxODNZ/IPcuIveYhj99nurbzSTtFg7/XacfdunWjb9++VXoNRVGIiorSBuA5F1ihdynIdRRNrEdERGAwVHgYJYQog8Ph4Ouvv2bp0qWoqvPfnqoopLa6ifRm19WaymYVYffyJ7br/YQe3aztLZuUlMSYMWN49NFH6dOnj1SyEXXKXXfdRU5ODsuWLQOcE8oR+1eR0HEAeNi2MzkN2mAz+ZU44W0z+XletUJVJfSfDQTFFk2M9+7dm0ceeaTSP0duuOEGGjduzOTJk0lOTsYBfJRixajAtf7uGyN58qpAu6oyK8nC/vyiAXXv3r158sknMRprV7K2J+rZsyfffPMNycnJhIWFVcs14uLiAOe9AMDKlSuZNWsWDz30EMOGDdPaL6aibkn++9//8ssvv/DFF1/QuXNnrrvuOoxGI7t27cJisRAdHV2hpO3FixeXe7HNlClT6NSpE3l5eZX+eoQQwlNs27aNP/8sWmyU2PEuHKbKbe1eGndWI8tsfBV+KSfwS3Em3M+YMYMXXnhB21a+JuXk5DBr1ixty/pgPbwU4YWf3v33tSadwgsRXkyPN5NVLJ+2ngIvRHh5xJZt3udinBBnJtmmYrFYmDBhAiNGjCAoKMjd4QHO6vrFF5sLUZtUeNahsETjhx9+WOZ7J0yYgKIo9OzZs9zn9/b21rKjR48ejcXirAigqipjxoyhoKCAfv36XXDPvylTphAUFERQUBBbt24t9Vp79+51OVZVlffff5/PP/+c8PBwHnvsMZf+bt260alTJ2JjY3nnnXe09szMTN544w0AnnzyyXJ/rZ7s5MmT2p+PikJay+tL/4AH8k0pffVdWf2eyBwURW6os8yjqqp8++23bo5IXOpCQ0MZM2aM9uDYKzel2krICSevrAQa7vkaRXVOtDZv3pwRI0ZU+cMzm83mUkHJXZPLZofKthwbK9OtbM+xYXHU/GrAcEPR137y5EmX1V1CiKqTlZXFpEmTWLJkiZYkYTP5cfaq+0lv3q1OJ0lodHpS2vYmrvPd2M9VcrNarbz//vvMmjULs9ns5gCFqFpDhgxh4MCB2nFA4t9EHFgFqmdlaKp6I3Fd7tW2yClkM/kR1+Vez6pMpqqEHtlIcMxOralnz548/fTTJZbzr4hmzZoRHR1Ns2bNnJfEmSxx2uy+75snrwr8X5qNv4olSQwePJhnn31WkiSqyPjx4wkODmbkyJHk5+dXyzVyc51JUj4+PgBER0ezZ88eXn/9dQD8/Pxc3ldRiqIwe/Zs3nrrLXJycli3bh2rV68mPj6e6667jq5du1bovDExMWzbtq1c/2VlZVXqaxBCCE+TkJDgsp1jetNryKvmBaFurUamKCR26KeNW7Ozs1m2bJl2j11TbDYbn3/+ORkZGQB4K84kifoGD7uv/3c4HhZeoF7h5XAT/ufGuTk5OSxcuFB7biqEqLgKp/mPGDGCZcuWMXPmTLy9vc9LJgDn9hhvvfUW69evx2QyuexzXh5jxoxh8+bNbNy4ka5du9K1a1cOHTrE4cOHadiwIdHR0RUN38Vtt91G06ZNadWqFSaTiT179nD69GkCAwNZsmQJ9erVc3m/oijMnz+fvn37MnXqVH766SeaNm3Ktm3bSEpKomfPnjz66KNVEpu7/frrr9rrnIh2WP1C3BhNxehtpf+yKKvfU6W16K5lhP7+++889dRTMsEi3Kpdu3Y8++yzvPfeewD4ZJwhYt+3xF9xD+jcW6asrjHmphL551foz20rFBwczNixY6tlP+Ply5eTnJwMgL/OuX9gTTthdjAjweyy33SgzsoLEV60qMF4QgwKTUwKMRZn9vYnn3zCqFGjZGX3Rfrpp5/YvHkzp06dIjc3F4fjwg9TFEVh1apVNRidcLfjx48zbdo0kpKStLa84MYkdPoPdq+aXfmi2K34J/2DIT8Dm08wOQ3a1PhD0Nzwdpzxb0DDfSvwynH+mRT++3nllVdo2LBhjcYjRHVRFIWHH34Yq9XK999/D0BAwiFURUfi5f1B8ZzKEubASE7d8LSzlHJ+utt+PpRKVQk5upng00X7F3fv3p3nn3/epSJmVQgODmbChAmMHTuWs2fPYlHh4xQLEyK90LthjFS4KvD8saN7VwUeKbDzQ1bR1iT33HMPQ4YMcUssddW2bdt47LHHmDVrFh06dODuu++mWbNmhISUPo91Md+Hfz9cGjRoEO+88w5Dhw516a/s/UFmZibDhg1j165dzJgxg9tvvx2j0ciWLVsYPXo0ffv25csvv9S26CivJk2a0KNHj3K9t3Au1NfX96IqBF+q7HY733//PWfOnHFp9/Pzo2/fvoSHh7spMiEEOLevnjt3Ljab83exOaABqa1vqvbrursamd3Lj8TL+xO1+38A/P333xw7dow77rijWq9b3Pz58zl16hTgzD14poGJJibPGdtbHCozEsxk/WtqKssBMxLMzGjs7RFVJQAamnQ838DEtAQLdpwVrNatW8cLL7wgc5NCVIKSkZFR4RSyxYsX8/zzz6OqKgaDAYfDgcPhoFOnTsTFxZGSkoKqquh0OubMmcP9999/0dfIzs5m2rRprFq1ioSEBEJCQujTpw9jx44tdZA5ZcoUpk2bBjj3YCqsgFGS1157jY0bNxIbG4vFYiEyMpJbb72VUaNGaWXzSnL8+HHefvtttmzZQnZ2Nk2aNGHQoEGMGDECk8l00V+rp1FVlSeffJLExEQA4q64l9wGte/mqNnPMzHaLryawGrw4VSvUTUYURVRVZr9+j7G/AwAxo0bx9VXX+3emITAWX504cKF2nF2g7YkdBooyRJVxJiXRqOdX2Iw5wDOiZe3336bpk2bVvm1tmzZwnvvvadN+A2pb+COwJp9CGBxqLxwpsBlortQoI4av2HZnWtnZlJRgt3999/PoEGDauz6tVl6ejqDBw9m165dwPkTzSVRFIW0tLTqDk14iI0bN/LBBx9gtRZVI0prdh2prW6q8fL7XplxRO5Z7jKhVbhi3BxYfXufX4hit9Lg7x+pF/eX1ubr68uoUaNk/CfqFFVV+fDDD1m3rmhrscyoziS1r769o+ui+se2EHJim3Z83XXX8dJLL1XrtmGxsbG88MIL2qq2p8OMdHPjFhwWh8quPDtJVpUGRoWuvnq3TnJPjjdzuMA5oL3qqqsYN25clVX2EE7BwcEoinLRyQoXM9YcO3Ys8+fP55lnnmHy5Mnn9b///vuMGTOG/v378+WXX5b7vP82cuRIFi5cyHvvvccjjzzi0rd+/Xruvfdemjdvzp9//il/jzzEmjVrWLBgQYl9bdu21eaohRDusWDBAq2ahENn4Mx1w7D4V882Tf/mvLdchsGSp7XZTL7EdRlUY/eWoYd/IjjGORdjMpl49913adKkSbVfd9OmTcyaNUs7vi/YQL8gD0ouBrbn2Hg/+cIVkZ8KM9LdjWPakmzMsrEwtSjmxx9/vEaTX4Soayr1L3zo0KE0a9aMcePGsW/fPq29+OuOHTsyadIkbrzxxgpdIyAggEmTJjFp0qSL+tyYMWMYM2ZMud47ceJEJk6ceNGxtWzZkk8++eSiP1dbZGZmakkSDp2RvNDqLUVVXVSl9IezZfV7LEUhp0Fbbe/qw4cPy0S58AgDBw4kOzubb775BoCApH9g/3fn9pmupf/ePIQxL52onYu1JAkvLy9ee+21akmS2LRpE3PmzNEmGi/z1nF7vZq/MdiVZy8xSQIg0+Hsr8kbliv99Nzor+eXHDsAS5YsweFwMHjwYMneLsNrr73Gzp070el03HrrrVx77bWEhoZW+cpWUfvYbDY++eQTfvjhB63NbvAi8fL+5DZoW+PxKHbreUkSAAZLLpF7lnPqhqdrfOW4qjeS2KEf+UFRhP39EzrVTl5eHpMnT2bIkCHce++98qBE1AmKovD444/jcDj46aefAAg8uw9V0ZN82W2SLFEOwSe2uSRJXHPNNbz44ovVmiQB0KhRIwYOHMiyZcsA+CXb7tZECfXcf54gyerQkiR0Oh2PP/64/MyuBt27d6/28XhkpPOBVkJCQon9he1RUVEVvoaqqvzvf86Vv7fffvt5/b1798bb25uTJ08SExOjbX0j3Gvbtm0X7Pvnn39ITU0ts7qJEKJ67Nq1y2XLjZS2vWssSULz70FJDQ9SUlv3wjftNF45yVgsFqZPn84777xTrYt9Y2JieP/997Xjbn567gj0rIQDgHhL6d+MsvrdoXc9A6ctDjZlO+cmP/30U9q0aUOrVq3cHJkQtVOlfzL16NGDzZs3c+TIEXbt2kVycjKqqhIWFsZVV11Fu3btqiJO4QbFy8VZ/ENRdZ73i6xc9Dq4cFKgs7+WMgcUVVWJjY11YyRCuHrggQewWCysXr0agIDEwyiqg4ROA2vvzxI3M+am0GjXEi1JwmQyMX78+Cr/PauqKitWrOCLL77Q2hoZFZ5rYELnhocTSdbSb0jK6q8Oj4QaSbOpHDg34f3VV1+Rnp7O448/Lg/9S7Fu3Tptv+XC8sRCZGZmEh0dzcGDB7U2s18o8Vfc47Yt3/yTjpRYGhWcyRL+SUfIbtihhqMCFIWsRl0wB4TTcN8KjAXOvcOXLl3KyZMnGTFihLZnuhC1mU6n48knn8Rms/Hzzz8DEBS7G4fBRGrrmyVZohRBp3cQemyLdnzVVVfx8ssv19gWjb1799YSJY6ZHaiq6pZEUk/Ztq3QMXNRIJ06dZIS/NWkcNue6tShg/P3f/FxS3EHDhwAoH379hW+RlJSEvn5zqqofn5+5/XrdDp8fHwoKCggKSlJEiU8QFZWFv/88492nNKqJ3aTL+GHipKAd+3axW233eaO8IS4pKWnpzNnzhztOCesNZmNrqyx62tJ+NY8l3aDNa9Gk/BVvYGEjgNo/MdCdA4bp0+fZtGiRdW2fbzVamX69OlapbFIo8LwUKNHLjDKdpQ+r1hWv7s8UN/ICbOD0xYVm83GjBkzmDFjRrVsyyxEXVdld4ht2rTh/vvvZ8SIEYwcOZKhQ4dKkkQtVzxD3uKmieqqYPUOqlS/J7P41ddeX2hFgxDuoCgKw4cPp3///lqbf9IRGu75GsVeWuZSzdNZ8gg7tI7IXYsJ+/tHdJa8sj9Uw0zZiTTa8aVLksS4cePo2LFjlV7HarUyb948lySJxiaFVxt6EaB3z81MA2Pp1y2rvzoYFYUR4SY6+hQNo3788UcmTZpEbm7JD1cF5OXlYTKZuO+++9wdivAQp06d4qWXXnJ52JAdfhlnrn3EbUkSAIb89Er1VzdzYCQx1w0nr35RNaHff/+dV199leTkZDdGJkTV0el0PPPMMy5baNY/9TvBp35zY1SeLSBuP2H/bNCOO3XqxCuvvFJjSRIADRo00CpXFKhgq7ErFyncZ/rfFckyz+0zbXHDZPe5xX5AUUUCUTt169YNPz8/Dh8+zPHjx136MjIy2LZtG4qi0Lt37wpfo169elrydfGKvYViY2NJT3eORRo2bFjh64iq8/vvv+NwOH/o5Ac1Ir1FD7IadSGp7a3ae0qrOCGEqB4Oh4NZs2aRmZkJgM3Ln8QO/Wo06bY8Sfg1xRLQgJQ2Rb+f1qxZo22NWtWWLFnC6dOnATAq8FwDE95u3AKtNL5K6WPDsvrdxaRzLmrzPvfHGhcX57IVthCi/GRZrygXtRaXy7d5+1eq35MVX5lfnr3ehahJiqLwf//3fxgMBlauXAmAX+oJInd/RfwV9+Iwuj/DNeDsX4QfXIM2VE87TeCZP0ns0J/sqE7uDE3jnRFL5O5l6G0FzmNv72pJksjJyWHatGns379fa7vMW8eIBib83JQkAdDJu/SczrL6q4u3TuGFcBMfJVv5Ldc5+71nzx7GjBnDa6+9RlhYDZdxrAVatmzJiRMnpOqGAGDv3r1ER0eTl+dMTlOB1FY3kd68m9tXi9t8givVXxMcJl/OXjmE0CMbtL1mT58+zejRoxk/fjwtW7Z0c4RCVJ5er2fEiBGYzWZ27NgBQOjRzdhNfmRFdXZzdJ7FN/kY4QeLSkpfdtlljB07tlrLKZckNzcXm82ZHqE/919N87Rt2wCKF7EofFgjaidvb28efvhh5s+fz+jRo1m6dCkmkwlVVRkzZgwFBQX079+fRo0alfj5KVOmMG3aNABWr17tkgxWyMfHh5tvvpkNGzbw2muvsWzZMu3eIjc3l5deegmAK6+8ksaNG1fTVyouxubNm7XXOeHtXF6H/bMeBdi/fz8pKSmEhobWfIBCXKJWrVrF3r17Aef9ZsLld+Iw+dZoDJ6WhJ/Z+Ep8U0/gn3wUgDlz5jBz5kzq169fxifL759//tHmgQGG1DfSyOS5Fb3z1NLnH8rqd6dwo46HQox8lOJclLhu3Tq6detG586ee6/kcDjIysoiPz8fu90uz7REtVIUBaPRSP369UtdQFCpn1BHjhxhzpw5PPfccwwZMoS7776bu+66izvvvLPE/+66667KXE7UsOJ7ZioOeynv9Gze2UmV6vdkilr0fanuPWeFqAhFUXj44YcZPHiw1uabfoaoXYvRm9278l5nyXNNkjhHAcIPrvGIyhK+KceJ2rVES5Lw9fXlzTffrPIkibS0NMaOHeuSJHG9v56XI9ybJAGwO/8CM93l7K9OBkXhqTAjA4KKfv7GxMQwevRoLXNeFHnsscfIy8vTtuQRl66NGzcyceJELUnCrjcR3+Ve0lt0d3uSBEBOgzbYTOeXugawmfzIadCmhiO6AJ2OlHZ9SOzQD1VxjtvT09MZN25cta0MEqKmGQwGXn75ZZexT4NDa/FNOeHGqDyLV1Y8Dfd9i3JukrFZs2aMGzfOLWV3//zzT+11Y5Mi27ad07TYw4F9+/ZhtXpWhT1xccaMGUP79u3ZuHEjXbt2Zfjw4XTr1o2lS5fSsGFDoqOjK32N6OhowsPD2bNnD127duW///0vQ4YMoUuXLqxbt46goCBmz55dBV+NqKyzZ89y6NAhAFRFITuiaNsVu3cA+fWbOftUlY0bN7ojRCEuSceOHePLL7/UjtObdSM/pHmNx+FxSfiKQmKHfti8nAtHMzMzmTVrllYVp7JsNhvvv/++9vD7cm8dvQM8e7GMbxnD1bL63e16fz1dfYvGmh988IG25YmnsVgsxMfHk52djc1mkyQJUe1UVcVisZCcnFzqPViFn6x+/PHHvPrqq6iqWu6/0J64B5G4sKCgIO21MT/DbXFUluIoveBnWf2ezJhXlHUaGBjoxkiEuDBFURgyZAg+Pj5aCTDv7EQa7VzE2SuHYPMNcktcIce3npckUUg51598mfv2EA2IP0j4gdUoqvNmJTAwkDfeeIMWLVpU6XVSU1MZN26cy/Y99wQZGBBk8Ijf2/vySk/U25dn58YA9yWKKYrCf4ONNDQqfJxsxY7zQeX48eOZMGFClX+/arOHHnqI48eP88wzz3D8+HEeeOABWVF1CVq1ahWffvqpdmz1CiDuysFYAhq4MSpXqt5IXJd7nXvJFiuTajP5Edfl3hrZQ/ZiZEV1xuoTRMO936C3FVBQUMCUKVMYNWoU119/vbvDE6LSjEYjY8aMYdy4cZw8eRJFVYn461tir37Qo352uIOhIIvIPcvROZyTPg0aNOD111/H37/mqyY6HA6X1YNd/dwzKe6J27Y1NSmEGhRSbCo5OTmsX7+eO+64o8bjuFSsXbuWb775hhMnTpCTk4PVar3gvKWiKNpq4/IKCAjgxx9/ZNq0aaxatYo1a9YQEhLCww8/zNixYwkPD6/019CiRQt+/fVXZs+ezY8//sjWrVsBiIqKYsCAAYwcOZKoqKhKX0dU3vfff6+9zg1thd3L9edvZlRnfNNOAc7tGu+55x5Z6CRENcvPz2fGjBlalauCeg1JbXWjW2IpTMIvafsNdyXhO0y+JFx+F1F/LkHBmcT53Xff8Z///KfS516zZg2nTp0CwKTA8FCjWxJnL0ZeGY82y+p3N0VReDjExKGCAvIcEB8fzzfffMOQIUPcHdp5srKycDgcmEwmAgMDMZlMKIriEfPPou5RVRWHw0Fqaipms5m0tLQLjtOVjIyMCv1Tb9u2LcnJyfTt25d+/foRFhaGyWQqs5yyTNbVHunp6QwbNgwAh87I8d4vguK5ZZIuJGLPMgKSj12wPzusFQldBtVgRFUn5Mgm6p/bp/eee+7hwQcfdHNEQpRuw4YNzJ8/X8tUtpn8OHvVfVgCKj+ZdLGidnyBb8aZC/bnBTXm7DXu+TcVdHqHyx7TYWFhvPnmm1U+GZabm8uYMWOIiYkBnOWRHwsz0qOGyxGX5r0EM3+WUjXiKh8dIyO8ajCiCzuUb2dmooWCcyOroKAgpk2bViWTpXVBYem/xMRELbvdz8+v1BKPFZm8Fp5JVVWWL1/OkiVLtLaCgHDiugzC7h3gxsguTLFbnXvK5qdj8wkmp0Ebj0uSKM6Yk0LU7v9hLHCWdVcUhWeeeYZbbrnFzZEJUTXS09N5+eWXSUlJAcDqHUhMt+E4jD5ujsw9FLuVRju+wDvbmezq5+dHdHS02x6erl27lo8++ghwTozPaOxNoBsqk1kcKs/GFJBfwkyXjwJzm3hjcsMe2WszrSxNcz6w8ff3Z+7cuS6LU0TVGDt2LB988EGpC7oURdH6FUUhLS2tpsITdUxWVhaPP/44BQXOCpCxVw05f8W6w07zX+ZqD0lHjBjBzTffXNOhCnFJmTNnjlbBxaE3EdNtOFbfqtta4mJ5ZcZdMAnfHBjptrhCjm6i/knncwW9Xs+0adNo1apVhc+XlZXFk08+qVWOvC/YQL8gz71/LvRNmpWVmRdeSDsw0MA99T3/69iYZWNhqjN52mQy8f777xMSEuLmqFzFxsaiqioNGzaUpEFRY+x2O3FxcSiKcsHt8Sr8tzE/Px9vb2++/PJLyfipo4KDgwkJCSE1NRWdw4pP2mm3lKiqrLz6zUtNlMirX/u+JgBUFb9z+4kBshe1qBVuueUW/P39mT59OlarFYMll0Y7vyT+iv+SX79pjcaisxZUqr9aqCohxzZrNyoAjRs3/n/27ju+ifr/A/jrstt078ksZbasMkrZIBtZshVRURkOBEUQAZGNIqIo6g8VUYaiyPIrexcQyqaMMlqge4+MZt39/gi9JrRN2iTNJeXzfDx4PHL5JHfvtjS9+9z7835j0aJFNl95zzAMvvnmG6MkiXcCRGjH0eq/qrjyTOdzmhu3pxYufMwLFmNVpgoKGigsLMTnn3+O5cuXm+yD9qwo+79mSCaTQSaTVfkeS84xZTIZVq9ejd27dyMzMxO+vr7o168f5s+fz/Z3tkZ1b2pcv369Qt/o5ORkLF++HMePH0dxcTHq16+PsWPH4p133qnz/0f+/PNPoyQJpVcY0tuNBS1wjESnyjB8IUqCW3IdRrVp3PzwuOMkhF7cBrE8FwzDYP369eDxeOjduzfX4RGE1by9vfHxxx9j7ty5KC0thbC0CEHXdiO93RinTOi3CsPA/9YBNkmCz+dj7ty5nCVJPH78mK0cBwCDPAWcJEkA+kSJypIkAEDJ6Me5SJTo4y7A4WIdcp5Ulfjqq6/w8ccfG7U8Jaxz4MABbNiwAW5ubpg5cyaio6MxZswYeHt74+eff0ZeXh7Onj2L7du3g8fjYenSpWjY0EnngwiHsGfPHjZJQuXmz7bZMMLjo7Bee/jdOwkA2LFjB7p37252oSFBEJY5ffq0UZub7Ob9OU2SAACVZwgednkdvvdOQqjIg0bqh7zG3UCLXDmNK69xd7jmPYSkOB06nQ5r1qzBF198ARcXy5KQ//jjDzZJIkhIob+nc9wIDxaZPi80N+4oernzcaxEi4dqfauBrVu34u233+Y6LCNliaokSYKwp7LrLVOJ1Bb/jxw7dix+/PFHnD59Gt26dbN0N4SD69y5M1tGziPjhlMmSohluVaNOypxSRbEcn3sYrEYbdu25Tgigqiezp07Y9GiRVi+fDkUCgX4WhVCLm5HVtTzkAU1t1scOqHIqnGbo3UIvPk/eKRfZ59q1qwZ5s+fD3d326+2vnz5Ms6cOcNuT/ETOlySBAAUak0nQpgbt7dGYh5mBYqwIkMNHYC7d+/iwIEDGDJkCNehcW7v3r21fgyZTIb+/fsjMTER9erVw6BBg3Dz5k1s2rQJhw4dwuHDhxEcHGzVMUyVL0xJScHZs2fRoEGDClnKN2/exIABA1BcXIy2bduifv36iI+Px5IlSxAfH48dO3bU2QnTf//9F1u2bGG35b4NkdF6FBiBnT9na0hfUeIOBMpCp6goAeh7Yad2eBGhF7dBUpIFAFi/fj3c3NzQsWNHjqMjCOs1aNAAM2fOxMqVKwEA0rwH8E4+g4JGz1blSvf06/BMv8Zuv/baa4iKiuIkFplMhhUrVrDVokKFFIZyODH+e0HVvWfLxl/zt3+SnphH4VU/IVZl6r9Ply5dwu+//+6QZZGd1aZNm0BRFNatW4eRI0eyz4tEIvTo0QMAMHLkSLz99tsYPnw4li5dihMnTnAVLuHk8vPzsW/fvvLtRnFAFUneReEx8E75D3ytCunp6Th69Ciee+45e4VKEM+MrKwsfPvtt+x2cXBLlIRwc35kqEJFifyHcMu6zXlFCfD4yIwehvCzP4KvUyMjIwP/93//h3feeafGu8rPz8f+/fvZ7bHeQgicZHF1jCsfnjwNiiopZuvJ0487Ax5FYZxP+bnmsWPHMHr0aAQFBXEcGUFwqzqL8Cy+el25ciVSUlIwbNgwhISEIDAwEBKJxGQ2PEVR2LNnj6WHJDjQs2dPNlHCLfMWcpv0qtBvz9GJFHlWjTsqr0cJ7OPOnTtbnO1JEFxo1aoVli1bhk8//RQFBQXgMToEXfsbOWoFiuq1t0sMGmkAUJhmetxOKK0awdf+hjT3PvtcTEwMPvjgA4jFtTOR+/fff7OPu7vx0dXdMbN5U0zPdZsd50JTCR+jvAX4o0Bfum/Xrl0YPHjwM1+Byx7t11asWIHExET07t0b27dvh0gkAsMwmDZtGrZv344PP/wQmzdvtuoYGzZsqHLsjTfewNmzZzFhwoQKP+/p06ejuLgYc+fOxdy5cwEARUVFGDhwII4ePYoff/wRb7zxhlWxOaJz586xpdgBQOHTABltRoPhO+ZnThlHLY9aHbTIFWkxExGW8BvEJdmgaRqfffYZli5diqZNm3IdHkFYrXPnzhg1ahT++usvAIDv/VNQ+jREqRc31RTsTSjPR8DtA+x2z549MXDgQE5i0Wq1WL16NdLT0wHoW27MCBBxUrGhzF2V6SRac+O1qZULH0M8Bdj3pLzz77//jtDQUHTvzk3f9Lrm8uXLAIChQ4eafF29evWwdu1aDB8+HKtXr8YXX3xhj/CIOmbbtm0G1SQCIAtsVuVraaEEhfU7wfe+vqrE1q1b0bVrVzKPRxA2pNPpsHbtWraigcbFCznNB3AclT75/unrSgAQqOUIubwDKd2mc5qMr3H1Rk6LAQi6rr9nd/ToUbRt27bGC6P37t0LrVZ/ftNYTKG9q/NUzBLxKIz1EeL/cjUwPEukAIz1EXJ6XltTrVz4aCnhIbGUBk3T2LVrF6ZOncp1WATh8Cz+xFqzZg0OHz4MhmGQlpaGS5cu4cyZMzh9+rTJf4RziYiIQKNGjQAAPFoLnwfxHEdUcwxlOuvP3LgjEspy4W6w6rxfv34cRkMQlmnYsCFWrlyJkBD9DScKQMDtA/C5dwIwUQrJVlQegVaN2wpPrUDoxa1GSRJ9+vTBvHnzai1JorS0FImJiez2KG/HXSFt7r+CHf6rWKS/hwDSJ2dZubm5lbadIGyrtLSULfu9evVqiET6agUURWHlypWQSCTYu3cvUlNTa+X4hYWF2Lt3L3g8XoXVoWfPnsWVK1cQFhaGDz74gH3e09MTixcvBmA6AcNZpaWlYd26dWx5u1KPYKS3GeXwSRLmJrMonQNmaD2FFkqQ1m4c1C7eAACNRoPVq1ejqKiI48gIwjYmTJiA5s31lcgohkHgjT1O8btpNYZG4I294D35WkNDQzF16lROkjEZhsGGDRtw7Vp5ZYvX/YQIF3E7MS42860wN17bXvAWIMql/Hv01VdfGZ2XE5YrKCiAl5eXUTszgUAAuVxe4bXdu3eHi4sLDh06ZM8QiTri7t27OHz4MLudG9nLbAuogvodoRVJ9Y8LCvDHH3/UaowE8azZsWMHbt++DQBgKAoZUcMcos2jW3ZShevKMgK1HG7ZSXaOqKKS4FYoDm7Fbm/YsAFZWVnVfr9SqcSBA+VJvEM8hU61UEhNM/g93zhJAgAYAL/na6CmHXTisQpDvcrnW44cOYLi4mIOoyEI52DxFeyGDRtAURT69euH9evX4/fff8euXbuwd+/eKv+RahLOh6IoTJgwgd32TL0MkSyHw4hqTmnmZqe5cYfDMPBPOgLqyZ/vtm3bomVL5+mfTRCGAgMDsXLlSjRp0oR9zvdBPAJu/QswldQ8syG+RmHVuC0IlEUIv/ArXIrS2edGjx6Nt956q1ZL8BcVFYGm9d9fXz4FH4HjXsCEm6nMb26cKyIehfoGNwry8/M5jObZcPbsWcjlcjRr1gwRERFGY15eXoiLiwPDMEb9Sm3pjz/+gFKpRPfu3REeHm40VjaROmDAgAq/271794ZUKkVycjLu37+PukKlUmHVqlVQKpUAAI3EE2ntxoJxgMkqc5xhMqs6dGI3pLUfB51AAgDIy8vDmjVr2M9/gnBmfD4fM2fOhKurvrezSFEAn/unOI6q9nk+ugiXIn1FNIFAgFmzZkEikXASy59//mn0N3WElwCd3bhPhOvhZvoc2tx4beNTFGb4ixAq1J9/a7VarFixAmlpVVe6I6rH29ubPe8o4+PjA7lcjsLCQqPnKYoCj8dDdna2HSMk6gKtVosNGzawicByvwgofBuZfR8jECE3sje7vWfPHiQnJ9danATxLLl9+7ZR8lFe4+5QOUilMYGywKpxe8lp3h9qFy8AgEKhwLp166DT6ar13jNnzrCVPIKEFNo5UTUJAEhQ6CptuwEARbR+3Jm0kPDQQKQ/z9RoNDh58iTHERGE47P4U0sgEEAikWDbtm2YOHEi+vXrhx49eqBr164m/xHOp3379gardWgE3tgHONEEq9bddCKEuXFH455+3Wjl+cSJEzmMhiCs5+HhgSVLlqBdu3bsc56pVxB09W9QtLbWjqsVe1g1bi2hLBdh5zdDJNe3/6EoCm+88QYmTpxY65nXhiU+i2kGKgfOjn7V13S1C3PjXGEYBrna8u+rVCrlMBrHc/fuXRw4cAB//fUXtm/fjm3btlX5r7rKVmNWlTzYqpV+hcTNmzet/wIq8euvvwKo/O+yqdj4fD6aNWtWq7Fx4a+//mIrqdA8PjLajAItcuU4quoRlJhePWNu3JFoXb2RGTWMXR1z7dq1WksWIgh7CwwMxCuvvMJue6f8B5ET/X7WFL+0BH73jrPbo0ePRuPGjTmJJT4+Hlu2bGG3u7rxMcKL+yQJAOjqLkBVKXniJ+Nck/IpzA4UwfNJzoZMJsPSpUshk8m4DczJhYWFQaVSISUlhX2u7Nxr165dRq+9fPky5HI5vLy87BcgUSf8/fffePDgAQD9OW5Os+eAal6/lwS3gtJLn1Ct0+nw9ddfs6XqCYKwjFKpxNq1a9lkcIV3OAoaxnIcVTntkwp/lo7bCy0QIytqGJgnn2c3b97Ezp07q/Vewwo7Pd354DlRNQkAyNaYnhM1N+5oKIpCL4PzXcOfD0EYmjZtGry8vLBixQquQ6mxLVu2wMvLC4MHD7bJ/iy+Qvzggw8wd+5cnDt3Dl26dLFJMIRjoigK06ZNw6xZs6DVaiEpzoBP8hnkN3aOxBdZQCS0ImmlKwO1IilkAZEcRGUZgbII/nfKS0MOHjy4wqpZgnBGEokEH330EdavX4/jx48DANyz74B/6Xekt3mhllYgmzvRrb0TYXFROkIv/Q6+Rr/iSSAQYObMmXZLKPTw8EBoaCjS0tKgYYAjJVoM8nTMhIMktemfQ5KaQZADLlC/rKCR/SRRQiwWo0GDBtwG5CDu3buHV199FTdu3Kj2e55uY1GVsv7oQUFBAPQT4uvWrcOkSZPwyiuvsM/XxorNK1eu4Pr16/Dw8MCQIUPMxrZkyRKcPHkSS5cuRadOnSyObcuWLdi6dWu1XrtixQpER0dDoVDU+qrVnJwc/PXXX+x2bmRfqDyCavWYtuRSmG523DHW/VSPwr8xChp2gU/yGQDAzz//DH9/f5LARdQJ9evXR0REBO7duwcKDPxvH0JazMRq37RyJn53j7ItNwIDAxEdHY27d+/aPY7MzEx89dVX7HYLCQ+v+TlWiWUehUpP5R2pxbS/kIdZgWIsy1BBzQAZGRlYsmQJXn31VfB43K/EDA0NZSu2OIuuXbvi0qVLOHr0KF599VUAwPDhw3Hs2DEsWLAAPB4PHTt2RHJyMhYsWKC/kdCrF8dRE87k/v37+P3339ntvMY9oHGtwU1OikJWy0God3YjeLQODx48wI4dO6p9vUMQREU//vgj2yZCJxAjq9XzZlvh2JMsIBJagQQCbWmFMa1A4lD3JUq9QpHfqCt8n1Rp2759O9q1a2cyMTc/Px+3bt0CoF+R3dUBqovVVIDQ9AmiuXFH1NmNjy35GqgZICUlBenp6Wzra2cwePBgxMfHGz3H5/Ph6emJ5s2b4/nnn8fkyZNrrWW1JU6dOoXTp08jKiqq0nlBwrFZ/Fdjz5498PT0xJAhQ9CqVSv06dMHgwcPxtChQ6v89/zzz9sydsKO6tWrh3HjxrHbPvdPwjXXOcpDM3wh0tuOhvapVYxakSvS244Gw3fMm4NPo3QaBF/5C3ytCoB+cuyll17iOCqCsB2BQIB33nnH6G+Fa/5DhCVsA0+jNPFOC4+nKrFq3FIu+SkIS9jKJklIJBIsWLDA7lWXBg4cyD7+s0CLZJVjVgq6ojAdl7lxLuRqafyUp2a3+/btC5HIQXuE2FFBQQEGDx6M69evw83NDe3atQPDMBAKhejUqRMiIiJAURQYhoG7uzu6dOlSo2Tcsv7TZRVTVq9ejcuXL2PhwoUAyqt6VNan2lqbN28GAIwaNcqoYsvTsbm6uiI/Px9r1qzBhQsXsHbtWqtie/ToEeLj46v1z559KQ8ePMiW6Sz1CEFReDsz73AsIqXpVjnmxh1RfqM4aCSeAPSlVI8dO8ZxRARhGxRFYfjw4eyNZdeCR5A6SXucmhAXpcMjI5HdHjFiBAQC+09EazQa/Pbbb9Bo9AkbQQIK7wSIIHCgJIlzch2UVeTZKhn9uKNoJOZhqn/5OeKdO3dw4sQJDiNybkOHDgXDMNi0aRP73IsvvojOnTtDJpNh5syZ6NKlCyZOnIj79+/D19cXH330EXcBE06ltLQUa9euZStAlHqEoLB+xxrvRyP1RV7jHuz2jh076lRVOYKwp/Pnzxutls9p3h9aF08OI6pcVadJDnT6xMpvGAelp75tiU6nw5dffgm1Wl3l6xMSEtjHzSQ8ePId8IsyI8aVD88q7pJ68vTjzsaVR6GVS/kXdeHCBQ6jsZxEIkFAQAACAgLg5uaG/Px8xMfH48MPP0Tv3r2Rl5fHdYis06dPY9WqVfjnn3+4DqXagoKC0KRJE/j6+nIdCucsvrI2zOhJS0ur1so0R1phQNTciBEjcOnSJdy8eRMUgKBru/G48ys1y57m0tOTJc5UNYlhEHDzX0hKMgHoM+jee+89zvrREkRt4fF4eOWVV+Dh4YHffvsNACApTkfYhd+Q1n48dGI3mx2Li/J30py7CLq6EzxaP0Hr7u6OhQsXokmTJjY/ljn9+/fH4cOHkZKSAg0DfJapwodBYtQXO07mPQCYS4NwtDSJfC2D1ZlqFD2Zg/fy8sKYMWO4DcpBfPXVV8jOzsaQIUPwww8/wMXFBd7e3vD29sa///4LQF+JYPXq1di4cSPatGmDpUuXVnv/ZX2Cy4wZMwafffYZ2wqjbNzW56MKhQJ//vkngKrbYRnG5u3tjYEDByI+Ph6jR4+2KrZ69eohLi6uWq/18NC3E3J1da3Vz5z8/Hxcv36d3c5u3s8xZ4BMYcycJJobd0AMX4icpn0RclVf6ePixYuYPn26Q63AIAhLNWnSBLdv38a+ffsAAL73TkAe0MShVhNay+/ucfZxbGwsBgwYwEkcW7ZsYVdtiihgZqAIUgebEL9qpo/0VYUO3R2g/UaZDlI+hngKsK9If/P10KFDGDx4MEJDHaO3ujNp3749UlNTjZ7j8Xj4888/8fnnn+Pvv/9Geno6PDw80KtXL8yfPx/16tXjKFrC2Xz//ffs/y+aL0Rm1POAhdVfCht0hDT3HlwLHoGmaaxZswZr165lz9cJgjCvuLgY3377LbtdEtgcJUGVt+Hkklt2EviaitUkAICvKYVbdhJKgh0obh4PWVFDUe/Mj+DRGjx+/Bhbt27F5MmTK3355cuX2cdtnTChAABEPAqzgsT4IlOFIoNJRk8eMCtIDJEjlSSrgbaufFx6srjs8uXLGDZsGMcR1dyIESOwYcMGdjs7Oxtffvklvv32WyQmJmLmzJlsG1yi5hYtWoRFixZxHYZDsPjqcO/evbaMg3ACfD4fc+bMwezZs5GXlwe+thQhl35HaseXoBM5buleSqdByOUdEGgURs8LNAqEXN6BlG7THb6qhM/9U/DIKC9TPmXKFLafOUHUNRRF4YUXXoBUKsUPP/wAhmEgluUg7MJvSI2ZCJ3E3SbHsXdbHres2wi6tgsUoz9J9fHxweLFixEeHm7T41SXUCjE7NmzMW/ePMhkMpTQwLIMFd4KECHagS5uPMxckJgbt6cUFY0vs9TI0+lvogoEAsyaNQueno63ooELBw4cAEVRWLJkSaVVFwDA398fn332GUQiEb799lu0bt2aTSYwx81Nn0ilVOqrtcycORMzZ85kxxUK/XmArctI79q1C8XFxWjatCliYmJMxqZQKEBRFLZt22Y0bmlsEydOrDI5gyuHDx9mq0kovcKh8nSe8o5ldHwRhKi6uoeO75wVYuQBkVC7eEGkLIRMJkN8fDx69+7NdVgEYRNjxozB4cOHUVpaCrE8F+6Ztxxr0tkKkoJHcM1PAaC/6fviiy9yEkd+fj527drFbo/3ESJU5HjJKNw117PcKG8BEpU6JKsZaDQabNmyBXPmzOE6LKdUWVspqVRKJoIJqxw8eNCoGldOs37QSH0s3yHFQ1bU86h39kfwNUrk5eVhzZo1WLhwIfh8x7kWJwhHtnHjRhQWFgIAtGI3ZLcY4JAJ+gKl6aaN5sa5oHH1QW7TPgi4tR+AvrJ8bGwsmjZtWuG1SUnlldxauDjeeWF1NRLz8EW4BAkKHbI1DAKEFGJc+U6bJAHo2+OVSUpKAk3TDtHezRoBAQFYvnw5cnNz8ccff2Dv3r3IyspCYGAg16ERTs7i34yuXbta9K8y3333ncVfAGFfXl5e+PDDDyEU6hMLRIp8hFz6A5S26hJMXHPLTqr0RigACNRyuDl4aVbPxxfh++A0u92nTx/OVhARhD0NHDgQM2fOZE/iRIp8hF34FQJlkU32X96Wx3gyTSuS2rwtj1tGIoKu/c0mSQQGBmLFihWcJUmUCQ8Px8cff8zenFUywOdZauws0EDnICumPc3ME5kbtweGYXC8RItPM1QVkiSio6M5js5xpKamQiKRoEGDBkbPl91UNzRr1iwAwE8//VTt/Zf1W8zMzKx0vOx5W6/QLMteN5WwwFVsXLh69Sr7uCisLYeRWI4yswrd3LjDoigUh7VhNw1/VgTh7Dw8PIxWSXknn3HK6i+V8Xlwhn3cq1cvzv5W/Pvvv2zLjYYiCr3dHeAkrBJtXE1/Rpsb54KAojDZrzwJ78yZM8jJyeEwIoIgyiQlJeGHH35gt4tDolAc2trq/WolHshsNZTdvnr1KrZu3Wr1fgniWXDhwgWcPHmS3c5uMRC0sPLFGFzjopqtLRSFtYXCpwEAgKZpfP311+x5YJm8vDy29YGYAsKEzptUAOgrS3RxE2C4txBd3AROnSQBAP4CCh5PTnsVCkW1OgI4i3HjxrGPr1y5YjR26tQpeHl5ISoqCoC+msaLL76IyMhIBAUFoXXr1nj33XcrbSlz584dzJgxA1FRUQgICECDBg0wcuRIHDhwoNI4vLy82H+rVq0CAGzbts3oeS8vL6xYsaLKr2Xw4MHw8vLCli1boFKp8OWXXyI2NhbBwcFo2LAhBg4ciEOHDhm9JyEhAZ988gn69OmDpk2bIiAgAE2bNsW4ceOwf/9+k9+7wMDAGsVX2fd08+bN6NatG4KDg9G4cWPMmDED+fmmW9TW9Htb5uLFixgzZgzq16+PsLAwDBkyBGfOnDH5Hks4xBXi4sWLuQ6BqIHIyEjMmjWLvXkpKc5AyOUdoHQaM+/khjNmbpZxT78B/1vlHxbt2rXDtGnTSBsb4pnRo0cPfPDBB2wPZpGyEGEJWyAoLbbJ/lWeIUjpNh2ZUcOQG9EdmVHDkNJtuk1XQLtl3kTQ9T2gnkzWh4SEYNmyZQ6T7dqsWTMsX76c7UfGAPi7UIvlGWpkabhvbOFv5kLL3HhtK9Yx+DpbjR9zNdA8uR/j6uqK+fPno0uXLpzG5mhomq5Q5l8qlaKgoKBC2wxfX194enrWqF9vy5b6lcOJiYmVjt+4oa/M1KJFi5qEbdLdu3dx9uxZ8Pl8jB071qLYdDodbt++bfPYuKDVanH37l12W+FTn8NoLEebSZQzN+7IFN7lP5Oy/3cEUVcMHjyYbU0oluXANfdBrR2L0mngnnED3g9Owz0jsdauhUUl2ZDm6b8OiqIwatSoWjlOdZw7d459PNRLCJ6DXpN2lgogrSI0KaUfd0SNxDy0NFj5Z/j9JixD0zRyc3Px+PFjrkMhnFR+fj5WrFgBrVbfGkflHoDs5rZbuKTwj0Beo/I2en/99RdOnz5t4h0EQSiVSnz//ffsdnFwFOT+9m9nW11l1WwrUxvVbG2GopDVcjDoJ9UUU1NTsXPnTqOXGN54DxfxHPbc8FlFUZRRe+X09HQOo7GtssVIgL4NT1UOHTqEAQMGYN++fZDJZBCJRHj48CF++eUXtrJrmS1btiAuLg5btmzB48ePIRaLUVRUhKNHj2Ls2LGVtgYOCAhg/5VVNZNIJEbPBwQEsFVmTdHpdBgzZgw++eQT3LlzBxKJBCUlJTh79iyOHDnCvk4mk6Fv37748ssvcfHiRRQWFsLV1RVZWVnYv38/xo0bh7lz51Z5HMO4yq6da2LhwoV45513cO/ePeh0OuTl5WHLli0YM2YMaLry+wiWfG8B4H//+x/69++PgwcPoqSkBHw+H6dPn8bzzz9v82slh0iUeHpynHB8sbGxePPNN9lt14KHDpss4ayZm+4ZiQi8sRdlpxhNmjQxumFMEM+K2NhYfPjhh+z/faGyEKEXbJcswfCFKAluiYJGXVES3NK2lSQybyHo+m5QT4r8hoeHY9myZfDz87PZMWyhQYMGWLNmDVq1asU+l6Si8VGaCgeKtKA5/Ttt7kKLmwsxhmHwn0yLuamluKAoPxEMDw/HZ599hrZtnXMlfW0KDg5GcXGx0cVIeHg4aJrGtWvXjF6rUChQVFRUaYZ3VWJjYyGVSnH79m3cv3/faKywsBDx8fGgKAp9+vSx7gsxsHnzZgBA3759TSY/lR1z//79FSpoHD16FHK5HA0aNEDjxo1tFhsX8vLy2J+ZVuxms1ZJ9qZyN53IZm7ckak8gsA8+dzMyspiJ/4Joi7w8PDAc889x257PbpQK8cRF6WjwclvEHR9D/zunUTQ9d1ocPIbiItsP/lo+DXExsYaTQrak0ajYSfDKQDRDlxaWcSjMCdYjKenI90AzAl27D7Thr29U1JSuAvEyR09ehQjR45EWFgYIiMj0aZNG6Px5ORkvPnmm5g2bRrk8qpbbRHPNpVKhRUrVqCgQL+4SieQIL31KJu37s1v3A1yv/JrgK+++gr37t2z6TEIoi7ZunUrcnNzAQBaoStymtru+r422LOara1pXTyR26QHu71jxw6j5AjDipmBAsc9v6ouFc0gXqbFrgINzsi0UNPOf88ywODnkpWVxWEktmWYBOvl5VXpa1QqFWbOnIkuXbrg9OnTSE9Px6NHj3Dx4kVMnDjRaCFyfHw83n77bdA0jdmzZyMpKQmPHz9GRkYGNm7cCC8vL3z++ec4fPiw0TGSkpLYf2+99RYAYMSIEUbPJyUl4e233zb7Nf30009ISEjA2rVr8ejRIyQnJyM1NRU//fRThYqCrVq1wmeffYbLly8jKysLKSkpyMrKwsaNG+Hm5obvvvsO+/btq/Q4169fZ+MaMWKE2bgMZWdn46effsIvv/yCtLQ0pKWl4euvvwaPx0NCQgIOHjxY4T2Wfm/z8/MxY8YMaLVaDB48GElJSXj48CGuXr2KmJgYtrqvrTjE1S1ZHe+c+vfvj0mTJrHbrvkpDpks4YyZm+4ZiQi8voe9uVq/fn0sWLCgyp7uBFHXdejQAXPnzjWoLFGA0IvbwK+irY4jcM25p0+SeJJkEBYWhiVLlsDb2zGTs7y8vLB48WJMmDCBrRikZoDf8jVYnKHCQxU31SXytaYvTMyN14ZcDY0vstRYn6NBicG3ZcCAAfj888/rRPuE2tCsWTMwDIOEhAT2ubi4ODAMg+XLlxuVcVyzZg0Yhqm0B2ZVJBIJXn75ZQDAnDlz2Bv2DMNg3rx5KC0txeDBgxEWFlbp+1esWMGWnTt16pTZ42k0Gmzfvh2A6bYbgP7mVnR0NFJTU/HZZ5+xzxcVFbH9sqdOnWr+i3Rwhj/DspUnzogWms6qNzfu0Hh8MLzyG3EkUYKoawYPHszOL0jzHkAoz7Pp/imdBiEXt0OgMV6BJNAoEHJxu02vhXkaJdwzyisRPf/88zbbd02pVCp2hZCYAsQOnGwAAGlqGk9fJcifPO/IPAy6mSiVSu4CcWLLli3DCy+8gGPHjkGpVIJhmAqLsxo2bIi7d+/i999/x549eziKlHBkDMPg66+/ZiulMRSFjNYjoHWthWt5iofMqGFQu/oAANRqNZYvX86WsycIotyjR4/wzz//sNu5zfqCFrlyGFH1qDxD8LDL6ygMawe5T30UhrfHwy6v27SabW0pCm+PUg99nFqtFj/++CP7d7UskQwAfJw8UeKBisZ7j0vxXY4GfxVqsSFHg5mPS/GAo7lQW/E1+LmYa43gTMra9PJ4vCoXqmVnZyM0NBQ7duwwWhjYuHFjfPPNN/D09GSfmz9/Pmiaxty5c7FgwQIEBAQA0M8zvvDCC1i2bBkAYP369bX1JeHKlSv46aef8Morr7AVKCQSCUaOHGmUaOHm5obTp0/j9ddfR8OGDdnnxWIxXnjhBcycOROAvkqVralUKrz33nsYNmwYeDwehEIhXnrpJXaxwvHjxyu8x9Lv7ZYtW1BQUIDg4GD8+OOP7KLT+vXrY/PmzWwbcVtxiEQJwnmNHDnS6OaAa34KQi9uA09TymFUxtjMTaHxL49W6OqQmZseqZcRaLACvV69evj000/h4eHBcWQEwa2YmBjMmTOnPFlCnoeQi9sd6vOmjEv+QwRf3QmK0Z9Qh4aGYsmSJVVmuToKPp+PMWPGYPXq1ahXrx77/AMVg4XpKmzN06DUzhnVAWZaa5gbtyUtw+CfQg0+TFPhirL8YsnX1xcLFy7E1KlTK7SWIMoNGDAADMNg165d7HNvvvkmRCIRDh06hA4dOmDy5Mno0aMH1q5dC4qi8Oqrr9boGPPmzUOLFi1w5MgRxMTE4NVXX0VsbCy2bduG4OBgrF692mZfz//+9z/k5OTA19cXAwcONPlaiqLw7bffwt3dHStXrkTv3r3xyiuvoEOHDrh58yZ69OiBKVOm2Cw2rlRVZs/ZiIszrRp3aE/dLKorPzOCKBMUFISYmBh22yPtqk3375Z5CwJt5eeeAm0p3DJv2exY7uk3wKP1yUyNGjWqUfKgrbm4uEAk0ifAlTJAntZxPztkWho/5Grw9BkrA+CHXA1kDhx7qro8ake/bnBEBw8exOeffw5PT0988803uHPnDjsZ+7TXXnsNDMOY7YtMPJu2b99u1AIjp+lzUPo2NPEO69BCCdLbjoZOoE/Gzc/Px7Jly1Ba6nhzHQTBFYZhsHHjRvb6ReFdHyVBLTmOqnrERemof+YHeKVegjT/IbweX0T9Mz/USjUym6N4yG4xgD2vunTpEi5c0Fc8M6wW6urEdxnVNIPlGSqjhVAAUEIDyzNUTl1ZwsUgudnZk3BVKhVu3LiBN954A//++y8A4IUXXjBZtdnwPkJV7ty5gytXrkAgEOCNN96o9DV9+/YFoG+NV1uLTWJiYtC/f3+r99O6dWsAwIMHtdOG8qWXXqrwXKdOnQBUrIhnzff20KFDAIDhw4dXaBESEBBgVEnSFpz4I4xwFKNHjzZKlnApTEXoxa3gqRUm3sWBp++lOWCio1fKfwi8+S8bWlmShGGGG0E8yzp27Ij33nuPrXggKclC8JU/QdGOsyJWVJKN4Ct/shPbgYGB+PTTTx22kkRlIiIisGbNGowfP549oaQB/FusxZzUUpyX6+zWNivGlQ9pFWcrUp5+3B5uK3X4OE2F7QValM1hUxSFgQMH4quvvkK7du3sEoczGzx4MN566y2ji5gmTZrgu+++g1QqxcOHD7F79262Dcf06dONKldVh7u7Ow4cOMCWvNu3bx+Kiorw8ssv4/jx4zYtWf7bb78B0J8HCYXmky5btWqF48ePY9SoUXj06BH+97//wdPTE/Pnz8eOHTvqRGstf39/9rFQWQjQuqpf7MAEqhKrxh2ZoLSY/fvk5uZGqpURdZLhBJNH2jWbfhZJc02XQzc3Xm0MA8+0K+xm//79Oa3Eyefz0bx5c3b7QJHjfr7/UWD6usDcOFeUNIMTsvLYDFe+EdXz/fffg6IorFmzBhMmTKgySQIo/5y4c+eOvcIjnMSJEyfw+++/s9uF4e1QVC/GxDtsQyP1RUbrEWCefNY/ePAAa9eurdC2jyCeVRcvXmTnChiKQk6z5wAnqFJO6TQIvbQdgqfukwjUCoResm01stqi8ghCcVj5qv3NmzdDp9NBpVKxzzl6tTFTjhdroKpiilPF6MedlcTgx+KMyXfbtm1jK78GBgaia9eu+OOPPwAAnTt3xueff17le/l8PuLi4sweo6zqLU3T6NixIyIjIyv869atGwD997C2KnP06NHD/Iue0Ol02Lx5M0aMGIHIyEj4+fmx36fRo0cDAGQymc1jlEqllZ5fl83zPt3Szprv7e3btwFUfU0UHR1t/RdkwPlnZAmHMHr0aIjFYrbsjaQ4E+EXfkVau3HQunB7k5/SaRByeUelJyQhl3cgpdt07qtKMAx8752AT/IZ9qmIiAgsXLiQVJIgiKfExcVBqVSyJZlcCx4h8MY+ZEYN4/wiSVBajJBLv4Ov1V8seHt7Y/HixfD19eU0LksIhUKMHTsWcXFx+O6773Djxg0AQIEO+DpbjSgXHib5ChEktEPOZVU5GXbI1SjSMdiWr0G8zHiCqn79+pg2bRqaNWtW+0HUEV5eXliyZEmF50eMGIEePXrg4MGDSE9Ph4eHB3r27ImIiAiLjuPu7o6lS5di6dKlNXrfvHnzMG/evGq/fseOHTUNDY0bN8aPP/5Y4/c5CxcXFwQGBiIrKwsUQ0NckuUU5USfRpmpsmBu3JFJijPYx/Xr1yctEIk6qW3btvD19UVeXh4EGgWkufchd8B2i6aISzIhluXoH4vF6N69O8cR6StDXb2qr9Cxv1iLNq48tHCxT8JqTSSZKZFsbpwLDMNgU64GZfknvr6+6NChA7dBOaFLly6BoigMGTLE7Gv9/Pzg7u5u1GudIG7duoWvv/6a3Zb7NkROU9uuWDRF6dsQ2c0HIPCmfqXsf//9h19//RWTJ0+2WwwE4YhommYXKgBAUVhbqN2rToZzJG6ZN8GvohIuX1MKt8ybKAltbeeoai43oof+a9GqkJqaiuPHj7OL2ADAiYsu4ECJ6YS0AyU69POyTyy2ZnjWy+c73nm7ORKJhL03xufz4enpiWbNmmHIkCEYMWKEya/J19e3WgtDcnL011w0TSM7O9vs62urMkd12zjLZDKMHj0aZ8+eZZ+TSqXw8Slv4VVYWGjUGtdWyo7xtLKfw9MVS6353hYWFpo8pq3vtZBECcJmnn/+eUgkEmzYsAEMw0Akz0PY+c1Ibz8Oajd/8zuoJW7ZSRCon+5QqidQy+GWnYSSYA5LddE0Am7tN1ox1Lx5cyxYsMDmvXYIoq7o27cviouLsXnzZgCAe+ZNaFy8kNekJ2cxUVo1Qi79AeGTlcaurq5YtGgRgoKCOIvJFsLCwrBkyRIcP34cmzZtQlFREQDgupLGvFQVhngJMNRTAFEtZY8nKHSQV3HBJWf0413cbH86QzMMjpTo8GeBBgqD8zyJRIJx48ZhyJAhdaICgKPw8fHBuHHjuA6DsIHmzZsjKysLAOCekeiUiRI6oRgwsdhCJ3TeFjvuGTfYx4arwwmiLuHz+ejZsyfbl9Uj/ZrNEiUUXuFwz7ptctwWPNKvs49jY2MdovpLp06d0KpVK9y4cQMMgLVZanwQJEKkxLEmXQVmMmnNjdsbzTDYkq/BGXn5JP3LL79crWpVhDGFQgGpVMq2iTGHpmm7VckjHF9mZiZWrFjBln1WSf2QGT0C4Nn3M644rC1E8jx4PzwPANi1axdCQ0NtXmKaIJzJuXPn2JLuNE+I/EZduQ2oBqS5982OO0OiBC1yRWH9TvC9fxKAvkVR586d2XGtE/89VZop3GNu3JFpDH4szpgoMWLECGzYsMGi91a3NXLZuWB0dDROnjxp0bFsobrxrlmzBmfPnoVUKsWnn36KkSNHGlWxPnHiBIYNG+YQ57i2+N7aa3EPab1B2FS/fv0we/Zs9uaRUFWCsPO/QlKYyllMAmWBVeO1idJpEHxtp1GSRExMDD755BOSJEEQZowYMQIDBw5kt32Sz8At8yY3wTAMgm7sgVimz44UCASYO3cuGjRowE08NkZRFHr16oVvvvkGgwYNYrPGtQB2FWoxL02F64rauXLI1pg+sTM3bokUFY3F6SpszjNOkujSpQvWr1+P4cOHkyQJgqhCr1692MceGTdAadUcRmMZc9XQuK6WZil+aQmkOeVtAQx/VgRR1/Tu3Zt97JpzHzyNbVb+iEuyrBqvFloHt4zyc1pH+V3l8Xh499132Ym4UgZYmalGvMyxWlkIzZwamhu3JyXNYH22GgeLy8+j+/bt6xAVRJxRYGAgZDIZcnNzzb729u3bkMvl1V69R9RtCoUCy5cvR3FxMQBAK3RFetsxoIUSM++sHbmRvSHzb8Juf//990hMTOQkFoLgGsMwbPIrABTWj4FO7MZhRDXEmKlkZW7cgRTU7witUJ+8m5OTg7y8PHasxHm+jArczeQPmBt3ZCW68hNfd3d3DiNxXGUtZNPT0zmOpHp27twJAFi2bBlee+21Cq2+q3MebC/WfG/Lvi7DzxlDVT1vKZIoQdhc165dsWDBAkgk+gsKvrYUoQlbIc1O4iQerYu3VeO1hadRIvTiNrgZfF969eqFuXPnVjuDjCCeZRRFYcqUKWjXrh37XOCNfRCVmC/lZGs+D+KNfpenTp1q815ZjsDNzQ1vvPEGPvvsMzRpUj5xk61lsDpLjW+z1SjW2Xb2OUBoOnPU3HhNlNIMtuZpsDBdhQfq8q8jODgYixYtwpw5c9i+a4R1zp8/jy+++ALvv/8+3nrrLaMxuVyOlJQUdsUI4VxatWrFXgzxNUp4p5zjOKKakxtMTFsy7qj87p0A9WQirlmzZuTmEFGnhYaGsi2ceIwObiaqQNSES5HpSR5z49XhmpcCgUbfNtLX17fKvqxc8Pf3xyeffMKWwNUwwHc5GvyQo4bCQWou55rJ3TU3bi/3Sml8nKbCBYOs3C5dumDatGkcRuXcynocf//992Zfu3jxYlAUVaN+0ETdRNM0vvjiCzx69Ei/TfGR0fYFaF29uAuK4iEzahhUT1oLaLVarFq1iq3aRhDPkhs3buD+fX1VBprHR2G9jhxHVDM6gemqYObGHQkjEKGoXgy7fefOHfZxoY3nAu2pjYvpW6Tmxh2Z4c/l6RvqhF779u0B6BMMrl27ZvF+yhYV6nS1e7FRlnTQsWPln4WGLTm4Zs33tqwC6vXr1ysdt+ZnVRnn/S0nHFrr1q2xdOlSeHrqV9zxaC2Cr/wFj9TLdo9FFhAJrUha6ZhWJIWMg361gtJihJ3fDBeDShvDhw/HO++8Q1YpE0QN8Pl8zJo1i73Zw6O1CL66E5RWZbcYXPJS4HO/vHzU0KFD0bdvX7sdnwuNGzfGypUrMXXqVEil5Z+vZ+U6fJhainiZ1mYlvmJc+fCs4mzFk6cft4XrSh3mpanwb7GWLcgsFAoxbtw4rFu3Dm3btrXJcZ51Dx8+RP/+/TFgwAAsXboUP/74I7Zu3Wr0Grlcjri4OLRv357thU44Dz6fb9RGxTvlHATKQu4CsoDCp2GVhdmZJ+PORlyUDvf08gvJ8ePHcxgNQdiH4ap89wzbVB2j+abbIZgbrw73zPJVw127dnW4Mrn169fHqlWrjJKtTsl0mJtaigtyHedlXs1147V9t96aUdAMNuep8WmGCtna8u/VkCFDMHv2bIf7eTuTd999F3w+H2vXrsWaNWvY6gCGbty4gTFjxmD//v0QCoWYPn06B5ESjmT79u1ISEhgt7NbDkKpVxiHEekxAhHS24xm5zOLi4uxcuVKqFT2m+sgCEdw4MAB9nFJSDR04srn+B0VX2u6qpm5cUdTGN4eNE9/vmu4ojunFqq92kt9M23kzI07shyDc01fX18OI3FczZs3R1RUFADg008/BU1XXR7lwYMHVY6VJZJnZGTYNsAqjpOcnFxh7NGjR9i+fXutHr8mrPne9unTBwCwe/dulJYa98bNzs7GoUOHbBorSZQgak1ERARWrlyJwMBAAAAFBoE3/4XP/VOAHSdPGL4Q6W1HV0iW0IqkSG87GowNJrNqQlSSjbD/foFYXn4y8eqrr2Ly5Ml267lDEHWJm5sb5s2bx1axESnyEXBrv12OzVfJEXR9N8p+c1u2bInJkyfb5dhc4/P5GDBgAL755hujGxEyWr+y8IssNQq01n/Wi3gUZgWJ4fHUGYsHD5gVJIaIZ93npoJmsDFHjdWZauQaxBsdHY1169Zh3Lhx1e5zTJiWn5+PIUOG4Pz582jcuDEmT55slGhTJiAgABMnTgRN09i1a5f9AyWs1qtXLzRq1AiAPoEt6PoewMQFkaPxSTmLqj5ZqCfjzoTSqoz+VsXExKB1a8fvg0sQ1uratSt7feVS8BD80hKr91kU2saqcXMoncaoSpmjtmAIDg7GZ599ZrQav0AHfJWtxqpMNR6pufvM9xOYPjc0N15bdAyDY8VavP+4FIeKdWxCnouLC2bNmoUpU6aQJAkrRUZG4ssvvwTDMFi2bBkiIiLYmzg9e/ZEZGQkunfvjkOHDoHH42Ht2rVo2ND5kh8J27lw4QL++OMPdrugfieUhERxGJExrYsnMtqMAkPpL4aTk5Px3XffcZ6QRhD2UlxcjHPnyisUFoa35zAaAgBokStKgppXeD5NQzvtZ1O0hGfy+j9a4ry3UNMMquWGh4dzGIljW7p0KXg8Hg4fPowJEybg1q1b7FhOTg62bNmCXr16YeXKlVXuo6wK4NmzZ3H+/Plai7WsLeOCBQtw6dIlAPrqWCdOnMCwYcPYyhaOwtLv7cSJE+Hl5YWMjAxMmTKFbSny8OFDTJo0CQqFwqZxOtZ3jahzgoODsWrVKnayHAB875+C/639du3BpfIMQUq36ciMGobciO7IjBqGlG7TofIMsVsMACApeISwC79BqNJP0gkEAsyaNQvPP/+8XeMgiLomLCzMqEytR0Yi3DJvmXiHDTAMAm79C4FaDgDw9PR8JleBeXl5YdasWViwYAFbbh8ArihpzE0rxRkb9a1++nrLFtdfiUodPkpV4YSsvCyau7s73nnnHSxevBghIfb9G1HXffnll0hNTcWwYcNw9uxZfPHFF5UmSgBgKxI4Usk4ovp4PB6mTp3KXqC5FKbC16DyjqMTyk33dDQ37lAYBgG3DkCkKAAASCQSvPbaaxwHRRD24ePjw05YUYBN2m/IA5uarDgjD2xq1f6luffB06kBACEhIUbX0Y7G1dUV7733Hj744AN4eXmxzyc+aSnxXY4a2Rr7J0z09jB9Lm5u3NYYhkGCXIeP0lT4KU9j1MO7Xbt2+PLLLx02IcYZTZw4EXv27EF0dDQ0Gg10On2Vk6tXryInJwcMwyAqKgp///03JkyYwHW4BIeys7Oxbt06dlvu2xC5kb04jKhypV5hyG7en90+duwYDh8+zGFEBGE/586dg1arn1Mq9QiG+kk7GmeiE5qugGFu3BEVh1ZMupfTQJ6Ttt+4VkqbPL+/Vuo8iz4MyXQM+zMRCAQIDg7mOCLH1aNHD3z11VcQCoXYv38/YmNjERoainr16qFJkyaYMWMGLl82XSk/Li4OLVu2hFarRf/+/REdHY2ePXuiZ8+e2LRpk81i/fjjj+Hr64sHDx6gd+/eCA0NRWhoKIYNG4aSkhIsXbq0yvf26tULkZGR7L+///4bALB+/Xqj58uSMWzB0u+tj48PvvnmG/D5fOzbtw+RkZFo0KAB2rRpg4sXL2LSpEk2ixEASI1/otZ5eXlh2bJlWLlyJVtC2yv1MvgaJbKingfDs89/Q4YvRElwS7scqzLS7LsIuvY3eLT+BM/FxQVz584lK/oIwkZ69OiBq1ev4ujRowCAgFv7ofQOh07sVivHc89MNFrx9+6778LHx6dWjuUM2rdvj6+++gq//vor/ve//wEAFDSwIUeDywoak32FkPJrvoJPTTNYnamC/KmrlhIGWJ2pwlfhkhpXldAwDHbka/FvsXESR2xsLN58802jyX7Cdv79919QFIXFixebbTPVpk0bCIVCpKammnwd4bgiIyMxceJE/PrrrwAAn+QzUEt9HWqVXlU0Lt4AHpoZdw7eyWfgkXGD3Z42bRqZICGeKV27dmX7mrpn3UJR/Q5W7U+al2xyxZk0L9mqa063zPIWIYYVMRxZXFwcWrduja1bt2L//v2gaf1kc7xMh3MyHbq78/G8pwB+Qvus0+nqJsC2fC1KK5nxllD6cXtgGAaXlTT+LtAgRW0cjJ+fHyZPnoy4uDin+Bk7m7i4OBw/fhxJSUlISEhgEyT8/f3Rvn17NGvWjOsQCY7pdDqsXbsWMpkMAKARuyMzahhAOeZ6wuKwtnApTIVHuv7v2f/93/+hRYsWRi2QCKIuunDhAvuYyzl9a2jFrlaNO6JSrzBoJB4Qlhq3uLpXSsPPzTE/R03JNtM2xNy4o7qnKk/waNiwIWn3bsaLL76I2NhYbNiwAcePH0daWhp4PB6aNm2Kpk2bol+/fhg2bFiV7+fxeNi1axeWLVuGI0eOICMjA48ePQJg23YcDRo0wJEjR7B8+XIcO3YMhYWFCAwMRJ8+ffDhhx/i/v37Vb43NzcX2dnZFZ6Xy+WQy+Xstlgstlm8gOXf28GDB2P//v1YvXo1/vvvP2g0GsTFxeHjjz/G/fv3sXnzZpvFSBUWFnL+mx4UFITMzEyuwyBqmUajwfr163HixAn2OYVPA6S3GQVGYNtfPkfjnnYNgTf/AfVkCbSXlxcWLlzo0CuECMIZyeVyzJw5Ezk5OQCA4uBWyIqyfcUWnkaJ+qe/h0CjL/M0YMAATJ061ebHcVY3btzA119/jaysLPY5PwGFaf5CRNawt9/JEi3+L7fqbtKv+wnR3b36J/sZahrf5Kjx0GDC2t3dHW+++Sa6du1ao9iImgkKCoJQKMTjx4/Z55o2bYqcnBzk5+dXeH2jRo0gl8uN/h8RzoWmaSxZsoTNDmcoHtLbjYXC17HLXLs/voygW/9WOZ7ZfCBKwtvaMSLLuKdfR9CNvex2nz598Pbbb3MYEUHYX3FxMSZPnsz2Q03u/ha0Eg+L9+f94DT87lVdISc3ojsKGll2PkFp1Wh0/Es2sX7dunWoX7++RfviysOHD/Hrr78iISHB6Hk+gDg3PoZ6CRBkh4SJByoan2eoUGIw2+VOAe8Hi9FIXLvHpxkGCQoaewo1RuebgH6xxPDhwzF8+HCbT0ASBFF9O3fuZCfXGYpCaoeXUOoVxnFUplFaNcL/2wTxk8pmTZo0wcqVK5+5ipbEs0Oj0WDixIlQq/WVtlK6ToXG1fkWJ7lnJCLo+u4qxzOjhjllEoj/rQPwenzR6LnnPPiY5Ot8rWvPyLTYkFP1vOM0fyG62CnR1pb+yNdgb5H+umLIkCGYMmUKxxGBnQ8kbUAIezP3f88hUrxIksSzQSgU4t1338XQoUPZ51zzUxCWsBU8jZLDyGqX18PzCErcxyZJBAYGYsWKFSRJgiBqgVQqxfTp09ltj4wbcMmvelWwpXzvHmeTJPz8/PDyyy/b/BjOrFWrVvjyyy/Rt29f9rlcLYNlGWr8U6ipUd/CqwqdVeOGzsi0WJCuMpq0bteuHdatW0eSJOxAIpGgtLQUOp35n5lCoUBxcTE8PCy/mUVwj8fj4f3330eDBg0AABRDI/jyn7XyuWxLAo3cqnFH4JZ5E4GJ+9jt6OhoktBHPJM8PDwQHR3NblvbfkNrpqKMuXFTpLn32SSJ8PBwp0uSAID69evj448/xvLly9GyZfmkvw7ASZkOc1JVWJ+txkNV7ZYwbiTm4ct6EkzzF2KUlwDT/IX4sp6kVpMktAyDkyVazEtT4ets46RckUiEYcOG4fvvv8fYsWNJkgRBcCg9PR3btm1jt/MbdbVpkgRfWYSQhK2of+obhCRsA19ZbP5N1cAIRMiMHgbmSdWLu3fvYu/evWbeRRDOKyUlhU2SULt4OWWSBADIAiKhE0oqHdMJJZAFRNo5IttQ+Fa8r3FD6ZwtKqIlPJMV46IlDnELtcZuKMvn3gzPywmCqMj5UqEIp8bj8fDqq6/Cw8MDW7ZsAQBIijMQduE3pLUfX2sl8jnBMPBOPgO/e+UVNBo0aIBFixbB29t5SjYThLNp27YtunTpgjNnzgAA/JKO4HGnVwAblbUVynLhmXqF3Z4yZQpcXFxssu+6xMXFBW+99Rbat2+Pb775BjKZDDSA7QVa3FXReMNfBNdqtMwwl1JRnZQLLcNga74Gh4rLLxKEQiEmT56MQYMGkZLHdtK8eXP8999/OHv2rNnElJ07d0Kn0yEqyvHbNBCmSaVSLFiwAHPmzEFeXh54tAYhl/5AersxUPo45k3A2rwRag9umTcRdH03m6Rbv359fPjhhxAKhRxHRhDciIuLw5UrVwDoEyUK63e0eF+ygEhoRVII1BUTprQiqVWT3YZJHF26dLF4P46gRYsWWLp0KW7cuIHt27cjMTERgP687T+5Dv/JdYh24WGopwBNJbxaORcT8Si7rP4rpRmcKNHh3yJthd7cIpEIAwYMwIgRI8gcgJ0kJSXhwIEDSEpKQm5uLlQqFbRabZWJ2hRFYc+ePXaOkuAKwzD4/vvvodHoVw6Xugchv6HtPm+9752E74PT7A03kbIIDU+tR16jriiI6G71/tXugchr3B1+944DALZt24a4uDj4+/tbvW+CcDR3795lH6s8QziMxHpVrRWqwRoih1PqWbGdY4aGQY6Ghr+d2q3ZyrVSusq5RebJeBcnaylSrGPY1m88Ho/MrRGEGRZfNRpWBagOiqLg6uqK0NBQdO7cGUOHDoVEUnk2HVG3URSF0aNHw93dHd9//z0YhoFYlqNPloiZYFUpVIfBMPC9dwI+yWfYp5o3b4758+fDza0OJYMQhIN69dVXkZCQALVaDUlxJtyybkMW1Nwm+/a7dwLUk1Po1q1bo1OnTjbZb10VGxuLiIgIfP7557hz5w4A4KKCxuJ0FWYGihBs5gKqjSsPFxRVZ6W3cTX9/iIdg6+z1LhjsHIxJCQE77//PqnsY2cvvPACzp07h3nz5mH37t3w8al8Rch///2H+fPng6IovPDCC3aOkqgNvr6++PTTT7FgwQLk5+c/SZb4HZmtR0Du34Tr8CqQ+zYEA1S6qoR5Mu6oPNKuIiDxf+zfqbCwMHzyySeQSqUcR0YQ3OnUqRM2bNgAmqbhUpgKfmkJdBJ3i/bF8IVIbzsaIZd3GCVLaEVSpLcdDYZvWUISpdNAmnuP3Y6Li7NoP46EoihERUUhKioKiYmJ2LFjB5uwAgDXlDSuKdVoIuZhiJcAbV1qJ2Gitsh1DA4Va3GgWAvZU6eqLi4uGDRoEIYOHQovLy9O4nsW/d///R/mzp0LhmGqXcHOmf7PEda7ePEirl69CkDfciO75SCAZ5vWFXxlsVGSRBkKgO+D0ygObQOdi/XznQUNOsE9MxFiWQ5UKhW2bNmCmTNnWr1fgnA0hi07Sz2COIzEOm7ZSRBoSysdE2hL4Zad5JStN3RiN2jE7hCqSoyev6Sg0d/TuZIKsjWmzxnMjTuiywodm/zRtGlTcj+KIMywOFHi9OnTAMovKkxlZz89/vPPP2PhwoX4/vvv0b279Rm1hHMaMGAAJBIJvvrqK9A0DZEiH6EJW5Aa86LFE1cOgWHge/c4fFLOsk+1bt0a8+bNI8lBBGEnfn5+GDRoEHbt2gUA8HkQD1lgM6urSohKsuGWfYfdfumll8jkWjX4+/tj2bJl+OWXX9jyoOkaBp+kq/BugAgtXKqenOosFWBrnhbySk4zpJR+vCqpahprstTI1Za/OTY2Fm+//TZcXV0t/4IIi0yePBnbtm3DxYsX0a1bN4waNQpKpb711oEDB5CWloajR49i//790Ol06NixI8aNG8dx1ISthIaGYunSpfj444+fJEtoEXzlT2S3GITi0NZch2dEmpdssvSmNC/Z8SazKqlkFhYWhqVLl5KbdMQzz8PDA61atcK1a9cA6Cesi+q1t3h/Ks8QpHSbrp/4VhZA6+INWUCkxUkSAOCalwyeTr/COSQkpM717W3ZsiVatmyJe/fuYefOnTh79iw7R3RXRWNtlhrhQgpDvQToJOWD58Dn14VaBv8Wa3G0WIvSp85PPT09MWTIEAwcOJBMSHPg888/B8MwGDhwIAYPHgx/f3+IRCLw+ba5EU44N4Zh8Ouvv7LbRaFtobLhzdfAxH9Mnj8GJv6D9Jjx1h+Ix0dOs34IS9BX6T1+/DhGjBjhlO2aCMKU3Nxc9rHWxYu7QKwkUBZYNe7ItC6eFRIlEhQ69Pd0riL2AULT553mxh1Rgry8oi5Z4EcQ5ln8qfXNN9/g8uXL+PHHH+Hq6op+/fohKioKvr6+YBgGeXl5uHbtGg4dOgSdToepU6eiUaNGyMrKwv79+3Hp0iWMHz8ex48fR5MmjreSjLCPnj17QiwWY82aNdBqtRApChCWsAWpMROdM1mirJKEQZJETEwM5syZA5FIxGFgBPHsGTlyJP7991+oVCqIZdlwzU+BwspVwF4Pz7OPO3XqhIiICGvDfGYIBAK89tpraNKkCdavXw+1Wg0FDazOVON1fyHiqiiNLOJRmBMsxpoMFYoNJqM9KGB2sBiiKtp33FLqsDZLDeWT91AUhZdeegkjRowgyS0c4fP52LFjB1555RWcOHEC69evZ8fGj9dPGpbdNOnWrRs2bdoEHs+5ViIQpoWEhGDZsmX45JNPkJWVBYphEJj4DwSlJchvFGezFknWcrrJLJqG/52D8Hp8iX2qUaNGWLhwIUmSIIgnOnfubJAocceqRAlAX1nClglThom4sbGxdfZcJSIiAnPmzEFaWhp27dqFY8eOQavVAgAeaxh8m6PBzkItnvcUoIsbH3wH+j4UaBnsLdLgeIkOTy8sDAgIwPDhw9GnTx+IxWJuAiSgVCohkUjw22+/1dnfIcJyFy9exMOHDwEANF+I/MamWwHWlFCZb9V4TSh96kPmFwG3J5WIdu3ahXfffddm+ycIR5CfX/47oxU74T2CJ5y9raMp2kru3dwppVGoZeAlcJ6/wzGufHjyNCiqpJitJ08/7kzkOgY3lOVfDEmUIAjzLJ59joiIwObNm9G1a1dcvXoVP/30E9577z1MmjQJL7/8MmbNmoVNmzbhypUraN++PTZu3IioqCh88MEHOHLkCCZMmACFQoF169bZ8ushnFBsbCw++OADCAT6m2QiRT7CLm4FT63gOLKa806ON2q30aFDB3z44YckSYIgOODh4YG+ffuy254PL1i1P55aAfeMRHZ7xIgRVu3vWdW9e3csX76c7dOsA/Bdjgb/FmmrfE8jMQ9r60kwzV+IUV4CTPMXYm09CRqJKz+NuSDXYXVmeZKERCLB/PnzMXLkSDJpyjFvb2/s2rUL27dvx/DhwxEWFgaxWAyxWIzQ0FAMGzYMv/32m8nWHIRzCw4OxsqVK9GgQQP2Od/7JxF4Yy8ouurPAXtypsksnlaFkMt/GCVJREVFkUoSBPEUwwlCl4JH4GkqL4HMCYaGNKe87cazMJkZGhqKGTNm4Pvvv8ewYcOMKi9mahj8kKvB3FQV4mVa0Bw38C7SMfgtT43ZqaU4VGycJFGvXj2899572LBhAwYNGkSSJDg2duxYlJaWshVwCcLQvn372MdFYW2hE9u26otG4mXVeE3lNypv0XTy5EkUFRXZdP8EwbWyREoAoPnOVaHAUFlbx8o4eltHcxheeTW10NBQ/XMA/jOoZuAMRDwKs4LE8HhqitGDB8wKqnqBlqNKUOhQ9tsTERGB4OBgTuMhCGdg8V+ZpUuXQqvV4ocffoCvr2+Vr/P398fGjRvRsmVLLFmyBDt37gQALFiwAFu3bsWJEyeqfC/x7OjUqRM++OADrF69GjqdDiJ5HkIv/Y7UmAlgBM4x2eD5+CL87p1ktzt06IA5c+ZAKLS8BCtBENYZMmQI/vnnHwCANO8++CqZxRMi7pk3wWP0J/sRERFo1qyZzeJ81kRERGD16tVYsmQJHj16BADYmq+BmmEwzKvyz0wRj0KXKqpOGDoj0+K7HA17Iert7Y0FCxagUaNGtgqfsIH+/fujf//+XIdBcMTb2xvLli3DypUrcf36dQCAR8YNCJVFyGgzEjqRlNP4ZAGR0IqkEKjlFca0IilkAZEcRFWRQFmIkMs7IJblsM917doV7777Ljn/JIin+Pr6onHjxrh//z4ohoZr3gPIglpwHRYAQFKYBr5G34rK29v7mapY5uvri1deeQWjRo3Cvn37sG/fPigU+gUTmVoG3+VosK9QizE+QrRx4dk14VVJM/inSIt/i7RQP3WHo3Hjxhg9ejQ6duxIql85kJUrVyIlJQXDhg1DSEgIAgMDIZFITP6MKIrCnj177BglwYWyqseA/iZeYb0ONj9GSUAkpAUPTY7bksorFErPULgUpUGn0+HkyZMYOnSoTY9BEFzS6QxutlPO+7fWLeu2ybY8blm3URzezp4h2QxjcF4WERGBtLQ0AEC8TOt07TcAgKFNbzuLeFn57063bt04jIQgnIfFf2WuXLkCDw8PBAWZ7+cWHBwMDw8PJCQksM8FBQXBzc0N2dnZloZA1DGdOnXCrFmz2MkPSXEGQq78BdCOn4XolnkL/rcOsNutW7cmSRIE4QCCg4PRvHlzAADFMHDPvGnxvgyrSfTu3dvq2J51/v7+WL58OfvzAYA/C7TYU6ixeJ/nnkqSCAkJwapVq0iSBEE4IKlUikWLFhlV/nEpfIzwc5sgKuH2+oDhC5HedjS0TyVsaEVSpLcdDYbP/fmdS/5DhJ/72ShJYvTo0Zg1axY5/ySIKnToUH5jTJp7n8NIjBnGEhMT80zeePfw8MCECRPwf//3fxg/fjyk0vLP31QNgy+y1FiRqcZDVe3PWNMMg6PFWsx+XIrdhcZJEk2aNMHHH3+Mzz//HJ07d34mf1aObM2aNTh8+DAYhkFaWhouXbqEM2fO4PTp0yb/EXXff//9B5rWf34ofepD6+Jp82MIVCVWjVuiODSafXzu3Dmb758guGRYbYqnVXMYiXU80q5ZNe7IDH8uLVq0YKuFJ6sZpKqdJ8tATTNYnaHC05/SJQBWZ6igprmtblYTORoat0r133sej0cSJQiimixO7aIoCsXFxcjKykJgYKDJ16ampqK4uBju7uV9i7RaLZRKJTw9bX9ySjivuLg4yGQybNiwAQDgmp+CgFv7kd1ikMP0rX6auDBNXy76yXaTJk0wd+5cMklNEA6iZ8+euHXrFgBAmnMPhfU71ngffJUckiJ9ZjSPx0PXrrbtZ/qscnNzwyeffILly5fj6tWrAIAdBVq48ij09ajZKcpVhc4oSaJevXr49NNPSel5B5WWlobc3FyoVCpotVowJspqx8XFVTlGODeBQIAZM2YgNDQUmzdvBsMwEJYWIfz8L8hs9TzkgU05i03lGYKUbtPhlp0EgbIAWhdvyAIiHSJJwiP1MgJuHQD1ZIlL2fexV69eHEdGEI6tXbt22L59OwDANfcBwDAOcY3pmveAfdyunXOuKLQVqVSKsWPHYvDgwdi7dy92796N0lJ9m5RbpTQWpKvQ14OPF7yFcK2FMsj3SmlsylPj4VMlJBo0aICJEyciJiaGtHFzYBs2bABFUXjuuefw/PPPw9/fH2KxGHy+c/UWJ2zvypUr7OPaqgzmUpRhdrzAxseU+zcB8C8A4Pbt21AqlXBxcbHxUQiCGx4eHuxjvhO25y5D6UwneZgbd2SGP5fAwEB07NgRZ87oW5Kfkukw3sc5EkrPybWQVzElJWf0493duZ8HqI7TBtUk2rRpQ1raEkQ1WZwo0bFjRxw5cgRvvfUWNm3aZJTxb6ikpATTp08HYNxr886dO9DpdAgLC7M0BKKO6t+/PwoLC7Ft2zYAgGfaVahdfVHYsDPHkVUkUBYh5MoO8J701A4JCcGCBQvIhQlBOJD27duzj10KHoHSqsEIRDXah2veAzYZqmnTpkYXbIR1xGIxPvroIyxdupQtwb85TwMfAYV2rtWb1ExR0fg6W42yy4Hw8HAsWbKEJGM6mKysLHz00Uc4ePAg5PKKLQ0qQ1EU8vLyajkygksURWHEiBEIDQ3FF198gdLSUvB0GoRc/Qt5jbshv1FXzm5kMnwhSoJbcnLsStE6+N8+CK/Uy+xTXl5emDt3LmkHRRDVEBERAXd3d5SUlECglkMkz4XazZ/TmHgaJcTFmfrHPB6io6PNvOPZ4ObmhvHjx2PgwIH4448/sH//ftA0DQbAoWIdLsh1eNVPhLbVPFc0R0Uz+KNAg0PFOqM+4n5+fnjppZfQrVs3Uj3CCQgEAkgkEmzbto38vAgj9+7dYx8rfRrUyjEqa9lWk3FL6MRuULn5QyzLgU6nQ3JyMlq0cIy2UgRhLcMbvEKlrdOM7KfUKxwSea7JcWdl+HPx8fFB79692USJ0yVajPYWQOAECaZXFKarX1xR0OjubvIlDoFmGJw0SJQgCykIovosTpSYN28eTpw4gSNHjqBt27YYPnw42rRpAz8/PzAMg9zcXFy5cgU7d+5EQUEBBAIB5s2bx77/77//BgB06dLF+q+CqHPGjBmDzMxMHDt2DADgd/cYVB5BUPo24DYwAxStRfDVnRA8yZ50d3fHggULyA1UgnAwfn5+qFevHh49egSKoSEpzoDSp36N9uFSmMo+btu2ra1DfOaVJUssXLgQd+/eBQNgQ7Yan4SIESoyPclZrGPwZZYaqiez2v7+/li8eDFJknBAU6ZMQXx8PBiGQXh4OPz9/SESicgqPwKAPgl79erVWLZsGbKysgAAvvdPQVyShcxWQ8EIxBxHyC2+So7gqzvhUviYfa5Ro0aYN28e/P25vdFLEM6Cx+OhVatWOHv2LAB9CxuuEyVcCh6xybgRERFVLkB5Vnl5eeGNN97AwIEDsXHjRrYCWaEO+CJLjZ5ufLzoK4TYiuoSKSoa32SrkaktT5EQiUQYNWoUhg8fDrH42f7740w++OADzJ07F+fOnSNzjQSrpKQE+fn5AACaJ4Ba6lsrx6HNVB0zN24plXsg24rt4cOHJFGCqDPq1y+ft+O6NaM18pr0gGfaZVR2psI8GXdGPE0phKXFAPSJiiEhIQgNDYWvry/y8vJQTAOXFTQ6SB1/vsfcWaTjp3ro3SylkfvkfNbd3d1o0TpBEKZZnCjRrl07bNu2DVOnTkVOTg42btxY6esYhoGvry82bNhgdHMpMDAQM2fOxKhRoywNgajDKIrC9OnTkZmZiVu3boECg6Dru/Co82vQSRwjhc/vzhFIivWl9fh8Pj788EMEBwdzHBVBEJWJjIzEo0ePAACSovQaJ0qIi9LZx02bclcKvi5zcXHB/PnzMWfOHGRnZ6OUAb7OVmNxiLjKyW+aYfBdjhp5Ov2FgKurKxYuXEhKyzmohIQEUBSFo0ePok2bNlyHQzigevXq4bPPPsPnn3+Oa9f0vVrdspMQfn4z0tu8AK2rN8cRckNUnIWQKzvYiSgA6NatG9566y1yA48gaqhly5bliRKFqSiqF8NpPC4F5cm4LVs6UAUbBxMeHo5PPvkE8fHx2LhxIwoLCwEAx2U63FXRmBkoQpCw5hUEjhZr8WueBlqD59q1a4c333zTbItZwvHs2bMHnp6eGDJkCEJCQhAYGAiJRGKyugRFUdizZ48doyTszbA6ndbFE6Bqp9pIUWgbuBRX3X6jKLRNrRxX4+LFPi5LCCGIuqBBgwbsY5cnrXCdEcMXguaLwdepKozRfLFDtHa0hMRgnjQsLAwCgf42Y+/evbFjxw4AwPESrVMkSrR25eO8iaoSrW1Uway2HS8prybRo0cPiEQ1q6ZMEM8yixMlAKBPnz64ePEitm7dioMHD+LWrVvsSZmPjw+aN2+Ofv36Yfz48RVWdr7++uvVOoZMJsPq1auxe/duZGZmwtfXF/369cP8+fNttnqqtLQU33zzDf7++288ePAAOp0OoaGh6NevH2bPnl3pccz1PL906RIaNWpkk/ieVUKhEB988AFmzZqFwsJCCNQKBF3fg7SYCZz3kpVm3YHX44vs9uTJk9GqVSsOIyIIwhTDz2ORvIZl/BnG6D2NGze2VVjEU7y8vDBv3jx8+OGHUKvVSNMw+L1Ag0m+lZ/cHyrW4bqy/GJm1qxZCA933rKFdV3Dhg2RnJyMqKgorkMhHJiHhwcWLVqEX375hb1xIZbloN5/m5DRekStlUt2VG6ZtxB4Yy/b5o2iKLz00ksYMWIEKCcoY0oQjqZ58+bsY4lBxTCuSAwm/g1jIyqiKApdu3ZFdHQ0fvjhB5w+fRoAkKZhsDhdhXcDRGjmUr2JbJphsCVfg4PF5RPKLi4umDJlCnr37k0+X51UfHw8+zgtLQ1paeZvrJGfdd0nk8nYxzph7bXJlYW0gjbpCAQ6dYUxLV8EWUjtzBnqROVfU0lJSa0cgyC4EBkZCaFQCI1GA5E8D4LSYmglzlfF2S07qdIkCQDg61Rwy05yrHaP1eSa94B9bHhPpG/fvmyixHUljVwNDT8LklntqbOUj1/zNChlKo5JKP24oyvSMUiQl5/X9u3bl8NoHMPGjRuRnJzMdRhGGjZsiClTpnAdBlEJqxIlAP1k5tSpUzF16lRbxGNEJpOhf//+SExMRL169TBo0CDcvHkTmzZtwqFDh3D48GGrV/CXlpZi8ODBuHjxIjw8PNCtWzcIhUIkJCTgu+++w+7du3Hw4MEqb7yMHz++0ufd3R2j6oGz8/HxwezZs7Fo0SLQNA3XgofwfHyR05U/fLUcATf/ZbdjY2MxZMgQzuIhCMI8w78VQkXNehvyVTL2BpW7uzvc3NxsGhthrGHDhnj99dfxzTffANAnQ8RKdWgiMb4wydXS+KNAw26PGDECMTHcrgolTFu7di0mTZqE0aNHY+TIkdVa5QcAcXFxdoqQcBR8Ph+vvvoqGjRogG+//RZarRZ8jRKhF7chp1k/FIW35zrE2scw8Ll/Cr4PTrNPubq6YtasWeSzjiCsUL9+fXbSXVhaDJ5aAVrkyk0wDA1xSRa72aRJE27icDIeHh6YPXs2Wrdujf/7v/+DWq2GjAZWZ6kxM0CEaDOr/nQMg//L0SDeYDK5YcOGmDNnDqkQ6eT27t3LdQiEA2KY8jtfTC0mxjB8IdJjJiDk4u8QaJXs81qBC9Lbj63FVeOOfQOSICwlFovRokULtu2WNOeuU14HCpSm5yDNjTskhoE05x67+XQV+TZt2uDKlStgoK/+9YK3439O8Snoe6FU9rwTOF2iRdmZbdOmTY0qsjyrkpOTce3OPajcHaNKnOF1n6Pp0KED7t69y25/8803mDhxIocR2Z/ViRK1acWKFUhMTETv3r2xfft2iEQiMAyDadOmYfv27fjwww+xefNmq47xyy+/4OLFi2jcuDEOHTrElutWKpUYP348jh8/juXLl2PDhg2Vvr+q5wnbiYqKwsiRI/Hnn38CAPySjkHu15iz8sv+tw9CoFEA0CdyzJgxg6xCIAgHFxAQwD4WqGq2ysLw9aQPvH307dsX//33HxISEgAAv+Zp8EkIDzyDz9rt+Vqon1zE1KtXDxMmTOAiVKIGfH19ERQUhOPHj+P48ePVeg9FUUblcolnS+/evREaGoqVK1eioKAAFMMg4NYBCOV5yI3sC5hJsnFWlE6DwBv74J51i30uJCQEH330EcLCwjiMjCCcn0AgQP369XHvnn5yV1ySDaVvA05iESoKwNPpkz69vb3h7f1stheyBEVReO6551C/fn2sWLECBQUF0DDAl9lqzAmsurIEwzD4Odc4SSI2NhYzZ84krYzqgK5du9psX999912tLAgj7M+w9DhPpzXxSuupPEOQ0uMtuGUnQaAsgNbFG7KAyFotrU/R5YsHhELnLOFPEFXp2LEjmyjhnpHolIkSWrHpKhjmxh2RuDgDIoW+qrxEIqlQZbtfv364cuUKAOBkiRYjvATgO/C9kwSFDvIqOm/Iaf14FzfHvY1KMwyOGbTd6NevH4fROBaVeyDSOrzIdRgAgNALv9lkP6Y6HYwcORI//fRTjff56aefori4GElJSVizZo0V0Tkvh/0NLy0txaZNmwAAq1evZk9sKYrCypUrsWvXLuzduxepqalWTRiWleabNGmSUU9zFxcXvP766zh+/DguXbpk+RdC2MTYsWNx/vx5PHr0CDxaA/87R5DR9gW7x+GSnwL3zPJJ6xkzZpDV5QThBAx/T3naykveVYVv8Hry+24fFEXhjTfewLVr16BWq5GsZnBBQaPTk3J3KSoa/xlMcE+dOpVMCjmBN998E9evXwfDMAgLC4O/vz/EYjH4fMcvY0hwp2nTpvj888+xfPly3L9/HwDg/SgBIkUBMqKHgxHUrRtbfJUMIZf/hKS4vOdrmzZt8P7775O/QQRhI+Hh4WyihEiRx1mihGFrN9I6zDKRkZFYvnw5Fi5ciJycHGgYYG22GktCxAiopMzzP0VanJAZTyRPnTrVbHUr4tmzePFikihRRxjeUOCrZFW/0EYYvtCuZfQFBl+TuTbRBOFsunXrhp9++gk6nQ4uhakQyvOgkfpyHVYNVVKmoEbjjscj7Sr7OC4urkKyaceOHeHl5YXCwkIU6IDLChoxDty+Iltj+mdgbpxrt0ppZGn1Mbq6uto0cZRwTC1btsQ777xT4fl69epZtL+BAwcCAE6dOkUSJaxRVFSEhw8fQi6Xg6arSL96orrlk8+ePQu5XI5mzZohIiLCaMzLywtxcXE4cuQIjhw5gpdfftni2CUSCQBUemFc9pxhAgXBDaFQiLfeegtz5swBALjlJMElLxlK34b2C4Kh4X/7MLvZo0cPtG/vfJmsBPEscnEp79tJaSv2DDXF8PVlfzOI2hcQEIChQ4fir7/+AgDsLdSgoysPFEVhX1H5SqDOnTujRYsWXIVJ1MDNmzcBAAcPHkSHDh04joZwJr6+vli+fDm+/PJLnD17FgAgzb2PsAu/Ib3dWOjEdSOBQCjPQ+il3yFUFrLPDRo0CK+99hpJKCIIGwoJCWEfC+X5nMVh2A7OMCaiZoKDg7FkyRLMnTsXhYWFUNDApxkqzA4UG5VLTiql8XtB+Tlkr169SJIEUSXDdg2Ec/Px8QGfz4dOp4NQVQJKqwYjEJl/o5MQGfwdIxUwibrGw8MD7du3x/nz5wEAXg/PI6fFQI6jqhlzVW1rWvWWazy1Ah7p19ntnj17VniNQCBAnz592Pm8YyVah06UCBCarnZhbpxrhtUkevbsSaqkPQOCgoIwduxYrsOoU6y6Ijx48CB69+6Nhg0bomfPnhg8eDCGDh1a5b/nn3++2vtOTEwEoM+OqUxZSZ+ySXdLPffccwCALVu2oKioiH1epVJh48aNAGAyEWP9+vWYNWsWPvjgA2zcuBFZWY7ba8bZRUZGolevXuy2X9IxwI4Xr+4ZiRDLsgHo+6RNmjTJbscmCMI6RhNdNS335tjnw3XasGHD2IpSD9UM7qpoFGgZXDCoJkFODJ1H+/btIZFISJIhYRGxWIwPPvgAL7xQXlFMUpKF8P9+gVCey2FktiEpTEP4+c1skgSPx8OUKVPwxhtvkCQJgrAxa1qy2ZKgtJh9bBgTUXNBQUH46KOPIBDo1wIV6YCF6SrMTyv/90teeXn65s2bY8aMGSRJgqgSaa9adwiFQqNkNEfuEV5jDAORwddTv359DoMhiNoxdOhQ9rFH+nXwVXIOo6k5rYvp1mrmxh2N1+NL4NH6xNMGDRpUaLtRpl+/fuzf0utKGjka04uruRTjyodnFaeEnjz9uKMq0jFIMJgj7d+/P4fREI4kIyMD8+fPR1xcHOrVq4fg4GB069YNP/74o9X7jo+Px7Bhw9C4cWMEBQWhTZs2ePvtt1FcXFzhtdevX8fEiRPRsGFDBAYGonv37ti9e7fVMdiaxRUldu/ejVdffRUMw4BhGIjFYvj5+dnsQjM9XV9uNigoCACwa9curFu3DpMmTcIrr7zCPp+WlmbVcV544QWcPHkSv/76K1q3bo3OnTtDKBQiISEBarUaq1evxrhx46p8/8cff1xhe+nSpZgyZUqN4tiyZQu2bt1ardeuWLEC0dHRUCgUVn/9ziYuLg6nTp2CVquFpCQTrnnJUPg1qtZ7KZ0Gbtl3IFAW1rxPIMPAJ/kMu9m9e3fk5+cjP5+7FUgEQVRfaWlp+UaNEyXK/64VFxfj7t27NoqKqI42bdqwqwdOyXQIEtAou7xq1KgRtFot+ZlUQ2hoKFxdXTmNYdKkSUhMTMSYMWMwfPhwBAYGQiKRmD13rG41MqLu4/F4ePHFFxEYGIgNGzaApmkIS4sQdv5XpLcfD5VHENchWsQlLxkhl/8E70mPaZFIhPfffx8dO3bkODKCqJv8/PzYx4JSDhMlDMql+/o6WxlpxxMZGYkJEyZg8+bNJl/n4uKCWbNmsUkVBEHUfU2aNMHjx48BAC6Fj1HqXTfaHQmUhRA+SfiTSCRWtaYmCEfVqlUrNG7cGPfv3weP1sI75Sxym/blOqxqkwVEQiuSQqCumOChFUkhC4jkICrL8DRKeD08z24PHz68ysTCwMBAtGnTBpcvXwYD4IRMhxe8HTNBVcSjMCtIjC8yVSgyyOfw5AGzgsQQ8Rw3efJUiRZlaRJNmzYlCXPPCI1Gg7y8vArPe3t7s3OsiYmJ+O233zBs2DBMmDABIpEIR48exezZs5GTk4O5c+dadOy7d+/ihRdeQP369fHee+/B3d0dKSkp2LVrFwoKCuDh4cG+9syZMxg1ahT8/Pzw9ttvw8PDAwcPHsTLL7+M77//3qEWP1p8ZbhmzRrQNI0OHTpg9erVaNOmjQ3DAuRy/R+PsnLpq1evxs2bN3Hv3j288sorkEqlRq+zFEVR+Oqrr9CkSRN8+umn2L9/Pzs2ePBgxMTEVPq+CRMmYOzYsWjatCnc3d3x4MEDbNy4EZs3b8b7778Pf39/DBs2rNpxPHr0CPHx8dV6bWWZOc8KT09PdOrUif1eeSefqVaihLgoHSGXdxidlGhFUqS3HQ2Vp/kyp9LsJLaHrEQiQbdu3Sz8CgiC4IJSqWQf6wQ1a59h+HrD/RD2ERMTwyZKXJTr4CegjMYI5/Hmm2+CoigcOXIER48erdZ7KIqq9OSfeLY999xz8Pb2xmeffQaVSgWBRonQhC1IbzcWpV7ONUEszU5C0NW/wWP00xseHh74+OOPERnpPBNmBOFs3N3d2cd8bamJV9Yuvqb8vNJwQomw3LBhw1BYWIhr165V2jpBIpFg7NixpDw9QTxjWrZsyV5/uOY+QEHDLhxHZBvSvGT2cYsWLUgVMqJOoigKY8aMwYoVKwAAno8uorBeB2hdPDmOrHoYvhDpbUdXeV+i2os4HYB3yjn23DkkJARdu3Y1+fp+/frh8uXLAIATJVoM9xJA4KAVmxqJefgiXIIEhQ7ZGgYBQgoxrnyHTpKgGQbHS0g1iWfRyZMn0bhx4wrPJyYmIjQ0FIC+qu/NmzfZ++gA8Prrr2PQoEHYsGED5syZY1HRgyNHjkCpVOK7774zyglYuHAhaLo804hhGLz77rvw8fHBqVOn4OXlBQCYMmUKRo4cicWLF2PMmDEOU8XN4kSJpKQkUBSFTZs21Uo/zacvaseMGYPPPvsMEydONBq39htZVFSEV155BQkJCfjiiy8wYMAACIVCnDhxAnPmzMHAgQPx22+/sS06ynz77bdG21FRUVi3bh1CQ0OxfPlyfPrppzVKlKhXr161V0yWTaK4urqiSZMm1T5GXTF58mScO3cOOp0OrgWPIJTnQSOtegUOpdNUOBkBAIFajpDLO5DSbbrZkxLP1Mvs48GDByM6Otq6L4IgCLu6d+8e+5gWutTovTqD16tUqmfyc5dLjRs3xrZt21BQUIASGihR6//+83g8DB061OhmB+HYunTp4jAnwITzi4mJwZIlS7B48WLI5XLwtSqEXtyGtHbjbLZK0KpqZNUgzb6D4Kt/g2L0F5N+fn5YvHgxe2FLEETtMKywxNOqOIvD8NiGE1iE5fh8Pl599VWuwyAIwsG0bduWfexS+Bg8jbLG8wKOSJpTXlmxXbt2HEZCELWrY8eOaNq0Ke7cuQMeo4Pf3aPIjB7BdVjVpvIMQUq36XDLToJAWVAr15a1TaAoMKomMWHCBLPVuTp06ABvb28UFBSgUAdcUdCIkTpuQpeIR6GLm/NUHLtVSiNLq58jdXV1JdVYnyFt27bFokWLKjxvWDnR27u8rY9KpYJcLgfDMGjVqhXOnDmD3Nxci9o/ls3DnzhxAtHR0WyyBUVRRgmbV69exd27dzF16lTodDqjRXCxsbE4evQo7t275zD3WSz+zff09ERpaWmtJEkAgJubG4Dy1bszZ87EzJkz2XGFQgEAVpeRXrRoEY4ePYovv/wSkyZNYp8fPnw4pFIpRo8ejTlz5uDixYvVyrCZNm0aVq9ejfv37+Phw4fVLnczceJENgmEMM3f3x/t27dnVxh7pF9HXpOeVb7eLTup0vJWgD5Zwi07CSXBLat8P7+0BK4GWdr9+vWzLHCCIDiTnZ3NPtZIarZiT2vw+tzcXOh0OrJSw454PB5at26N48ePGz3fpEkTkiThZP755x+uQyDqmMjISCxduhSffPIJioqKwNNpEHL5D6S1nwCVZ7BV+7a2Gpk5rrn3jZIkgoKC8Omnn1p0oUoQRM2IRCL2MUXrTLyydhkeWyh0nolygiAIZ+Pj44PIyEj9oj+GgVvWHRSHtamVY9V2om0ZnlphNFfZoUMHmx+DIBwFRVGYNGkS5s+fDwBwz7yFotA2UPo25Diy6qN0GkgKHkOoyINGKofct6FTJUr43zkM3pNz14iICHTpYr4yj0AgQJ8+ffDnn38CAI6VaB06UcLZHDWoJtGzZ0+IxWIOoyHsycfHBz179jT5Gq1Wi7Vr12LLli1ISUmpMG7UprwGRo0ahW3btmHRokVYt24dYmJi0KlTJ4wbN85o0c+DBw8AAN999x2+++67SveVk5PjMIkSFjcG6tGjB2QyGXJycmwZD6ssASMzM7PS8bLnrVlxxTAMfv/9dwDAgAEDKoz36dMHEokEycnJePToUbX26e7uzvYXzcrKsjg2wrQ+ffqwj90zbwKVlNUsI1AWmNyXuXH3rFugoN9/VFQUAgMDaxApQRCOICMjg32sdfWq0XsZgQhaoT4pT6vVIjc315ahEdUwYMCACskpgwYN4igawhFERERwHQLhIBo2bIhly5bB01NferWssoRIZvk1irlqZJROY1XMkoJHCL7yF5skERwcjOXLl5MkCYKwE6NzCg4TJcCUlyYlSbgEQRC1y7BEvHvGjVo5hrgoHQ1OfYug63vgd+8kgq7vRoNT30JclG7zY7ln3WLPJZs2bUrmKok6r2XLlujRowe7HXDrgNXXZfbinnYNjY5/Ca/US5DmP4TX44todPxLuKdd4zq0apFm3Ybbkwo2FEXhjTfeqHbJfsMq7deVNHI1tIlXE9VVpGNwUU7abhBVmz9/PpYtW4bo6Gj88MMP2LlzJ3bt2oXRo0cDqNjRobokEgn27t2LAwcOYPr06VCpVFi2bBliY2Nx9+7dCq+fMWMGdu3aVem/Fi1aWPU12pLFiRIff/wxvL29MXPmzFrp2d6ypX6Ff2JiYqXjN27oT2qt+WZmZ2ezsVdW6pLH48HFxYV9bXVoNBq2jIi11S6IqrVr1w4SiQQAIFQWQqioOtlB6+Jd5Vh1xl1zH7CPSQkjgnBODx8+ZB+rTbTqqYrarfw91U2cI2ynWbNm+Pnnn7Fq1SqsWrUKGzduNLpAJp49MpmM6xAIBxIWFobFixezVWb42lKEXPoDfJVl/0+qU43MUkJ5HkKu/AUerQUABAQE4NNPP4WPj4/F+yQIomYMe6eCsnhKxHoG7aiMYiIIgiBsrmvXruyNPdeCRybnES1R24m2T/MwuMHavXt3m+6bIBzVyy+/zN5vESny4XP/FMcRmcdTKxCYuA9PNyGlAAQm7gNPreAirGrjqRUIuLWf3e7bty8iIyOr/f7AwEC0adMGAMAAOC7jMEnZDBXNIF6mxa4CDc7ItFDTlt1ItodTJVqUfSebNm1a7ar2xLNj+/btiI2NxebNmzFmzBj07t0bPXv2NNkSuazyok5n+veUoih06tQJ77//Pnbv3o2dO3eiuLgYv/76K/uaRo0aAdBXTuzZs2el/7y8vKz/Qm3E4lmB+Ph4vP766zh27BhatmyJ999/H+vXr8e2bdtM/quu2NhYSKVS3L59G/fv3zcaKywsRHx8PCiKMqosUFMeHh7syo2rV69WGE9NTUVBgf7EOTi4euV7jx49Cq1WCzc3txr90SBqRigUIjo6mt12zXtQ5WtlAZHQiirv+aoVSSELMPFzonVwKSi/KWrY15AgCOeRnFxeklLlXvOVFmqD95SVjiLsy8PDA02bNkXTpk2Neq4RzyZTJ/bEs6lBgwZYtGhReSJtaRFCLv9p0aS0tdXIqsJTK/QJHBp9oraXlxc+/fRT+Pv7W7Q/giAso9Vq2ccMh4kSDFVeRcIwJoIgCML2fHx80K5dO3bbI+2KTfdfm4m2TxMXZ0JSrK+aKRAISKIE8czw8fHByy+/zG57p/wHSWEqhxGZ53v/VIUkiTLUk3FHFnD7IARPkjme/v5Xl2G1gxMlWmgtXMlemx6oaMx+XIrvcjT4q1CLDTkazHpcigcqx0tmphkGx0pINQnCND6fD4FAYPTcw4cPsW/fvirfExYWBgCVVoYoU1YkwFBZUoRarWafi46ORuPGjfHLL79U2jXC0e6vCMy/pHLTp08HRVFgGAZKpRI//fRTtd43fvz4ar1OIpHg5Zdfxrfffos5c+Zg27ZtEIlEYBgG8+bNQ2lpKYYMGcL+8J62YsUKrFq1CgCwd+9edOvWrcJrXFxc0KtXLxw+fBgLFizAH3/8wU5UyuVyvP/++wD01QvCw8PZ923btg1t2rRB8+bNjfZ35coV9j2vvvqqUe9TwvaioqJw/vx5AICkOBNFVbyO4QuR3nZ0lX2mTfUDE8lyjVb8kVJ2BOF8ZDIZUlP1F04MRUHlVvPS5qXuQezjpCTbTXAQBEEQthMREYHZs2djxYoVoGkakuJ0+N85jOwWA2u0H2urkVWKYRB0Yy9ET5IsRCIR5s+fj6CgIDNvJAjC1gz7sTIC7q7ZDa9Da6NKJ0EQBGHsueeeQ0JCAgDAI+0q8hp3B3i2aX1UW4m2lfFMvcw+jo2NZauqEcSzoF+/foiPj8e1a9dAgUHQ9T14FPsaaIGY69AqJZSbbt9rbpxL7uk39C3Pn5g2bRrc3NxqvJ8OHTrA29sbBQUFKNQBlxU0Okgdp+2cmmbwRaYKRU/lRBTRwBeZKnwRLoGI5ziLdRKVNLK1+mQTqVRKKqCbIC7JQuiF37gOA4A+FsB+f6+HDRuGn3/+GVOnTkVsbCweP36Mn376CQ0aNMDNmzcrfU9oaChiY2Px008/wcfHByEhIfD29ka/fv3Y13z22Wc4duwYBgwYgIYNG6KkpASbN2+GQCBg23oA+m4NX3/9NUaNGoW4uDi8/PLLqF+/PtLS0nDq1CmkpaXh2jXHaT9kcaJEly5dan0137x583D8+HEcOXIEMTExiImJwc2bN3H79m0EBwdj9erVVh9j9erVGDhwIC5fvoyYmBh06NABQqEQFy9eRHZ2Nry8vPDVV18ZvWfv3r2YNm0aGjZsiBYtWkAsFiM5ORlXr14FTdPo27cvPv74Y6tjI0xr2LAh+1hUkmXytSrPEKR0m67P8FYWQOviDVlApMkkCaDsA0yvLDOKIAjnkpSUxPbdUrkFWjQhXupVnpR3584d0DRd7X58BEEQhP106NABr776KjZu3AhAP5Gs8K4HWXDLau+jrBpZZasCzVYjq4JXyn+Q5pZXyXvvvffQpEmTGu+HIAjrKRTlJY5pDhMlDCf0DWMiCIIgakdMTAx8fX2Rl5cHgVoBt6zbNTpHNKVWEm0rwdOq4J5xg90mK4mJZw1FUXjrrbcwc+ZMKBQKCJWF8L91AFlRz3MdWqU0Uj8g/6HpcQckUBTA36DlRp8+fdChjA7DaAAAv0FJREFUQwfL9iUQ4LnnnsMff/wBADhSrHWoRIkEha5CkkSZIlo/3sXN4tuoNne0pLwSXe/evSEWO2aSENcM7x06Bne7xrRs2TJIpVLs2rULf//9Nxo3boxly5YhNTW1ykQJANi4cSNmzZqFtWvXori4GK1atTJKlBg0aBDS09Px559/IicnB15eXmjTpg2+/vprtG/f3mhfXbp0weHDh/H555/j119/RVFREQICAhAdHY3XX3+91r52S1j8G/7PP//YMo5Kubu748CBA1i1ahX27NmDffv2wdfXFy+//DI++ugjm6zub9SoEU6fPo2vvvoKBw4cwKlT+nJHoaGhGDZsGGbOnInQ0FCj94wdOxZ8Ph83btxAfHw8ZDIZ3NzcEBcXh3HjxmH8+PHkBpodGPZeEsnzAIYx6vP6NIYvREkNL4BEivxKj0cQhPMwzE5Ueldehcgcjas3e9NMJpMhJSWFJE8RBEE4qMGDB+PWrVuIj48HAATc2g+ldz3oJNXL3remGlllRCXZ8Lt3nN0eNmwYYmNja7QPgiBsp6SkhH2sE7pYtA9Kp4Fb9h0IlIXVTsJ/mk4oYR/LZDKL4iAIgiCqj8/no1+/fmxraM/USzZLlJAFREInlICvKa0wphNKLEq0rYx7+nXwnrSWCw8PR8uWtomfIJxJQEAApk2bhjVr1gAAPDJuQOHTACWh0WbeaX/5DWLh+fhipe03mCfjjoaitQi+tgt8nb6MfnBwMKZMmWLVPp977jn8+eefoGkaiaU0MtQ0gkWOcf8sW2O6FYi5cXvK09K4qCjP6iDJclWz9v+soyosLKzW61xdXbF06VIsXbq0wtgHH3xQ5ftCQ0Px+++/VznevXv3GrX8atmyJX7++edqv54rjpMKVQV3d/cqf6CmzJs3D/PmzavWa/39/bFkyRIsWbKkWq8fNmwYhg0bVqN4CNtzc3ODSCSCWq0Gj9aC0qnB2LjMFl9VPmHl4+Nj030TBGEfRokSPg0s2wlFQelTny05d/XqVZIoQRAE4aAoisKMGTNw//59ZGZmgq9Vwf/OIWS2HlntfVhajawChkHAzX9BMfrJjMjISLz00ks12wdBEDZVVFTetFEndK3x+8VF6VUmUqk8Q6q9H52o/NiGMREEwT3GAfunE7bx3HPP4ffffwdN03AteAyRLAdqN3+b7Luq/zY2++/EMEZtNwYMGFDr1Z4JwlF169YNly5dwrFjxwDok+NVHkFQu9e83W5tci18XGmSBABQT8ZLXBwr4ckv6SgkxRkA9NUg3nvvPbi4WJZcXMbf3x8xMTFsG/UjJVq86OsYbet9BKY/R82N29PRYh3K/qRERUUhLMyyBYEEQRhzjLQtgrAARVHw9PRktwVq25crNdynl5eXzfdPEETtKigowIMHDwAADEVB6V3P4n0pDJIsLl26ZG1oBEEQRC1ydXXFjBkz2G33rNtwNWh9UR1l1cgKGnVFSXDLmidJQN//2qUoDYB+kuntt9+GQODwueoEUacZrsLRiqU1ei+l01RIkgAAgVqOkMs7QD1Z5VsdOlH5sau7MoggCPvIzMzkOgSilvj4+KBTp07stkfqFZvs1y07CQJtxWoSACDQlsItO8nqY0iK0iCW5QAAxGIxevbsafU+CcKZvfnmmwgPDwcA8Ggtgq/uBE+r4jgqY0J5nlXj9uaWkQivRwns9qRJkxAZaZuKOAMHDmQfnyzRoZR2lKREc3E4RpwahsFxg7Ybht9PgiCsY7dEiV27drGlzQjCVkQig8xDRmf7Axjs0+hYBEE4hcuXy1dbKL3CQBuUOK4puV9j9vGtW7egVCqtio0gCIKoXVFRUejduze77XvvpA2X9JlH0Vr43D/Fbo8YMYKdyCMIgjsFBQXsY8Nkhepwy06qkCRRRqCW1+hGmFbsxj7Oz8838UqCIAjClgxLlXtk3ABFa028unoE8lyrxqvDI+0q+7hbt26QSmv2N4wg6hqJRII5c+ZALNZXmBYp8hF4Y69dr/nM4WtMzx2aG7cnUUk2AhP/x2537twZQ4cOtdn+W7dujZAQffU1JQOcktXCvRwL5Jv5E2Bu3F7+k+lQ/KTrhq+vr1HSH0EQ1rFbosSHH36It956y16HI54RRiXmauEciHKgEyuCIGruwoUL7GOFX4RV+9JJ3FHqHggA0Gq1RkkYBEEQhGN68cUX2WRXSXEGpDn37HZsj7SrEKpKAACenp4YNWqU3Y5NEETVDJMStGL3Gr1XoCywatyQYaKEYfIGQRCWWbVqFdavX1/t12/evBmrVq2y6FgymQwLFy5E69atERgYiBYtWmDmzJnIycmxaH9VKSoqwtKlSxEbG4vQ0FCEh4ejc+fOmD17NmQymfkdEJWKjo6Gv7++3QZfo4RrTs2qjlVGoKm8mkR1x82hdBq4Zd5it/v27WvV/giirggPDzeqJOiWnQTv5LMcRmRMa2bBlrlxe+FpSvUVOWh9dbSQkBC8/fbbNm3vw+PxMHjwYHb7YLEWtAPcewkQmv4azY3bA8MwOFBcnrExaNAg8Pl8DiMiiLrFrq03SI8/wtZUqvJyWgzP9n8caF55aWS1Wm3z/RMEUXs0Go1RMoPMv4nV+5T7lydblPXVIwiCIByXj4+P0apBz8cJJl5tQwxjVLJ01KhRkEgcYxKMIJ51hokSOknNEiW0Lt5WjRvSkYoSBGFTK1eurFGixM8//2xRooRMJkP//v3x1VdfgWEYDBo0CO7u7ti0aRN69uyJjIyMGu+zMsnJyYiLi8Pnn3+OvLw89OrVCz169ACPx8OPP/6IoqIimxznWcTj8YzaVrhn3LB6nzqhi1Xj5khz7oGv089LhoSEoGnTplbtjyDqku7du2PIkCHstu+94zZJgLIFrdTPqnG7YGgEXd8NkUJ/PioWizF37txaqVrTu3dvuLq6AgAyNQyuKGmbH6OmoiU8VJUKQT0Z59rtUhopav29VZFIhOeee47jiAiibuH+t5wgrFBcXMw+pkWuNt+/4T4Nj0UQhOO7du0aSkv1qzbULt7QSH2t3qfcv7wv38WLF6HTOUaZOIIgCKJqzz//PLsSxjUvGQJl7d9YkBSlQ/Sk36xEIiETGQThQIwrSriZeGVFsoBIaKto16EVSSELqH4PZ8NqFgUFBWRhCUE4iRUrViAxMRG9e/dGQkICfv75Z5w7dw7jxo1DWloaPvzwQ6uPodPp8OKLLyI1NRUzZsxAYmIifvvtN/z22284c+YMzp07B2/v6idmERV1796dfSzNfQBKp7Fqf+bmG6ydj3DLvsM+7tatm01XeRNEXTB58mS0bNkSgP7mdtD13RDKuU9ElQVEQiuoPGFeK5DU6NyxtvjeOwlpbnliydtvv4169erVyrFcXFzQr18/dvt/Rdz3tbhWSldZqJx5Ms41w+9T79694eHhwWE0BFH3kEQJwmnJ5XK2ogRN8UHzRTY/htYgUYKs8iEI5/Lff/+xj+UBkYANJhJUHkHQPJnULikpwc2bN63eJ0EQBFG7/P39ER0dDUA/aWZYtri2uGUmso+7du0KFxfrVhESBGE7hYWF7OOqkh6qwvCFSG87usL7tCIp0tuOBsMXVntftEDMVjAsLS1lE3wJgrCP/Px8CIXV/50F9L+rmzZtAgCsXr2abe9FURRWrlwJiUSCvXv3IjU11arYdu7cicTERPTq1QvLli2rEGezZs3YFbmEZcLDwxEaGgoA4NEauOanWLU/WybSVUDTcDW4iRkbG2v5vgiijhIIBPjggw/g66tPSuJrSxF85U9QWpWZd9a+qqYjHSHfyS3zFnySz7DbI0eORNeuXWv1mIMHD2bbRtwppXGP40SEDLXpZGVz47XtsZo2qrwxdOhQDqMhiLqpWokSPj4+8PHxQefOnSs8V91/2dnZtfZFEM+mtLQ09rHG1btWzi40ruUZ+unp6TbfP0EQtYOmaVy4cIHdNjUpQek0cM+4Ae8Hp+GekWh6JQlFQR5Q3sLDMBmDIAj7IatuiZoynOyxdiK8Olzzyo8RFxdX68cjCKJ61Go1FAoFAICheKAtKIWu8gxBSrfpyIwahtyI7siMGoaUbtOh8gyp2Y4oCjqDxHxSRp8g7OfChQt4/PgxgoKCavS+s2fPQi6Xo1mzZoiIiDAa8/LyQlxcHBiGwZEjR6yK76+//gIATJ061ar9EKbFxMSwj13yH1q1L1sm0j1NXJwB/pObvb6+vqhfv75VsRJEXeXl5YV58+axyWVieS6Cru8FOJw/cMtOAl9TeTIsX1MKt+wkO0dUTlSSjcDEfex227ZtMXHixFo/rr+/P7p168Zu7y2yrqKPtUpo0/8/zI3Xtn8Ky6tJdOrUiU3yIwjCdgTVeVHZZLThpDSZoCa49vjxY/ax2gYl9Sujdi3f76NHj2rlGARB2N7du3dRUFAAANAKXVHqVflJpLgoHSGXd0CglrPPlU1kVDXZLQ9oCq/HlwAA58+fx2uvvUbKXhKEnb3//vtch0A4mbKKEgDgUvAYoGmAVzvF9fgqOcTyXAD6lU0tWrSoleMQBFFzJSUl7GOd0MXiZHuGL0RJcEur49GJXCEs1bd4LC4urvFNW4J4lv3zzz/43//+Z/RccXExZsyYUeV7dDodMjIycPbsWQBAnz59anTMxER9xaiy8u5Pa9WqFY4cOWJ15cFLl/TXm126dMG9e/fw559/IjMzE/7+/ujXrx86dOhg1f4JvaioKOzevRvAk/NDK5Ul0rllJ0GgLIDWxRuygEirkiQAwKWwPLaoqCgy/0AQJkRERGD69OlYt24dAMAtJwk+D04jv3E3M++sHcIn7RgtHa8tPI0SIVf+BO/JYrHg4GDMnj2brfRQ20aOHInjx48DAC4paDxW0wgXcVP83t3MYc2N16ZsDY2z8vK2z6NGjeIuGIKow6qVKHH16lUAqFDqzc/Pr1pZ0gzDoE+fPqR1AWFTSUnlGZdq98BaOYbaPYB9/PDhQ5SWlkIiqbyvGEEQjuP8+fPsY7l/BEBVPKuldJoKSRIAIFDLEXJ5B1K6Ta90QkPhXQ86gRh8rQrZ2dl4+PAhGjRoYPOvgSCIqpFECaKmAgMD4e3tjYKCAvBoDYSlRUaVw2xJ9CRJAgAaNmwIsVhcK8chCKLm5PLy8z6d0PLrOkqngVv2HQiUhVbdCKMNelYbxkYQhHnXr1/H1q1bjZ5TKpUVnqtKy5YtMX/+/Bods6zSaFlS065du7Bu3TpMmjQJr7zyCvu8YQXUmpLL5cjOzoaPjw/+97//4a233oJGU77a9rPPPsP48eOxfv36Gt/Q2rJlS7W/PytWrEB0dDQUCoVVX48jEwjKp8VFsmybJNLaKpHOkLgki33s7e2Nu3fv2nT/BFHXhIWFoVu3bjh16hQAwPf+KajcA/Vtee2Mr1FaNV4raBpB13ZBqCwEAIjFYkyYMAEZGRl2DaNly5ZsAuLuQi3eCrB9W/XqCBbxAOjMjHNjb6EWZU03IiIiQFGUw/4NCA0NJW3BCKdVrUSJevXqVfo8n8+vcqyy1xKELd2+fZt9rPQKq5Vj0EIJVFI/iOW5oGkad+/eRVRUVK0ciyAI20lISGAfG7bKMOSWnVQhSaKMQC2HW3ZS5RMcPD4Ufo3g/qTHfUJCAkmUIIhaIJPJQNM0PDw8uA6FqCNCQkLYakNCRUGtJUoIFQVGxyQIwnEoleWT0QzfsiQmfUWyPyBQK9jntCJXpLcdU+P2G7SgPIayliAEQVTP0z3UV61aBTc3N5MVJXg8Hjw8PNCqVSvExcXVeGV+WUKTi4u+bc/q1atx8+ZN3Lt3D6+88gqkUqnR6yxRVvlGrVZj5syZGDVqFN5//334+/vjzJkzmDlzJrZt24bIyEi89957Ndr3o0ePEB8fX63XFhcX1zh2ZyOVSuHp6YmioiLwaB2EpYXQuPpwHVYFIln5ivPg4GAOIyEI5zF48GBkZGTg3r17AIDA63vwuPNkaKR+do1DayYx19x4bfC9dxzSvGR2e+zYsZxUNevbty+bKHFerkOamkYoB0kJMa58ePI0KKIrjnny9ONcyNHQOCUrT+Do27cvJ3EQxLOgWokSBOFoCgoK8PChvn8gQ/FQWtN+sDVQ6h3Olk++evUqSZQgCAeXk5PDfj7QPD4UPg0rfZ1AWVDp89UZl/s1YRMlLl68iBdeeMHCaAmCqEr79u2Rm5uLvDxuSlESdY+fX/mkGF8lq7XjCAz2bXhMgiC4p1ar2cc0v+bTIZROg9BL2yv0mhaoFQi9tB3J3d+uUWUJmlceg+GKcYIgzOvatatRssSqVasglUoxd+7cWjvm022Ix4wZg88++4zt6V42bk1rBJrW36mRyWTo0KEDvvvuO3Zs4MCBoGkaEydOxLfffouZM2fW6Fj16tVDXFxctV5blqzs6uqKJk0qX3xQFwQHB6OoqAgAICgtdshECUFpedJKu3btyPklQVTTwoULMXv2bOTk5ICvUyP4yl943OkVMAL7VS7QmknMMDdua25Zt+GTco7dHjNmDEaOHGnXGMo0adIE8fHxSEhIAAPgb46qSoh4FMb6CPFDbsVz8bE+Qoh43LQ72l2oZetctGjRAgMGDOAkDme1ceNGJCcnm3+hHTVs2BBTpkzhOgyiEhYnSixatIjNlK6Opy8mCMIaZf0aAX01ido8wZH7NoJn6mUA+huiL774Yq0diyAI6125coV9rPSuV+Xng9bF9EpiU+MKv4ZgAFAA7ty5A7lcXqO/iQRBVA85fyRsSSQq/3tAMVWX1rQWRWsrPSZBENzT6Qx+9ytpzWaOW+bNCkkSZfiaUrhl3kRJaOvq79AgBqPYCIJwSG5ubgDKq9PMnDkTM2fOZMfLKsNYU3ra8L3jx4+vMD5o0CCIRCLk5OTgwYMHaNy4cbX3PXHiRDapg9AzrF7H06g4jKRqfG353x1SbY8gqs/DwwPz5s3D3LlzoVarIZbnITDxH2RGDwesSGirCVlAJLQiaaUVbbUiKWR2bAcilOci8MY+drt9+/YYN26c3Y5fmXHjxrFVgf+T6/C8mkY9O1eVUNMMtuRVnrC8JU+DTlK+3ZMlsp6qJlHZ+QBhWnJyMpJvJdr9/1NVHqkrKVlCOAyLEyUMLwSqY9WqVUZlLgnCGv/99x/7WOFX/YtCSyh8G4CheKAYGsnJycjKykJgYGCtHpMgCMtdvXqVfazwbVTl66y5WNGJpFB5BEFSnAmapnH9+nV07tzZusAJgjCiVqutWo1HEE8zbAVI0bV4Q9IgwYdnZZ9rgiBsy+h3kqn5ZJU0977Z8RolSoB8XhCEMylrqZWZmVnpeNnzoaGhFh/D09MTrq6uUCgUCA8PrzBOURQCAwPx+PFj5Obm1ihRgqhIICifGjdMdnUYDAPK4O+VUFj9qkUEQQCNGjXCtGnTsG7dOgCAe9YtKB+Ho6hejF2Oz/CFSG87GiGXdxjNP2pFUqS3HV2jSmTWoHQaBF/9GzydvrpaYGAg3nvvPc7PPyMiItCxY0ecP38eAPBngQazAi1rj2epc3It5FWs0ZEz+vHu7vb97P2rQIuyT/6oqChS4dxC9UQ8zA+27/+nqizLsC4Zc9q0adi2bZvZ133zzTckKdYCdmu9MWLECHsdiqjj5HK5UUUJWUDTWj0eIxBD4duQnRSLj4/nrCQVQRCmMQyDGzdusNsKnwZVv9bKixWFTwNIivUTYYmJiSRRgiBs6OLFiygsLERAQADXoRB1iExW3hKDFrrU2nFoYfmFuDU9ygmCsD3DG0y1mjBVTYY35cjNL4KwTkGB6daKttCyZUsAYHuqP63sWrRFixYWH4OiKERERODatWsoLCys9DVlrSIkEvv3tq9rDFsy2euGZY1QFGieALwnfy9UKhX5uRNEDfXq1Qt37tzB/v37AQD+dw6j1DMEqlps5W1I5RmClG7T4ZadBIGyAFoXb8gCIu36meN/6wDEshwA+qqHH374IVsliWsTJkzAhQsXwDAMLitoJJXqECnhm3+jjVxRmE6evqKg0d3dTsFAX3ngnLz8OoXc9CYA4JVXXkHPnj3Z7QMHDmDnzp2YPXs2IiPLF3t26tSJg+icn90SJQjCVs6dOwetVn+BUOoeCI209vsHlgQ2ZxMlTp06RRIlCMJBZWRksJNJOoEEanfTN1lVniF42OV1+N47CaEiDxqpH/IadwMtMl8qVeldH3jS16+qiTKCeFZVJ8u5MkqlEnfu3MHvv/8OiqIwcOBAG0dGPMsMbzboajFRQics/xtS1Q0OgiC44eJS/rvP01beQsMUuV8E3LNumxyvCZ62fGWRNaX6CYKwj9jYWEilUty+fRv37983quZQWFiI+Ph4UBSFPn36WHWcnj174tq1a4iPj8fo0aONxu7fv4/i4mIIBAI0adLEquMQ5UknAKATOmYCAi2UgKfSJ/wWFhYiKCiI44gIwvm89tprSEpKwoMHD0AxNIKu7cKj2NfACOyz2pzhC1ES3NIux3qae8YNeKZfY7dff/11NGpUdQVee2vQoAG6deuGkydPAgD+KNBifhDPbhVGzR3F3nVOd+Rr2JpzHTp0QLNmzewcAeGIOnbsiI4dO7Lb6enp2LlzJ3r27Ilu3bpxGFndQBIlCKdz5MgR9rG9TjDkAZGgb+kzuJOTk/HgwQOHOqEgCELv7t277ONSr1CzPQfFRenGFSXyH8It6zbS2442m1le6lVeTvXhw4dQqVQQix2jnBdBcG369OlWXdQyDIPo6Gh88skntguKeOalpaWxjzUuXrV2HMN9Gx6TIAjuGfZ2F6gVNX6/LKg5dLcPgq9TVxjT8UWQBTWv0f4Mq5q5u9txqRpBEBaRSCR4+eWX8e2332LOnDnYtm0bRCIRGIbBvHnzUFpaiiFDhiAsLKzS969YsQKrVq0CAOzdu7fKie2yY2zduhXDhw9nVxAqlUp89NFHAIChQ4eSBCsrMQyD1NRUdlvjWvsLsSyhcfGG4EmiRFpaGkmUIAgLCIVCzJkzB7NmzYJCoYBIWYiAWweRFTWU69BqlUBRAP+b+9ntnj17om/fvhxGVLnx48cjPj4eOp0Od0ppXFXSaONqn6oSLSU8nDdRVaKlxH7tSe6U6nBFqY+FoihSTYKwipeXF8aPH49p06Zh4cKFSEhIAJ/PR+vWrbFnzx4A5eemV69eRf369dn3lrX6eHrxT0pKCpYvX45jx46hqKgIDRs2xBtvvIHXXnvNnl+azdkkUaKoqAgPHz6EXC4HTZsuVRMXF2eLQxLPqLS0NNy8eRMAwFAUSoJb2eW4tFACWWBTeGToV40fPnwYb7zxhl2OTRBE9RklSngEm3wtpdNUaLsB6CesQy7vQEq36SbL4NFCCdSuPhAp8qHT6ZCSkoKmTWu3FRBBOBOhUIgOHTrU6D0ikQjBwcHo0aMHRo4cadQzmCCsUVRUxJbkpnkCaFy9au1Yajd/9vGjR4+g0+nA59uvdChBEFXz9PQEn8/X/15qlPh/9u47PKo67R//+0xPJpPeE0JvoUOooSPSBVEEZBcWV3wU11121xYbu4qiYMOfiz7fVZfHXYVdyyIgCgoiRYpIL6GHkJ6QOplMMuX8/hhyMkPaZGaSmSTv13Vx7amfc2eFyZlz7s99CxZTk8sei0LdD0vr294QhbFMWg4LC2vy+UTU8lJSUrBnzx7s2rULSUlJSEpKwrlz55CamoqYmBisWbPG7Wt07doVK1euxPPPP4+5c+di6NChiIiIwPHjx5GZmYn4+Hi88sorHvhp2rf09HRUVFQAsFUbs6i0Xo6obpW6CPgV3wAAXLhwAUOGDPFyREStU3R0NB5++GG8+eabAIDA7NMoj+gKfbTr7ZJ8mmhF9JmtUoJvdHQ0/ud//qfFKjU0RUxMDO6880588803AID/FJrQ308GWQvEqmjkFr6x/Z4iiiI2Fda05Rs3bhw6derUMhenNis7OxuzZs3C9OnT8Ze//AUlJSXYtGmTS2NdvnwZkydPhkwmwwMPPIDY2Fj89NNP+POf/4zCwkI88cQTHo6+5bj19Hnnzp149dVXceLECaeOFwQBN2/edOeS1M7t2LFDWi4P7w6LuuV6aZXGDpASJfbs2YNf//rXDqVbicj7rl+/Li1XBjY8yyIg72KtJIlqiqpyBORdbLRqTWVgNFSGQgC2hyxMlCCqERISgm3btnk7DCIAwPnz56XlSl0k4MILTWdZ1FqY1QFQVOpRWVmJa9euoVu3ppXjJ6LmIZfLER4ejtzcXACA0lDUaKs2ewF5F6Gop2WHwmx06v6xmsxUAbnJ9oJOqVQiKCjI6TiIqLbCwkL8+OOP0Gg0tdq3nThxAitXrsSJEyegUCgwadIk/OUvf0FsbNP70+t0OuzYsQOvvfYatmzZgm3btiEsLAxLlizBM888g6ioKI/8PI899hh69OiB9evX4+TJkzh27BhiY2Px0EMP4YknnkBERETjg1CDjh8/Li0bQjs2WpHSGYLFhIC8C1BUFMPsFwJ9ZI8mJ+TdriKkI4JvHANgi/n+++93O06i9mrs2LE4fvw4fvjhBwBA5PkdqAhJaNF3DC0l+PrP8Cu2Vc2Ry+X405/+5NPvMubPn48ffvgBRqMRN0wiftJbMFrX/JNn7HITXNrvKb8YrLhcaZuErlAosHDhwpa5MLVpe/bswfvvv48FCxZI2/7whz+4NNYTTzwBs9mMffv2SUk8S5cuhVarxZtvvolly5YhODjYA1G3PJc/ab766is88MADEEURoihCrVYjPDwcMlnLlaKh9qWystKh7UZJh0Etev2K0I7S7HGDwYC9e/diypQpLRoDETXMvmxmVUB4g8cqKorc2g8AlQHhqC6SnJ6e3ujxRETkHadO1fRkrQjt2MCRnmEI7Sgl2J46dYqJEkQ+pEOHDlKihEqf36RECU/cP1ZT6Quk5bi4OFaeIXLTp59+ihdeeAHLli1zSJRIS0vDXXfdBb1eD1G0df3+/PPPcfjwYezdu9elJCWdTodVq1Zh1apVTTovJSUFKSkpTh8/ZcoUPndqRnv37pWWDWHut9et1doTgFmldaq1Z0MMYZ0gCjIIohWXLl1CZmYm4uLiGj+RiOr04IMP4vTp0ygoKIDcVIHI8zuQPfAeb4flUcrymwi7/KO0Pm/ePPTo0cOLETUuODgYs2fPxr///W8AwOdFZgzTyqGSNW9ViUhlw+M3tt8TLKKI/xSZpPXp06d7LPGS2rfOnTtj/vz5Dttcqd5bWFiIPXv2YMaMGdDpdA4FEYYPH44NGzbgl19+waRJk9yO2Rtczmp44403YLVakZSUhB9++AE5OTk4c+YMTp061eAfIlf9+OOPKC+3fdmo8gvxyJeYJhEElHQYLK1+/fXX0pdsIvK+yspKqay6KMga7T9v9gtxaz8AmPxrSiRXP3AnIiLfIooifv75Z2m9IrRTs1/T/hr21yYi77PvvaopzW7SuWZ1oFv77dlfm2V1idz33XffAYDDjDkA+H//7/+hrKwM3bp1w7fffosvv/wSXbt2xY0bN/C3v/3NG6GSD0hNTcXVq1cBAFaZHPqoXm6N11hrT8FiqufMxlmVfigPr0m6rS5NT0Su0Wq1ePTRR6X1gLwL0OZdauCMVkYUEXn+W8istlIInTt3xr333uvloJwzZ84cKYHxpkXErjJLs18zyV+OoHrekgbJbPub294yC7JNtvdM/v7+rea/F/m+nj17eqTdztWrVyGKIrZt24auXbs6/HnkkUcAAPn5+W5fx1tcTpS4ePEiBEHAhg0bMHDgQA+GRFSbKIrYunWrtF7SYbBHSuI1VWlsf1hvlcxLT09n8g+RDykoqJmVZ1brGi2rro/sAYtSU+c+i1IDfWTjmdYmTc3D8NZ8M0DkaXv37sXmzZu9HQYRAODKlSvSZ7RFoYEhJKHZr1ke0Q0ibPeqqampKCwsbPZrEpFz7FulaYozm3h2Y4nyzifSa4prKqH5+gw/otbg6tWrUCqVGDBggMP2nTt3QhAEvPnmmxg+fDgmTJiA9evXQxRFbN++3UvRkrd9/vnn0rI+OhHWep4NOMuZ1p7uKImvqaq7c+dOFBcXuzUeUXs3aNAgh5nPEak7IZirvBiR5+hyzsG/0NaaWCaT4bHHHnNpBrk3+Pn5Yd68edL6lmITDNbmnaiqkgn4U7S6VrJEkAz4U7S62StaVFpF/Le4Jpnu7rvvRmCg88nXRA0JCWl8ImhdLJa6k5Tuu+8+bN68uc4/48ePdyNS73I5USIoKAg6nc6lfn5ETXXixAncuHEDAGCVq1AaN6CRM5qHValBaWx/ad0+eYOIvMv+QYHZyd6C9RWFcbZYjEWjk5ZLS0udO4moHejXrx969XJvVpar9Ho9XnjhBQwYMABRUVFITEzEihUrPJ7MVFJSglWrVmHkyJGIi4tDhw4dMGLECPz5z3+GXq+vdXxwcHCDf6pntJHn7dmzR1ouj+wOyJp/RohFpUVFqC0hQxRFh9LORORd9r+fNKVZkJmMTp+rqCxza79EtEoPsAGgd+/eTsdARHXLy8tDQECAQ0vgkpISXL16FRERERg9erS0fejQoVCpVEhLS/NCpORtJ0+exNGjRwHY0tsKO410e0xPtmaqiyG8CypvtYqqqqrCp59+6tZ4RAQsWbIEOp3tuZ7SWIKQ64e9HJH7BHMVwi/WtC6fOXMmunRp4arcbpoyZYrUdkJvBb4pMTf7NbuoZXizgwaPRChxT7ACj0Qo8WYHDbqoXX596rTvS80ouvVOOiQkBLNmzWr2axJVU6lUAACDweCwPTvbsfJi586dIQgCzGYzxo8fX+ef6OjoFovb01z+lz5u3Djo9XrOoKUWYZ+QUBrX3+1Mb3cUJwyVlo8ePYrMzKbOQiKi5lDdmgeAU58RAXkXoTDX/WBcYTY6NePDolDXeX0i8g69Xo8pU6bgnXfegSiKmD59OnQ6HTZs2IDx48fXutF31bVr15CcnIzXX38dN2/exIQJEzBu3DjIZDJ8+OGHKCkpqffchQsX1vmn+gENeZbJZMKPP9b0Zi2L6dti17a/1q5du9iyjchHBAYGSg+MBVGEX2Ga0+ea1Q1/Vje2v5q6NAdyUwUAWyKdfTsQInKNRqNBSUkJzOaaFypHjhyBKIoYPnx4reP9/PxgtVpbMkTyAVVVVfj73/8urZfF9IUpINztcT3R2rNBgoCCbuOl1e+++w4XLlxwb0yidi4wMBCLFy+W1kOuHYK8svakB08QLCboss8g5Op+6LLPutWOpyEh149AcetnCAkJwcKFC5vlOs1JqVTi/vvvl9a/LTGj1NL836VVMgGjAhSYE6LEqABFs1eSAACDVcQ2u0SQ++67DxqN9957UfsTFxcHAPjll1+kbenp6Th06JDDcWFhYRg7diy2bt2Ks2fP1hrn2rVrzRtoM3O55s5zzz2H3bt3Y8WKFfjggw/g5+fnybiIJDdu3MCxY8cA2DK97RMVvMGkDYU+ojsC8m29y7Zs2SL14SEi76msrJSWrXJVo8d7YsaHaHcdo9H52YhE1DxWr16Ns2fPYuLEidi0aRNUKhVEUcQjjzyCTZs24amnnsLHH3/s1jUsFgt+9atfISMjA48++ij+8pe/QKlUSvtTU1MbLG333nvvuXV9apqDBw+irMw2w9ukCYQhtFOLXbssqhciUndCZjHhxo0bOH/+PBITE1vs+kRUvyFDhkiVfALyLqLc6d70jT0wde6BakBuzcutQYMGOcyAJyLXJCYm4vDhw/jiiy8wf/58AMCmTZsgCAJGjBjhcGxJSQlKS0vRqVMnL0RK3vTJJ58gI8PW+sgqV6Kg+wSPjKuP7AGzSltn+w2zSutUa8/GGCK6oTy8K7QFVyCKItatW4e33noLarW68ZOJqE4TJ07Etm3bcP36dcisJoRd2Ye8xGkevYa6JAuxxz9z+Hwwq7TIGjQPlUGeq9YuqzIgJO2gtH7//fe32nd2o0ePxhdffIH09HQYRWBbsRn3hykbP7GV+bbEDP2tnM2oqCjccccd3g2ojUmvsuLl7MrGD2wB6VVWdPZ2EHWYNGkS/P398eyzzyIzMxNyuRwff/wxunbtitTUVIdjX3/9dUyZMgV33nknFi9ejJ49eyI/Px+HDx/Grl27UFTkXvUsb3I5UeLAgQNYtmwZ1q1bhz59+mDu3Lno1KkTwsLCGjyvNWaxkXdt2bJFWi6P7AGTv5tZ2B5Q3HGYlCjxww8/YNGiRewdReRlDrOBhMYfUntkxocgQETNI3Gr1coH3USN2L59O7744gtcvXoVer0eJpOp3pn2giDgxIkTTo1rNBqxYcMGAMCaNWuk8nGCIODVV1/F5s2bsXXrVmRkZCA+Pt7l+L/88kucPXsWEyZMwMsvv1xrv7dajlDdvv76a2m5NG6AU78fPEVUqFEW3QdBmSekWJgoQeQbRo4cic8++wwAoM2/BMFigihv/OGrorLhVmuN7QcAiCICcs87xEJE7ps/fz4OHTqE3//+99i8eTOKiopw+PBhqFQq3H333Q7H7t+/H6Ioonv37l6Klrzh559/xldffSWtF/SY5NBO0x2iXImsQfPqfRnqzO8YZ+T1noKEnz6A3FKFrKwsvP/++/j9738PoQXvcYnaErlcjt/85jf461//CgAIzDyJwi7JMGs885xfsJhqfS4AgKKqHLHHP0PamOUe+3wIuX4EsluVKhISEjBx4kSPjOsNcrkc999/P1599VUAwK4yM6YHKRCsaDufdeUWEd/aVZNYsGCBwyQcck/nzr6VltAZvhcTAERERGDTpk145pln8Pbbb6NTp054+eWXsX379lqJEt27d8eePXuwZs0afPXVV8jPz0dYWBgSExPx+uuve+kn8AyXEyWWL18OQRAgiiIqKirw0UcfOXUeEyWoKUpKShz6Shd1HOa9YOxUhCTAqIuCpiwXVVVV2LFjB+bNm+ftsIiomhPlzfWRPWBRaiCvoy+1RalxbsaHKDo5b5CIAOCZZ57B+++/32ALgur7y+plZx08eBDl5eXo1asXunXr5rAvODgYycnJ2LVrF3bt2oUlS5a49gMA+OKLLwAADz/8sMtjUMu4dOmSVJJYFGQoiR/U4jEUJyRJiRIHDx5Efn4+IiIiWjwOInLUuXNnREdHIycnB3JzJbT5l6CPbjyRyROJtpriDKgqigEA/v7+GDSo5T+biNqiJUuWYO/evfjvf/+Lb7/9FoDtRcuLL76ImJgYh2P/85//AAAmTPBMNQHyfVlZWXj77bel9fKwLh6/N6wMikXamOW2Np8VRTD7hUAf2cNjL0EBwOwXjIJekxF11pYM/MMPP6B79+6YPn26x65B1N4MHDgQvXr1QmpqKgTRipBrB5Hfe4pHxg7Iu1hnpRnAliwRkHcRZTF93L6OzFSB4PSj0vqCBQsgl8vdHtebhg8fji5duuDq1auoEoGvS0xYFNZ4BeHW4ttSMypuPRqLi4vD2LFjvRtQG/Pggw96O4Rm9cc//hF//OMfGzymuLjYqbHGjh2L/fv3O2ybNWtWnRVxExIS8O677zodZ2vhcqLEqFGjmK1KzW7nzp0wmWyZkMbAaBiDO3g5olsEAcUdhyH6zFYAwDfffIO7774bCoXL/6SIyE325eRkTvb6q+9drbNt5AVLlbSsVqtZTYKoATt27MB7772HgIAArFixAv3798d9992HkJAQ/OMf/8DNmzdx8OBBbNq0CTKZDKtWrWpStnV1j7w+fep+yNC3b1/s2rUL586dc+vnqG4HNmrUKFy+fBmff/45cnJyEBERgTvvvBNDhzbcIuzdd9/F1atXIZfL0bNnT8yaNQtRUVFuxUR127x5s7RcFp0IizqgxWOo0kXCEJIA/6J0WK1WbNu2DUuXLm3xOIjIkSAImDBhAjZu3AjANnvQmUQJT5RWD8w6JS2PGTOGM8eIPEQQBHz00UdYtmwZjh49Cj8/P4wZMwY9e/Z0OM5kMiEhIQEPP/wwZs6c6aVoqSWVlJTgxRdfRHm57bPbpAlEbr9ZzVJpTJQrPfLSsyGlsf3hV3RD+n3ywQcfIDIyEklJSc16XaK2ShAEzJ8/366qxCnc7DYWVqX7bSs80fbXGYEZJyG79YyyQ4cOtVpOtUaCIGDBggV45ZVXAAC7yyy4K1iETt7630lWWEXsLK2pJnHfffe1+sQWotbM5be69mVsiZqDxWKRZgEAQHHCsBYtl9yYsuhEhF/cDUVVOQoLC3H48GEkJyd7Oyyidsvf319alplrV4m4XUDeRSjqOU5hNjqV1S031/Q5s78+EdW2YcMGCIKAdevWYe7cudJ2lUqFcePGAQDmzp2Lxx57DHPmzMGqVavw448/Oj1+VlYWACA6OhqA7SX5unXrsHjxYixdulTanpmZ6fLPUF5ejry8PISGhmL79u343e9+JyV0AsDatWuxcOFCvPvuu/V+yX3uuedqra9atcqlbPdPPvkEn376qVPHrl69Gv3794fBYHDr/4PWorCwED/99JO0XtRxuNdiKe40HP5F6QCAb7/9FkOGDGm1vWKJ2pLOnTtLVYy0N69BaSiEyT+0wXPcLa0uM1VAl31WWu/evTsuXbrk3g9C1Azi4uJa7febkSNHNtjSRqlU4qWXXmrBiMibKioq8PLLLyMnJwcAYJUpkD1gLiwqrZcjc4MgIK/3FKj0+dCUZsNqteL111/HX/7yF7YBJHLRwIED0bFjR1y/fh0yqwmBmadQ3Mn975AeafvbGNGK4Bu/SKtz5sxpMxO5hg4dik6dOiEtLQ1VIvBtiRnzQlt/kvGuUjMMtzpIx8TEYPTo0d4NiKidaxufmNQmHT58GDdv3gQAmFX+0Ef72M2+TO5Qpm/79u1eDIaIQkJqvlwojGWNHq8oL3BrPwDI7a5jf30iqu348eMAbOXbGpKQkIC33noLeXl5WLNmjdPjV88Qq34BvWbNGhw/fhwvvPACAECr1Toc54qyMtu/+aqqKqxYsQL33HMPjh49iuvXr2Pjxo2IiorCxo0b8c4779Q69/7778dXX32F1NRUZGZmYt++fViyZAkqKyvx+OOPO/RLdlZ6ejoOHDjg1J/S0lKXf+7W6Mcff5RauBhCO6Eq0HtVO8rDu6FSGwYAqKysxKFDh7wWCxHVCAkJcXihFHTjmFPnVZdWz+k3GwXdxiKn32ykjVmOyqDYRs8NzDwFmdU2eyw2NhYJCQmuBU9ERI2qrKzEqlWrcPHiRQCACCCn/2ynPq99XXXinkkTBAAwGo148cUXcfXqVS9HRtQ6CYLgUGUoKOO48+VmG1BdjawuzlYja4x/wTUojSUAgMDAQIwZM8btMX2FIAi49957pfVdZWYYre7/d/Emsyhih101iblz57KaBJGXsU8A+aydO3dKy6VxAyHKfO+va0mHwQi99hME0YqzZ88iIyMD8fHx3g6LqF0KCwuTlhWVZYDVCjSQQa0wNVx1orH9AKA01rx4DA1teAYiUXtXVFSE4OBghxLjCoWizsSFsWPHws/PD999953T44u3PcS47777sHbtWixatMhhvzut46xWW8q/Xq/H0KFD8f7770v7pk2bBqvVikWLFmH9+vVYsWKFw7XWr1/vMFa/fv2wbt06xMXF4ZVXXsGLL76I2bNnNymehIQEp6tZBQYGArBVv+nevXuTrtPalJSU4OjRmv6sRZ3rn1XaIgQBxZ1GSL2kDx48iKVLl7LcPpEPuPfee6WZ5YEZJ1DYdQysCnWj57lUWt1qdegdPWfOHPTo4f7DcSIiqs1oNOLll1+W2vMBQH7vKSiP7NnAWa2LRR2AzCHzEX/kX1CYDDAYDFi5ciVWrlyJbt26eTs8olZn7Nix+PDDD2E0GqEyFEJdmu12YpW71cicEZh9WlqeMGECVCqV22P6kpEjRyI6Oho5OTkotwL79BZMDvS990TOOqi3oNhiWw4JCcH48eO9Gg8RtWCixObNm1FRUYGFCxe21CWpFcvNzcXJkycB2DK+7Ss3+BKLOgDlEd0QkGfLTt+5cyceeOABL0dF1D5pNBqEhISgqKgIgmiFsqIYJm39yQuWRnoNNrYfAFTlN6Xl2NjWPyuFqDmFhISgpKTEYVtoaCjy8/NRXFyM4OBgabsgCJDJZMjLy3N6/ICAAAC28roAsGLFCqxYsULabzAYALjXJsf+3LruaadPnw6VSoX8/HxcvXoVXbt2bXTMRx55BGvWrMGVK1dw/fp1dOzY0el4Fi1aJCWCUI3t27ejqsrWn9Woi4IhtJN3AwJQFtMHYZd/hKJSj6KiIuzZsweTJ0/2dlhE7d6gQYMQHx+PjIwMyC1VCMw4juJOzdPTOSD3vMNsv+q2U0TkeUeOHMH+/fuRlZUFo9GId999V9pXXl6O/Px8AECnTp28FCE1p/LycqxatQrnz5+XtuV3n4iSDkO8GFXzMGnDkZm0EPE/fwK52YiysjK88MILeOGFF9iGg6iJ1Go1Ro0ahd27dwMAdNlnPFKBproaWUDeRSgqimD2C4E+sodHkiQEcxW0t95LAGiTL93lcjlmzZqFv//97wCAnSVmTNLJIfOhFu3OEm+rJjFjxgxOoCBqZrdPrKtLi7XeeOqpp/C73/2upS5HrZxDueSwLjD7Bbk9pmAxQZd9BiFX90OXfRaCxdT4SU4oiatJ4ti7dy8sFotHxiWiprOv6KLS5zd4rEkb5tZ+AFCV11yjQ4cOjR5P1J7Fx8ejsrISaWlp0rY+fWyzcTdv3uxw7PHjx1FeXu6QPNGY6mSl6v7Dt6veHhcX53zQtwkKCpKSJer6Ny8IAqKibC0eCgoab98DADqdTqqIk5ub63JsZFNZWenQDq2o0wjABx6giDIFihKGSetfffWVVKGEiLxHJpPhrrvuktZDrh+BYDU3cIaLRBEhaTVtd6ZNmwa1uvHKFUTUNNevX8eUKVMwdepUrFq1Ch9++CE+/fRTh2PKy8uRnJyMIUOGSBN0qO0oLi7Gc88955AkUdB9Aoo7N08SnC+o0kUhM2khLAoNAEiVJapbHxKR88aOHSstB+Rd8kj7DaCmGllRl9Eoi+njkSQJAPAvTJPaunXo0AGdO3f2yLi+ZuLEidKzmByziLPG1vld+nKlFderbH+nVCoV7rzzTi9H5B18FkItyZkKwy2WKAE4l7lBJIoi9u7dK62XxvZze0x1SRY67VuP6NNbEH55L6JPf4VO+9ZDXZLl9tiG8M5Sr7Hi4mKcPn26kTOIqLl06dJFWtaUZjd4rD6yByxKTZ37LEqNU30C1SU112irX0aIPGX06NEAIM3OAGxlx0VRxPPPP4+PP/4Yqamp+Oabb7Bs2TIIgoAJEyY4PX510oV9eV17Z86cAQAkJia6+iNAEASpjG1xcXGdx1RXzdBo6v58uZ3JZMLNm7bqNO5UuyCb3bt3o6ysDABg0gRBH9Xb5bE8nWRbGj8QFrmtDGpGRgZ++eUXt8YjIs+YMGECQkJCAACKSj10WZ7/Pud/8yo0ZbZkOJVKhRkzZnj8GkTtXWFhIWbOnIkjR46ga9eu+M1vfgOttnZf+MjISCxatAhWq7VWsi61btnZ2UhJScG1a9ekbfk97/B+G7YWUBkYg4yhi2C+VRmzsrISq1atwo8//ujlyIhalz59+kjfy5XGkkYnYXmbNv+StDx8+HAvRtK8/Pz8MHHiRGl9V2kzJDa3gF1lNRNsx4wZI7VIbS+qq2dUVlZ6ORJqT6orzsrl8nqPadFECSJnXL9+HRkZGQAAq1yJ8gj3+mgLFlOtPmAAoKgqR+zxz9yvLCHIUBZd89Jl37597o1HRC7r3r3m80JTnNno8fXl7zmT1yevLIeqohiA7UavKeXyidqjWbNmQRRFbNiwQdr2q1/9CiNGjIBer8eKFSswatQoLFq0CFeuXEFYWBieeeYZp8cfOXIktFotUlNTceXKFYd9xcXFOHDgAARBwKRJk9z6OapLWR44cKDWvitXrqC0tBQKhcLh86ghu3fvhtlsRkBAAHvVu8lqteLrr7+W1os6DgNkrn3daY4kW6tSg1K7dnLbtm1zeSwi8hylUulYVeLaQcCTs5xEEaFXa35n3Hnnne3uoShRS3j77beRkZGB2bNn4+DBg3jzzTfrTJQAgAULFgAADh482JIhUjO6dOkSnn76aWRn2yYziBCQ22cGijsOa+TMtqNKF4WMYYth0th+x1gsFrz11lv48ssvOXmRyElKpRIDBw6U1v0L07wWS6NEEf43axLDkpKSvBhM85s6daq0fNxgRYmldX2uGawijpTXJEpMmzbNi9F4R3USUlFREQwGA6xWK38/UbMRRRFms1ma0ObnV3+bdUVLBUXkrCNHjkjL5RHdICpUbo0XkHexVpJENUVVOQLyLqIspo9b19BHJyIk/WcAwNGjR2G1WiFz8cE8EbnOvgenpiQTgtUMUVb3r7qAvItQmI117lOYjY1+NvgVXZeWu3Xrxp5yRI0YMmSIlAhZTSaT4fPPP8frr7+O//73v8jKykJgYCAmTJiAZ599FgkJCU6Pr9FosGTJEqxfvx5PPvkkNm7cCJVKBVEUkZKSAqPRiJkzZzq06LG3evVqvPbaawCArVu3YsyYMXUeV32NTz/9FHPmzJESJyoqKqTEjlmzZjlUh9i4cSMGDhyI3r0dqxucOHECjz/+OADggQcegErl3j1Pe3fy5Enp75hFoUZpXH+XxmksyTZtzHKXS6UWJyQh+PoRCBBx8uRJpKenN+nvORE1j6lTp+LLL79EWVkZVBXF0OWcRZkHKhsCgF/hdfgV2z6bFAoF5syZ45FxicjRN998A0EQ8Ne//hUKRcOPOwcOHAilUlnr3pRap0OHDuHNN9+UZgxaZQrk9J+N8sieLR6LYDEhIO8CFBXFMPuFQB/Zw2Ml9p1h0oYhY9hixP6yCepyWyvAjz/+GLm5uXjooYcanE1JRDb9+/fHTz/9BMB2H+erCVeKihIojaUAbM9DnJ2s0VrFx8ejd+/eOH/+PKwA9uvNmBHUep7FHtJbYLqVE9CpUyd07drVuwF5QUBAAIxGIyorK6XKqkQtQS6XNzhZwalEidDQUABAjx49cOjQIYdtzhJFscEeIETVjh49Ki2XR7g/s1JRUeTWfmcYg2JhVvlDUWVASUkJLl26hJ49W/4LGVF7Fx4ejtjYWGRlZUFmNUNTnIGK0E51HuvuZ4P/zTRpuX9/117GEbU3dc3q02q1WLlyJVauXOn2+CkpKdizZw927dqFpKQkJCUl4dy5c0hNTUVMTAzWrFnj9jW6du2KlStX4vnnn8fcuXMxdOhQRERE4Pjx48jMzER8fDxeeeUVh3O2bt2KRx55BJ07d0ZiYiLUajWuXbuGkydPwmq14o477sBzzz3ndmzt3Y4dO6Tl0tj+EBVql8ZpziRbs18Q9JE9oMu7AADYuXMnHnzwQZfGIiLP8fPzw8yZM7Fx40YAQOjVA7Z/54L7ye+hV/dLyxMnTkR4eLjbYxJRbTdu3IBWq3Wq0p9MJkNAQADy8327pDo1TBRFbN26Ff/4xz+kGakWpR+yBs2DMbju5OjmpC7JQuyx/0BhMkjbzEp/ZA2+D5VBsS0Wh1kTiIxhv0bMiS/gX5QOwHafnJ+fj8cff5zt/oga0bdvX2nZrzjDVnbWzfdazZFEVZ2ICwC9e/duF4lQd9xxB86fPw8A+ElvaVWJEgf0NdUkJk2a1C7flcpkMoSHh0Ov18NgMMBsNrOiBDUrQRCg0WgQGBjY4MR2pxIlqv+y2v+l5V9gag4GgwGXL18GAIgAysO7uD2m2S/Erf1OEQQYwrsi8FY/29OnTzNRgshL+vfvj6wsW2l0bf6VehMl3PpsEEX4F9SU9meiBFHjsrKyEBvbvA8IdTodduzYgddeew1btmzBtm3bEBYWhiVLluCZZ55BVFSUR67z2GOPoUePHli/fj1OnjyJY8eOITY2Fg899BCeeOIJREREOBw/f/58yOVynDlzBgcOHIBer0dAQACSk5OxYMECLFy4kJWo3FRcXIyff/5ZWi+xa3HRVIpbs+9c3d+Y0vhBUqLEnj17sHjxYlYTIfIBM2bMwFdffQWDwQCVoRABOeehd7PyoKYoXXpJJZfLcc8993giVCKqg0ajQXl5OSwWS6MviwwGA0pLSxES4oHnQeQVFosFH3zwAb755htpW5VfMLIGz4dJG9bi8QgWE2J/2VSraqXCZEDsL5uQNu6xFq0sYVX6IWvIAkSe+RqBOWcBAMeOHUNKSgqee+65Wt9XiKhGXFwc/P39YTAYIDdVQGEsgdkv2OXx1CVZtSoWmlVaZA2a51YSlbo0W1puL208R44cif/93/9FVVUV0qtEZFRZEa/yzLOUSquIowYL8k0iIpUCkvzlUMk8k8xQYLLiYqWttZ9MJqu3gml7IJPJEBgYyFaE5FOcSpQ4efIkANQqKx4eHo5du3Y1er4oipg0aRIKCwtdCJHakwsXLsB6qx9spS4KVmX9fWOcpY/sAbNCU2eJfbNCA32kZ24kKkISpESJc+fOeWRMImq6pKQkfPvttwAAbf4lFPSYWGfmtz6yB8wqbZ2zhs0qbYOfDeqyXCgrywDYyobZt/wgorr169cPQ4cOxezZszF79uxmS5rQ6XRYtWoVVq1a1aTzUlJSkJKS4vTxU6ZMwZQpU5w6tvpnpuazf/9+WCy2GRoVwfEwBbg+Y1thqrstk7P7G2MI6wyTJghKYwn0ej2OHTuGESNGuDUmEbkvICAAM2fOxH/+8x8AtqoS+uhEt2YQhl2pqSYxfvx4jyXsEVFtvXv3xuHDh3Hw4EGMHj26wWO//PJLWCwW9OvnmRY71LIqKiqwdu1aHDt2rGZbUByyB90Li6p2BbuWEJBzvuHWnjnnUeZiWzhXiTIFcvvdBZN/MMKuHgAAXL9+HU8++SSeffZZdOvWrUXjIWotBEFA165dcfq07Tm/ujTH5USJ5mzrqLFLlGgv/579/f0xdOhQHDhg+0w7VG7BvR5IlLhaacWbOZUosdZsC5KZ8KdoNbqo3R//UHlNNYmBAwciODjY7TGJyHOc+leekJCAhIQExMTEOGyXy+XSvob+dOzYsV2U/iH3XbhwQVo2hnTw2Lj1PdvyZIWjCrt4L168yKorRF7Sr18/aDQaAIDKUAiVvu5yqqJciaxB82C+7UFKdVZ3Q19UAnJTpeUhQ4bwdxyRE6xWKw4fPoxnn30W/fr1w5QpU/D+++9LFWCI3LFv3z5puTTWvZcelkYSdRvb3yhBcGjdYR87EXnXrFmzpPtIdXkBtHkXGjmjfuriTPgXpgGwzZy69957PREiEdXj3nvvhSiKSElJaXCiVvX9qCAI/HfZChUUFCAlJcUhSaIsujcykxZ5LUkCALT5F93a32wEAYXdxiGnz0yIt9pJFRUV4dlnn8Xhw4e9ExNRK9C5c2dpWa13vaKgM20dXSKKUNnF1alTJ9fGaYXsqzH8bJeA4Koqq1grSQIASqzAmzmVqLK6/47HPs7GkjmJqOWxxi/5lPT0dGm5UueZ2TYBeRchr2fmn9xkdP2G5DYmvxBY5LayyXq9HkVFRR4Zl4iaRq1WY8iQIdK6fVLD7SqDYpE2Zjly+s1GQbexyOk3G2ljljdc+k4UHcYcOXKkR+ImautOnz6Nl19+GcOGDYMoijhy5AieeeYZ9OvXD1OnTmXSBLmssLBQSrYVBRn0ke61P2usXLMnyjmXRSdKy0ePHoXJZHJ7TCJyn06nw/Tp06X10Ks/2fpSuyD02k/S8pgxY2pNPCEiz/rNb36DIUOG4MyZMxgzZgxeeOEFVFRUAAB27NiBjz76CL/61a8wY8YMlJaWYujQoViwYIGXo6amuHbtGp588kmkpaVJ2wo7j0JOvzkQ5U4VTW42CqPerf3NrSyuPzKHLIRFYUsGrKysxKuvvopt27Z5NS4iXxUfHy8tq9xovaioaPj9QGP76yOvKof8VhUbjUaD8HDXKyq2NoMGDYJarQYAZJlEZFZZGzmjYUcNllpJEtVKrLb97igwW3G1yvZ9Qi6XY9iwYW6NR0Se53KixMqVK/HnP//Z6eM5u56ckZGRIS1XBnimX56yLM+t/U4TBFTZxXzjxg3PjEtETZacnCwt63LONviAW5QrURbTB0VdRqMspk+jJe/UpTlQGWwzlDQaDQYNGuSZoInauPj4eCxfvhzffvstzp8/jzVr1mDUqFEQBAGHDx+WkiamTZvGpAlqkhMnTkjLFcHxsKr83RpPH9kDFqWmzn0WpWfatlXpIlHlZ+uLXllZifPnz7s9JhF5xl133QWVypYArynLgf/Na00eQ1WWh4D8S9I6Z60TNT+5XI7PPvsM48aNQ1ZWFt59913o9baX0wsXLsTjjz+Or7/+GhaLBWPGjMHGjRshk3H+WGtx8uRJPPPMM1K1EFGQIafPTNzsPt6z5WJdZNYEuLW/JVSEdsSN4UtQdauFgCiK+OCDD7BhwwapDTIR2cTFxUnLSoPrkyHNt77zubq/PvYxxcbGQvCBz8GWcvsEuV/cTGTIMzX83rKx/Y05Vl7z+dqvXz8EBHj/9wEROXL5G8GKFSuwbNkyp49/7bXX8O6777p6OWonCgpqMjRNLvb+up2mNMet/U1h8g+Wlm/evOmxcYmoaYYMGQI/P1tpdJWhCOoSz71w1WWfkZZHjhwpZTETkfOioqKwbNkybNu2DRcuXMDbb7+N8ePHQy6X49ChQw5JE0SNOXnypLRsCO/qkTHry6/zZO63IbyLtGz/MxCRdwUHB2Py5MnSekjawSaPEZJ2SFoeMWIEOnTwXFtJIqpfSEgINm/ejE2bNmHOnDmIj4+HWq2GWq1GXFwcZs+ejX/961/46quvEBoa6u1wyUn79+/HSy+9JFUIsSjUyBy8AGVx/b0cWY3yiIYTaRvb31JM2jBkDF+CiqCal8CbN2/GO++8A7PZ7MXIiHxLdHS0tKysKHZ5HH1kj1otf6uZVVqXk/DtY7KPtb2wr8pwzM1EiUhlw0kmje1vjH18w4cPd2ssImoeLZY6fffdd+P+++9vqctRK1RZWQmDwQDAlhludbf/czVrI6WMG9vfBPb9EIuLiz02LhE1jVqtdmiJEZh92jMDWy22ChW3jB071jPjErVjYWFhWLJkCb788ktcvHgRf/vb35CYmAir1cq+ueSUS5dqZm0bQhLcHi8g7yIU5rrbtinMnmvbVmEXq/3PQETed9ddd0kzzf0Lr0Ndmu30uQpjKXQ556T1uXPnejw+ImrYlClT8NFHH+HUqVPIzs5GdnY2Tp8+jQ0bNmDGjBntauZta7djxw688cYb0kt8k1qHjKG/RkVYJ+8Gdht9dG+Yb7XjvZ1ZroI+uncLR1Q/i0qLzKT7obdL3tizZw9effVVVFVVeTEyIt8REhICpdJWcVZuqoBgdu3fhihXImvQvFrJEmaVFlmD5jVa1bY+yooSaTkyMtKlMVqzIUOGSPfqVytFlFhcn9GQ5C9HUD1vSYNktv2uqrCKSDXWVJQYOnSoy2MRUfPx+Rpzer0eL7zwAgYMGICoqCgkJiZixYoVyM/P99g1jEYj3njjDYwePRqxsbGIiorC4MGD8fTTTzd4nWvXrmHZsmXo3r07oqKiMGzYMLzxxhvsMeyi8vJyadmi0HiudJ6skRuOxvY3gcUuucP+5yGiljdhwgRpWZd9DoLF/dkR2oIrUFTZErpCQ0PRv7/vzGAhau0uXbqEDz/8EP/7v/+Lc+fONX4CEWz3W9VtWkRBhipdlNtjNlcf2dsZg2Kk5cuXL7NVIZEPiYqKwujRo6X14OtHnD43KP0XCKLtgWifPn3Qo4dvzCImImpttm3bhvfee0+6R6q6VQ2hSuebLwWFelq51Lfdm0S5EtkD56IkfqC07ejRo3jllVdQWVnpvcCIfIRMJkNYWJi0rjCWujxWZVAs0sYsR06/2SjoNhY5/WYjbcxyVAbFujymorImnogIz7Qvb010Oh1697YloIkATrpRVUIlE/CnaHWtZIkgGfCnaDVUMtffUZ2usKI6si5duiA8PNzlsYio+fjenZodvV6PKVOm4J133oEoipg+fTp0Oh02bNiA8ePHIzvb+Vkd9TEajZgxYwZeeuklpKenY8yYMZg8eTIMBgPef/99jB07Fjdu3Kh13rlz5zBu3Dh89tlniI+Px7Rp01BUVISXXnoJ8+fPh8XiXsmf9sihH54Hv0QYAxsuP9XY/iYRauLm3wEi7+rTp4+UVS03G6HNd38GcGDmKWm5uk0AEbnuzJkzeOWVVzBy5EgMHz4cL7/8Mk6dOgV/f3/MnTsXGzZs8HaI5OPsvw9U+YdClCvcHrO5+sjWGkcTBIvC1r7JYDCgtNT1h29E5Hl33XWXtKzLOQ95pb7RcwSLCUEZx+scg4iInPf111/jgw8+kNaNgTG4MfTXMGsCvRhV/QLyLkJuqrsimdzkuYpkHiXIkNd7Ggo7j5I2nThxAq+88gonARIBDokSSjcSJWp4LjFeYSyTlu3jbE/sqzMcd7P9Rhe1DG920OCRCCXuCVbgkQgl3uygQRe1e++o7ONiNQki3+X+k0TYZgBevXoVer0eJpOpwdlQCxcudHrc1atX4+zZs5g4cSI2bdoElUoFURTxyCOPYNOmTXjqqafw8ccfuxX7//3f/+GXX35B165d8d1330k9CisqKrBw4ULs2bMHr7zyCt577z2H85YvX47S0lI8/fTTePrppwEAJSUlmDZtGnbv3o0PP/wQDz30kFuxtTf2f29EeK4MoqmRTPPG9jeFfdycFUjkXTKZDJMmTcLGjRsBAIGZJ6GPTnR5PHmlHtqCmtLokyZNcjtGovbo2LFj2LJlC7Zs2YK0tDQAtt+ZWq0Wd955J+bMmYM777wTGo3Gu4FSq2Bf/c3sF+SRMcvDOkME6rwbFW/t9whBgFkTCLne9jPk5+cjKMgzPwMRua9bt27o3bs3zp8/D0G0IjDzBIq6jG7wHF3OOchvte6JiopCUlJSS4RKRLCVSY+Ojsb58+edOn7ChAk4deoUbt682cyRUVPt2bMHf//736X1iqA4ZA2eD6vSd78ftFRFMo8TBNzsPh6iTI6wK/sAACdPnsQbb7yBJ554gpNDqF2zT0BwJmG2PuqSLMQe/wyKqprq09WtN1ytKqGorEmUaK9VCoYMGSJNrjlTYYVZFKFwo0K5SiZgVIBHXpcCAKyiiFN2iRJDhgzx2NhE5Flu/cu/fPkyHnjgAZw5c8bpc5xNlDAajdIH3Zo1a6BS2fq8CYKAV199FZs3b8bWrVuRkZGB+Pj4Jsde7cCBAwCAxYsXS0kSAODn54dly5Zhz549OHbsmMM5Bw8exIkTJxAfH48nnnhC2h4UFIS//vWvmDdvHt577z0mSjSRn19N2wqZ2XNl3gzBHRp82G0I7uCxa8ksNXH7+/t7bFwick11op0oivC/eQ2KimKY/YJdGisw6zSEWwlQiYmJiIuL82CkRG1fSkoKtm7dWtMmwS45Yvbs2ZgyZQqTI6jJSkpqerOa1TqPjKm9ea3elF3h1v6ymD4euZZZrYP6VqJEUZGPPkAnasemTZsmvXQNyjiBos6jHKoI3i7oRk01iWnTpvEFE1ELa+qEFU5w8T2nTp3CO++8I61XBMUhc8gCiLeqcPkqi7LhZ4CN7fe2wq5jAAgIu7IXAHDo0CFOAqR2z/5dkX1iQlMIFlOtJAkAUFSVI/b4Z0gbsxyivOltweXGmsQN+zjbk/j4eERFRSE3NxdGEUg1WtHXz3fuva9ViSi9VUA9KCgI3bp1825ARFQvl2vHFBUVYcaMGTh9+jQCAgIwePBgiKIIpVKJ4cOHo1u3bhAEAaIoQqfTYdSoURg1alTjA99y8OBBlJeXo1evXrU+RIKDg5GcnAxRFLFr1y5XfwQAkB7Iy+po9VC97fZfNt9//z0AYOrUqbUefEycOBFarRbXrl3DlStX3IqtvfH395f+P5dbqgCrZ1pXhKYdbPBhd2jaQY9cBwDkVRXSslar9di4ROSaiIgIDBo0CIDt33tg5knXBhJFh3MnT57sgeiI2pf3338fmZmZ8Pf3x5w5c7BhwwZcvnwZH330EWbPns0kCXJJVVWVtGx14QFTXRRluW7tbwr7h2IscUzke0aOHInAQFuZd6WxFP430+o9VlWWB02pLRlQoVBg4sSJLREiEbmIv3d9T05ODtauXSu15q0MiEDW4Pt8PkkCANSlDd8fNrbfFxR2SUZRx2HS+vbt27Fz504vRkTkXZ5IlAjIu1grSUIas6rcpbY8gtUMhckAwPb+qr1WJRQEwaF62wk32294mn3bjcGDB9f5/pGIfIPL/zrfeecd5OXlYebMmbhw4YKUPBASEoJvvvkGR44cQWpqKh588EGUlpZi4MCB2LZtm9Pjnz17FoCtx3xd+vbtCwA4d+6cqz8CgJqXXZ988onDjLTKykqpF96SJUucjk0ul6NXr14eia29kclkCAmp6fmsrChp4GjnKfV5bu1v0rWMNTG312xOIl9zxx13SMuBmacA0drkMfyK0qEyFAKwJXU1JfGPiGyqkyMuXbrE5AjyGLPZXLPSwCzvpvBr5EF2Y/ubQrR7WMIXNkS+R6lUYvz48dJ6YNapeo8NzDotLQ8fPlxKsCAi31NZWYn09HQEBAR4OxS6xWKx4I033kBZme1lpFmlRebgBbAq/Ro50zeoDA23cGlsv08QBBT0mISyqF7Spr///e+4fv26F4Mi8h771hsKF1tvNEdbHvs2IMHBwe26gpl9osRxg9WnKkXZJ0oMHTrUi5EQUWNcbr2xY8cOCIKAl156yaFlgr2IiAisXbsWKpUK69evx4ABAzBv3jynxq8uyxwdHQ0A2Lx5M9atW4fFixdj6dKl0vbMzExXfwQAwL333ou9e/fin//8JwYMGIARI0ZAqVTi6NGjqKqqwpo1a7BgwYIGY3vppZewd+9erFq1CsOHD/dYbO1RbGys1B9SZbgJk9YDyQZCI3/NG9vfBMrymi8+sbGu9RgjIs8aOnQogoKCUFJSAmVlGfwLrsEQ0bVJY9hXkxg7dizUat+f0ULka/7xj394OwRqg+yTbQRLVQNHOk8QG56J0tj+ppCZa2Ku7zsVEXnXxIkTsWXLFgCANu8iBHNl7dnNohW6nLMO5xBR8yotLXWY8ATYXrZnZGTU+6LEYrEgOzsb77//PsrKyjBixIiWCJWc8Pnnn+PSpUsAAFGQIXvgvbBoPNNWrSWIQsMvKhvb7zMEAbl9ZkJlKIS6LA8mkwlvv/021q5dC4XCc89PiVoDh0QJY6lLY5j9QtzaXxeFsaa6hX2M7VHfvn2h0WhgNBqRZxaRaRIRr6qvtnjDSs1WfFFsRo5JRIxSwL3BCgQoXJuMkW+yIr3Kdi+iUCikasdE5JtcvsPJyMiARqNBp06dHLZbLLUfHP7pT3/Ce++9h48++sjpRInycltJouoHhmvWrMG5c+dw+fJlLF26VGprUH2cqwRBwDvvvIPu3bvjxRdfxLfffivtmzFjhkNW2u2x+fv7o7CwEG+88QYA4K233sKmTZtciu2TTz7Bp59+6tSxq1evRv/+/WEwGNpcMoZ9Nr+qLBflEd3dHtMYGA1t4bUG93uCzGSEsqIYgO3vlcFgkL7kEZF3DRgwAHv32nptBmaeaFKihMxkREBuqrTeo0cP/tumVicuLg7+/r7dF5fIFfZ/r+Vmo0fGrAqIgH9ReoP7PUVmqomZbduIfFOnTp2QkJCA9PR0yKxmBORfRlmMY3VJTVGGNNMwKCgIAwYM8EaoRO3K+vXrsWbNGodtN2/eRP/+/Rs9tzqR4uGHH26W2Khp8vPz8cUXX0jrN7uNgzE4zosRNV1FYFSDzx4rAqNaMBr3iAoVcvrNRodD/4DMasa1a9ewc+dOTJ8+3duhEbUoTyRK6CN7wKzS1tl+w6zSQh/Zo8ljKu1iCQ8PdymutkKpVGLw4MH46aefAABHyy2IVzU9uWFfmRl/LzChOs3ynBHYXWbBsnAlxuia/gr1mKGmmnH//v05KYLIx7lcn9ZqtdaaUavValFUVFQrczssLAxBQUFNakVx+xj33XcftFotFi1a5LBfEFzLEKtWUlKCe+65B6+//jrefPNNXLx4EdeuXcOGDRvw888/Y9q0afjuu+/qjS0kJATTpk1DYGCglATiSmzp6ek4cOCAU39KS137xdwaJCQkSMt+RRkeGdOki3Rrv7M0JZmo/i8eGxsLpdIzfbKJyH3DhtX02QzIvwRZlcHpcwNyz0NmtZV2j4mJQXx8vMfjIyIi19g/vFIaij0y5s2uY1BfwU7x1n5PqU6yBTgbiMiXjR49WlrW5l2otT/AbtvIkSM565aoBYii6PCnrm11HRMYGIjk5GRs2LABs2fP9uaPQLds2rQJVVW2KlvGwGgUdRru5Yiazqxt+GVlY/t9TVVABArt7nn//e9/w2j0TFIyUWsRGhoK2a1WiYoqAwRL01slinIlsgbNg1nlmBRvVmmRNWgeRHnT3x8o7Fp/t/dECQAO1aGOGppe/VFvtjokSVQTAfy9wAS9uektnH+2i2P48Nb3O42ovXH523tMTAyuXr0Kg8EgzeTq0KEDLly4gFOnTjnMoDAYDCgpKWlSqfLqygIVFRUAgBUrVmDFihUOYwJwe3bkypUrsXv3brz99ttYvHixtH3OnDnQarWYN28ennzySfzyyy/SL8bq2AwGAwRBwMaNGx3GdCW2hIQEJCcnO3Vsda9Tf39/dO/ufsUFXxIQEIB///vfAABNcQZgtQAy98rTNUfmZl387GYeDhw4sM39tyFqzbp3744tW7bg4sWLEEQrdNlnUdLRuf5wgZk1vainT5+OHj0885lBRETui4urmW2oNBQCogi4mUgtypWwyBRQ3EqSs2eRKVx6mFUXmcko3Z8qlUpERHiuUgURedbIkSOlCpDagisQrGaIsluPU0QRAXkXpWNZyp+oZaSkpCAlJUVaDwkJQVRUFFJTUxs4i3xNWVmZVP0RAAp6TAQEl+f1eVF9abbO7vc9xQlDEXTjFyiNtjY3Bw4cwKRJk7wdFlGLkcvliIiIQG5uLgBbkrsr1QUrg2KRNmY5AvIuQlFRBLNfCPSRPVz+Xmk/QSAqqvVUq2kuSUlJUCgUMJvNuF4lItdkRZTS+d8jnxebG5wo8XmxGb8JVzk9XrFZxEWjLblCJpMxUYKoFXD5zrNXr14QRRFHjx6VtiUnJ0MURbzyyiswmWoy7N544w2IooiePXs6PX5sbCwAICcnp8791dvtH442lSiK0kv5qVOn1to/adIkaDQaXLt2DenpNS/BmyO2RYsW4euvv3bqjzNlBFur6Oho6SGx3FLlkHzgqubI3KyLNq+mFH9b/m9E1FrZ94oOzD7j1DlKQyH8SmwtjuRyOcaOHdsssRERkWtCQkKg09n6V8vNlVCW33R7zICc83UmSQCAwmpGQM55t68BAJqSLGk5Pj4ecnkr6V1N1A7Fx8cjOtrWslFmMUFTdEPapyy/CeWtmX1+fn7o06dPnWMQEVFtBw4ckJ4hGwOjURHaybsBuUhRWebWfl8kyhUo7lDTkvqHH37wYjRE3lF9/we4V8FQlCtRFtMHRV1Goyymj1vvI5SGojrja6/8/f0xePBgaf1QedOqSmSbGk5ka2z/7Y6UW6TEiz59+iA4OLhJ5xNRy3M5UWLq1KkQRRGbN2+Wtv3P//wPVCoVvvvuOwwdOhS/+c1vMG7cOLz11lsQBAEPPPCA0+NXP1w4e/ZsnfvPnLG95EpMTHT1R0BeXp5UsaKunsAymUzqH5SXl+dUbBaLRcpedye29koQBAwdWjPLOyD/UgNHO686czOn32wUdBuLnH6zkTZmOSqDYj0yvtJQCHV5AQBApVKxJy2RD0pOTpbKIGtKs6G89W+2IbqsmoSKIUOGICgoqNniIyKiphMEAb1795bW/YpvNHC0c7QFl93a7yz7hGD7n4GIfI8gCBgyZIi0ri24WrN8s2Z5wIABbMFIRNQE9s9Wy2L6ejES95j9Qtza76vKYmv+m1y4cMFhYiRRe1A9YRaAR5LyPUFlqIkjJibGi5H4DvtK7Qf1FqndljNilA1XpGxs/+1+Kq+ZdOFsBXki8i6XEyVmzJiB3/3udw59kLp37473338fWq0W169fx1dffYVTp2wly5cvX+7Q2qIxI0eOhFarRWpqKq5cueKwr7i4GAcOHIAgCG6V/AoMDJRmbp08ebLW/oyMDBQV2TL07H/pVF/z22+/hcXimKG2e/dulJeXo1OnTujatavLsbVn9uWIArLP2dpveIAnMzdvZ/8ydcCAAdBoNB4bm4g8Q6fTISmpZjaELvtcwyeIInQ5NceMGzeuuUIjIiI32M/e1uZfaeBI3+JfUBMrZ6AT+T77ZHi/ous1y4XpdR5DRC3rqaeewqOPPurtMKiJ7J/5VgR38GIk7qlu+1sXT7b9bWkWdQCq/IIBACaTCTduuJ+UTNSadOhQ87mkdmLCVX0Eiwm67DMIubofuuyzECyuJR3JTEYoKvUAbO0bWVHCZtiwYVCr1QCATJOI61XOJ0rcFdhwZcfG9tvLMVlxpdJ2bYVCgVGjRjl9LhF5j8uJEsHBwXjppZfwzDPPOGy/++67cfLkSbz33nt4/vnnsXbtWhw5cgSrVq1q0vgajQZLliwBADz55JOoqqoCYGuXkZKSAqPRiBkzZiA+Pr7O81evXo3g4GAEBwdj3759dR7j5+eHCRMmAACef/555OfnS/vKy8vx+OOPAwAGDx7s8Etx5MiR6N+/PzIyMrB27Vppe0lJCVauXAkAePjhh5v081KNvn37IiwsDACgMBkcZuu4w1M3JLWIokMZ//Hjx3tmXCLyOPvWGbqcc7Ze9vVQl+VCZSgEYPt9YZ9kQUREvsP+89n/5lUI5iq3xisPbzjZubH9zlAYiqAps/W6VSgUGDRokNtjElHz6tOnD2Qy2yMUdWkuBHMlIIoOlWz69evnrfCI2r2nn34ajz32mLfDoCbS6/XSslmj82Ik7hHlShTHD6rV514EbNs9OFmrpZk1gdKy/X8vovbA/p2Q6tb3t6ZSl2Sh0771iD69BeGX9yL69FfotG891HatGJ2lKqupeh4XF8f2jbf4+flhxIgR0vo+fd2tNOuS2khSRWP77e0rq5nwO3jwYAQGBjZwNBH5CkVzDBoaGooFCxa4PU5KSgr27NmDXbt2ISkpCUlJSTh37hxSU1MRExODNWvWuH2NNWvWYNq0aTh+/DiSkpIwdOhQKJVK/PLLL8jLy0NwcDDeeecdh3MEQcD69esxbdo0vPrqq9i5cyc6duyIAwcOIC8vD+PGjcODDz7odmztlVwux7hx4/Dll18CAIIyjqE8srtbY6pLshB7/DMoqsqlbWaVFlmD5rndfsP/5jUoK4oB2Fq42LcOISLfMmTIEGg0GhiNRqgMhVDp81Gli6zz2IDcVGnZPjOZiIh8S1xcHBISEpCeng6Z1YyAvAsoi3X9ZaU+OhGWi7sgNxlr7bMoNdBHu99eT5dTU2Z6wIAB8Pf3d3tMImpeWq0WCQkJSEtLgwARmpIsmDWBkJts7Tx1Oh3i4uK8HCURUetye6Xe1kpWZUDY1f24vUC7ACDs6n6UJCTBqmr993tt5b8XkbM6d+4sLav1+RCsZogy51+pCRZTrXcSAKCoKkfs8c+QNmZ5kxKpNGU50nKXLl2cPq89mDhxIn788UcAwE96CxaEilAKjbfNyDM1nAjR2P5qVlF0SNBwpxI+EbUslytKmM1mlJaWoqyszJPxONDpdNixYwd+97vfAQC2bduGkpISLFmyBHv27HHoEeWqLl26YP/+/XjssccQFRWFffv2Yffu3QgICMCyZctw4MAB9O1bu0de3759sWfPHtxzzz1IT0/H9u3bERQUhGeffRafffYZFIpmyUFpNyZPngzh1i8ybcEVKMsLXR6rsRsSdytLBKf/LC1PnDgRKpXKrfGIqPmo1WqHmcf2yRC3s9/HUmlERL7Nvj1SUMZxt8YS5UpkDl4A820Ps80qf2QOXuD+jEBRRFBGTds/+2pHROTbevbsKS1rSrKhsZsJ2LNnT+k7LBEROSciIkJarp6E1BqFXdlXK0mimnBrf2tl/98lMrLuiSZEbVVAQACioqIAAIJodajo4NT5eRdrvZOopqgqR0DexSaNZ3/vyUQJR/369ZN+p+itwM/lziV2RSobvn9vbH+1ExVWFN26ZFBQEIYMGeLUeUTkfS4nSjz++OPo1KlTrdYbnqbT6bBq1SqcOnUKeXl5OH/+PNatWyf9gqpPSkoKiouLUVxcjDFjxjR4bEREBF566SUcOXIEubm5yM3NxbFjx7B27doGZ4R07doVH374IS5fvozc3Fz8/PPPeOKJJ/ii3ANiYmIcXmYGXz/i8lieviGxp9LnQ3urv7QgCJg+fbrLYxFRyxg5cqS0rM2/VOcxyvKbUtsNtVqNgQMHtkRoRETkookTJ0plR/2KM1wui1qtMigWaWMeRU6/2SjoNhY5/WYjbcyjblciAwBtwWUojSUAbN917H8vEZFv69atm7SsLsuBurRmVl/Xru635SEiam8SEhKkZf+b17wYiXuU5QVu7fdVyvICKI2lAACVSsVECWqXevXqJS37FWc06VxFRZFb+2+nsbu+fVwEyGQyTJ48WVrfXepcokSSvxxB9bwlDZLZ9jtjV2lNNYmJEydyIjVRK+JyosSePXsAAH/60588FQuRg1mzZknLgVknIa90rQ+ep29I7IVcOygtJyUlISYmxuWxiKhlDBo0SLpZ1ZTlQnHrS789bd4lh+PZdoOIyLeFhIQ49CQNSTvk9piiXImymD4o6jIaZTF9PNZbOuRaTWysRkbUujiUXy7Lg1pfM6uQs/qIiJrOvn2tLvsMYLV6MRrXmbThbu33VYFZp6XlwYMHQ6n0zP0wUWvSu3dvadmvKL1J55r9Qtzab09RUSIlLmk0Gof7UrKZPHmyNIHiQqUV6VWN/05RyQT8KVpdK1kiSAb8KVoNlazxihK5JitOV9iuJQgCpkyZ0vTgichrXE6UyM3NhU6n4wcyNZt+/fqhe/fuAACZ1eLyA29P3pDYUxqKHPpL33vvvS6NQ0Qty9/fH3369KlZL7ha6xjtzSvSsn11GyIi8l1z5syRlnU556AwuJ4MC9jat+myzyDk6n7oss+63a4NADRFN+BXfAMAIJfLHRKDicj3dejQQWqvoTQUQV1aU72mY8eO3gqLiKjVSkpKgr+/rd2ZylBkS5ZohYpjB6G+Lvbirf2tjbyyHMHpR6V1+1Z3RO2J/TNEv8LrTUro0kf2gFmhqXOfWaGBPrKH02PZV93p1auXlBBANW6fQLGzxNzA0TW6qGV4s4MGj0QocU+wAo9EKPFmBw26qJ17ffpdqVn6HTBo0CBER0c3NXQi8iKXEyUCAwNhsThXvobIFYIgYN68edJ60I1jkBvLmjyOPrIHzCptnfvMKm2TbkjshV7ZD0G0/Qrs16+fQ79aIvJtgwbVPKTwv+mYKCGYq6ApyqjzWCIi8l3du3dHv379AACCKCLs6n6Xx1KXZKHTvvWIPr0F4Zf3Ivr0V+i0bz3Udj1hXRF2Za+0PHbsWISHt87ZhUTtlVqtlsqOCxAhNxsB2MqRV/dEJiIi5/n5+WH27NnSevjFXS5XlPWmiIvfob45x8Kt/a2KKCIidQdktxKFO3bsiOHDh3s5KCLviI+PR1hYGABAbq6EprRp3wmFej4c6tteH/tECbYIrt/MmTOl5Z/KLSi11JfG5kglEzAqQIE5IUqMClA4VUkCACqsIvaW1bwntb8+EbUOLidKDB06FAaDAefPn/dkPEQOhg4dKvV6lVnNCL12oMljiHIlsgbNq5UsYVZpkTVonktllJX6Aocs94ULFzZ5DCLyHodEicLrgFhz0+xXkgmZaLvB7dChg/RliIiIfN+CBQukZV3WGSj1Te8HLVhMiD3+GRRV5Q7bFVXliD3+mcuVJfxuXrP9zoGtf+p9993n0jhE5F11tVuMjo7mrD4iIhfNmjVL+t6tMFUg6sy2VteCQ1WW69Z+XxOYeRK63FRpfcmSJZDJXH6NQNSqCYLgkJigzb/s9LkBeRchNxnr3Cc3GRGQd9G5gawWh4leTJSoX69evdCtWzcAgEkEvi91rqqEq/aUmVFx67FyXFwc/9sQtUIu3+H8+c9/hkqlwvPPPw9rK7t5pdZDEAQsWrRIWg/KOAGlobDJ41QGxSJtzHLk9JuNgm5jkdNvNtLGLEdlUKxLcYVf3gPhVkGlwYMHIzEx0aVxiMg7EhISEBgYCACQmyqg0udL+/xuvcQCgP79+7d4bERE5Lo+ffpIDyYEiAi/uLvJYwTkXayVJFFNUVXu/MMse6JjLJMmTarzZSsR+b74+Pha2+Li4rwQCRFR2+Dv74/f//730rr25lVEXPjOYUKDr5OJDT8bb2y/L/G7mYbI899K63feeScGDx7sxYiIvG/YsGHSsjbvgtPnKSoabgfZ2P5q/oXXITdXAgAiIyPZ8q0BgiDgrrvukta/LzWjyto8v0/MoogdJTXVJO666y4mlRG1Qi7/qx00aBD+9a9/ITU1FTNmzMAPP/yAyspKT8ZGBMD2d626F5ggWhF2aY9L44hyJcpi+qCoy2iUxfRxqZIEYOstbf+A3D6Rg4haB0EQHHsMFt2oc9n+GCIiah0WL14M4VYd04CCy/C7mdak8z31MMueLus0NLdmEqpUKsyfP7/JYxCRb5g5cya6dOkClUoFlUqFuLg43HPPPd4Oi4ioVRswYIBD+93gG78g7PKPrSZZor6Wv87u9xWaohuIPfE5hFuJHZ06dcLSpUu9HBWR9w0cOBAqlQoAoC6/6TDhqiFmvxC39lcLsKvwMnz4cOn7LtVt1KhRUlu8MiuwV29p5AzXHC634Oat1h5BQUEYP358s1yHiJqXwtUTBwwYAAAwm804fPgw7rnnHsjlcoSFhUGtVtd5jiAIOHHihKuXpHZKEAQsWbIETz75JABAl5uK4uIMGINrz+RpdqKI8Iu7pNVx48ZJrUGIqHXp3bs3Dh48CADQlGSiBEMAqwXq0myHY4iIqHXp0qULxo8fjx9++AEAEHHhO6SP+C3g5MwOTz3MqiaYKxF+6Qdpfc6cOQgPD2/SGETkO6Kjo/Hmm296OwwiojZn4cKFyM7Oxv79+wEAodd+AkQrbnafAPj4S0FjcBzUDSTTGoN9v/KQX+F1xB7/D2S32syFhobiueeeg5+fn5cjI/I+tVqNpKQk/PTTTwCAgJxzKOw2rtHzysM6QwRQ1yeYeGt/o6wWh0SJUaNGORd0O6ZQKHDXXXfhww8/BABsLzFjgk4OuQd/l4iiiG3FNW09pk+fXu97USLybS5XlEhPT0d6ejpyc3MhiiJEUYTZbEZubq60r64/RK7o0aMHkpOTpfXwC7u8klUekHMOfiVZAGy/cO+///4Wj4GIPKNnz57SsubWv2u1Ph8yq+0mNyIiAiEhTXsZRkREvuFXv/oVNBoNANtne1DGMafP1Uf2qHfWn1mlhT6yR5NiCb16QGrlERISgrvvvrtJ5xMRERG1BzKZDH/4wx+QlJQkbQtNO4SoM1sgWJu3x7y7REHu1n5v02WfQdwvG6UkieDgYPz1r39lci+RnTFjxkjLgdlnnXo3ob15rc4kCcCWPKG9ea3xMQquQG42ArA9q+zVq5cz4bZ7kydPhk6nAwDkm0UcKfdsVYkTFVZkmGx/BzQaDaZPn+7R8Ymo5bhcUWLr1q2ejIOoUYsXL8bhw4dhNpvhV5KJgJxz0Me0XFl8wWJymA141113ISoqqsWuT0Se1blzZ8hkMlitVqgMhZCZKx2qSXTv3t2L0RERkTvCwsJw77334l//+pdt/fJe6KN6w6JuvOyxKFcia9A8xB7/TEpwAGxJElmD5jWpfZtSX4CQ60ek9d/85jeclUdERERUD6VSiaeeegpr1qzBzz//DMD2QlJZUYLsAXNhUQd4OcK6KY3Fbu33GtGK0Cv7EHb1gLQpJCQEL730EuLjvVDJl8iHDRkyBFqtFuXl5VBWFMOvKB0VoR0bPMcTbR0DM09Jy2PHjmXbDSdVJy/8+9//BgBsLTFjhFbukf//RFHEVrtqEnfeeaeUlEFErY/LiRKjR4/2ZBxEjYqKisKsWbPw3//+FwAQfukHlEf2aNLDancEXz8CpbEUgK3nFPvQErVuKpUKCQkJSEtLs62X5UJdmivt79Kli5ciIyIiT5g9ezZ27dqF7OxsyM1GhF/6Abl9Zzp1bmVQLNLGLEdA3kUoKopg9guBvqn3naKIyNQdUo/n3r17Y+zYsa78KERERETthlKpxNNPP43//d//xc6dOwEAfsUZSDj0EbIHzPVOK95GmLThQOH1hvf7GJmpAtGnvoL25lVpW0JCAp577jlERkZ6MTIi36RSqTBmzBh8++23AIDAzJONJkq429ZRXqmHtuCytD5x4kQnoyUAmDFjBjZv3ozKykrcqBJxssKKgf7uV/i5YLTiUqXte351mw8iar1cbr1B5A333nsvgoKCAABKYylC0g63yHXlxjJbb8Rb7r//fmi1jc9IJCLf1qlTJ2lZrc+HWp9f5z4iImp9lEolli1bJq0HZp2CpuiG0+eLciXKYvqgqMtolMX0aXJybkDOOfjfemAuk8nw0EMPcfYPERERkRPkcjkeeeQRLF68WLp/UlTqEf/zvxBy7aBX2vE2pLDTSNQXkXhrvy/RFN1AwsEPHZIkBgwYgFdeeYVJEkQNuOOOO6TlgNxUyEwVDR7vblvHwKxTDon3cXFxTYy4fQsMDMSdd94prdtXgXDH1pKaccaPH882RUStHBMlqFXRarW4//77pfWQawchN5Y1+3XDL++R+vR17NjR4aaIiFqvhIQEaVmlL4CqvKDOfURE1DoNHjwYI0aMkNYjz38LWD3bm7QuMpMRERe+l9anT5+Ozp07N/t1iYiIiNoKQRAwd+5cvPDCC1JJc0G0IvzSD4j7ZWOLPA90ln/xDdSXDivc2u8TrLZWG/E//0uqmgsA99xzD1544QUEBPhmaxMiX9G1a1epAq3MakZg1ukGj69u63h7soRTbR1FK4JuHJdWp0yZ4nrg7djs2bOhUNgK61+stOKC0b3nAdcrrThVYUteEQQBd999t9sxEpF3MVGCWp077rgDHTvaylrJrCaEX97TrNdTl2Y73PQ88MADkMvdL9FERN5n33NTU5wJ+a1McLVazWxgIqI24re//S00Gg0AW/Wg4PSfm/2aoVf2QlFVDsDW59k+0ZeIiIiInDdo0CC88cYb6Nmzp7TNvzANHX/6OwKyz3oxshqKiiK39rcEZflNdDjyMcKu7INwq/5FQEAAUlJS8Otf/5rPOomcIAgCpk6dKq0H3fil0Qo31W0dc/rNRkG3scjpNxtpY5ajMii2wfO0BVegNJYAAHQ6HUaNGuX+D9AOhYeHY9y4cdL6NjerSnxtV01i5MiRrPJB1AYwUYJaHblcjgceeEBaD8w6DXVpdvNcTBQRkVozG3DYsGEYMGBA81yLiFpcTEyMtKwpy3HYLpPxVyQRUVsQERGB+fPnS+thV/ZBYTeDztNUpbkITv9FWv/tb38Lf3//ZrseERERUVsXGRmJl19+GfPmzZNaccjNRsSc/grRJ/8L+a0EVW8x+4W4tb9ZiSKCrx9BwsEPoSnNkjb36dMHb731FoYPH+692IhaobFjx0otuVWGIvgXXG3kDNfaOgalH5WWJ02aBJVK5XrQ7dzcuXOl3x0nKqy4UWV1aZw8kxWHymsqUtxzzz0eiY+IvMvlt0AhISHo3bu308dPmDABYWFhrl6OyMGAAQMwdOhQaT38wq5m6U+ozb8Iv1vl8eRyOZYsWeLxaxCR90RHRzdpOxERtU6zZs2SWirJLCbbvWNzEEVEpu6QZun1798fycnJzXMtIiIi8gq9Xo8XXngBAwYMQFRUFBITE7FixQrk5+c32zW3b9+O4OBgBAcH46233mq26/gyhUKBRYsW4aWXXkJERIS0XZd7HgkH/o6AnPNei00f2aNWaf1qZpUW+sgeLRyRjbL8JuJ//iciLnwPmdU2C1qhUGDx4sV48cUXHf5/JCLnaDQaTJo0SVpvjoqFKn0+tDevAQBkMhmmT5/u8Wu0J3FxcRg2bJi0/k2Ja1UldpSaUf0GasCAAejatasHoiMib3NruqzYxBfTTT2eqCFLliyRZnz7F6VDm3/JsxewWhB+8Qdpddq0aSylRNTGKJVKhIaG1toeFRXlhWiIiKi5KBQKPPTQQ9K6Lvc8/G6mefw6uqzT8CvOkK75P//zP9LMFSIiImr99Ho9pkyZgnfeeQeiKGL69OnQ6XTYsGEDxo8fj+xsz1c8LSkpwZ///GePj9ta9e3bF+vWrXN4UakwGRBz6r+IOfEF5JX6Fo9JlCuRNWherWQJs0qLrEHznJo97lFWK0KuHUTCwQ+le1MA6NixI9auXYu5c+ey1QaRG6ZPny69l9DevAqV3rOJcvbJF8OGDUNkZKRHx2+P7r77bmn5oN6CYnPT3lWWW0T8WFZTTWLOnDmeCo2IvKzF6oqbTKaWuhS1E/Hx8Q49wcIu7QFE18om1SUo8wRUhkIAgL+/P+677z6PjU1EvqOuGRScVUFE1Pb07dvXoTdpROpOwGpp4IymkZmMCL9Uk2Q7e/ZsJtkSERG1MatXr8bZs2cxceJEHD16FP/4xz9w6NAhLFiwAJmZmXjqqac8fs2VK1eivLzcITGgvfP398djjz2G559/3qGCcUDeBXQ88P8QmHmyWSrPNqQyKBZpY5Yjp99sFHQbi5x+s5E2Zjkqg2JbNA5VWS46HN6A8Es/SFUk5HI55s+fj9dffx2dO3du0XiI2qLo6GiHCgXB1z1XVUJWZYAu64y0PmvWLI+N3Z716tULPXv2BACYAewqa1pViT16Mypv/VpJSEjAwIEDPRsgEXlNiyRKVFZWIj09HQEBAS1xOWpH5s+fDz8/PwCAurwAgVmnPTKuYK5C6JX90vq9996LwMBAj4xNRL6lrrZQdVWZICKi1m/JkiXQaDQAbPeOQRnHPDZ2yLWfoLjVHzssLAz33nuvx8YmIiIi7zMajdiwYQMAYM2aNVK/eEEQ8Oqrr0Kj0WDr1q3IyMhoYJSm2b9/P/7v//4Pzz33HGcU12HIkCF45513MHnyZGmb3GxE1NmvEffLp1Aailo0HlGuRFlMHxR1GY2ymD4tWklCsJgRdmkPEg59BE1ZjrS9c+fOWLt2LRYuXAilsoUrWxC1YfYJDLrs05Df+i7orqCMY1KSU5cuXZCYmOiRcQm46667pOXdpWaYnEyos4oivi+tmWQxa9YsVo4kakOcTpQoLS3FjRs3pD8AYLFYkJGR4bDd/k9aWhoOHjyIhx56CGVlZejTp0+z/SDUPgUFBTmUOQq9sg+C1bUeU/aC0486POieMWOG22MSkW/q3bu3w7pCoUD37t29FA0RETWn0NBQhyphYVf2Q2aqcHtchaHIYRbRkiVLpGReIiIiahsOHjyI8vJy9OrVC926dXPYFxwcjOTkZIiiiF27dnnkekajEX/4wx/Qr18//Pa3v/XImG2RVqvFo48+ipdeegnR0dHSdv/C60j46e8ITjsEWD1XgdYXaYrSkXDwA4Re+wnCrRd/SqUSixcvxtq1a9GlSxcvR0jU9iQmJkq/C2RWC4JuuJ+EL1jNCE7/RVqfPXs2X8h70PDhw6UJc6VW4Ei5cxUmTxisKLjVqkOn02Hs2LHNFiMRtTyFsweuX78ea9ascdh28+ZN9O/fv9FzxVs3aA8//HATwyNq3F133YXt27ejpKQESmMpAjNOoCQhyeXxZCYjQtIOSesLFiyAWq32RKhE5IOmTp0KjUaDzMxMCIKApKQktt4gImrDZs2ahR07diA3NxdyUwVCrx5AQc873Boz/NIPkIm2hyw9e/bEmDFjPBEqERER+ZCzZ88CQL0Twfr27Ytdu3bh3LlzHrne6tWrcfXqVezcuRNyudwjY7Zl/fr1w7p167Bx40Zs2bIFVqsVMqsZERd3Q5dzHrl9ZqBK17aqcsjMlQi7+AOCb6uSlpiYiEcffZRt4IiakSAIuOuuu/Dmm28CAIJu/IKiTiMhyp1+5VZLQPY5h8mbycnJHomVbBQKBaZOnYpPPvkEAPBDqQXJAY3/99pt16bjjjvu4LsiojbG6U9tURSlhAf7bQ0RBAGBgYHo27cvli1bhtmzZ7sWJVED/Pz8MHfuXPzjH/8AAIRe+wmlcQNdvikJTj8KudkIwNZvbMKECR6LlYh8j1KpdCjTSUREbZtSqcSSJUukJPCg9F9QnDAUZr8gl8ZTl2RBl5sqrT/wwAOc9UNERNQGZWVlAYBUtWDz5s1Yt24dFi9ejKVLl0rbMzMz3b7WyZMn8be//Q2LFy/G0KFD3R4PAD755BN8+umnTh27evVq9O/fHwaDwSM/T0tKTk5GQkICPvvsM2RnZwMANKXZSDj0EQo7j0Jhl2RA1voTT/wLriDy3DdQGkulbWq1GjNmzMDw4cNhMBhw6dIlL0ZI1PZFRkYiKCgIJSUlUFQZoMs5i9K4Aa4NJooIuX5YWh0+fDiuXbvmoUipWpcuXSCTyWC1WnGh0oqsKitiVfUX3i8wW3GqoqYqUc+ePfnZWoe4uDj4+/t7Owwilzj9JjklJQUpKSnSekhICKKiopCamtrAWUQtY+rUqdi8eTOKioqgqNQjMOsUSjoMbvI4grkKwek1ZZPvu+8+KBSuZ4ESERERke8ZOXIkevTogYsXL0ImWhB2ZR9y+850aazwS3uk5VGjRqFnz54eipKIiIh8SXm5bZZvdXutNWvW4Ny5c7h8+TKWLl0KrVbrcJyrzGYzHnvsMQQGBmLlypXuBW0nPT0dBw4ccOrY0tLSxg/yYR06dMAf/vAH7NmzB99//z3MZjME0Yqwq/sRkHcRuX1nojIwuvGBfJDMZET4he8RlHXKYXvv3r0xd+5cBAcHeycwonZILpcjOTkZ27dvBwAEXz+C0tj+gAuJ836F16HW5wOwJfcPHz7co7GSTWBgIHr37i1Vidqrt2BBaP2JEvvLLKieLt69e3epdQcRtR18A0xtglqtxpw5c6SqEiHXDqIkbiAgq/+XXF2CMo5BfqtPdVRUFMaNG+fpUImIiIjIywRBwK9//Ws8//zzAABd9mkUdhkFk39ok8bRFKbDvzANACCTybBo0SJPh0pEREQ+4vbKuvfddx/Wrl0r/f6v3u9uZan/7//7/3Dq1Cm88847CA1t2r1JQxISEpwu4x4YGAgA8Pf3R/fu3T0WQ0vr1asXZs6cib/97W84f/48AECtz0OHw/9AYefkVlddwr/gKiLPfg1lZZm0LTAwEMuWLcPo0aNZ1YzIC2JiYrBr1y5UVlZCrc+HX9F1VIR2avI49pM377jjDgwY4GJlCmrUnDlzpESJn/Rm3BeigKyOz09RFHGg3CKtz5o1q1X/TiSiujFRgtqMKVOm4PPPP0dZWRmUxhIE5KVCH53o/ABWC0KuH5FW586dyx6QRERERG1Uv379MGDAAJw8eRKCKCL0ygHk9pvVpDHCru6TlidMmMA+0ERERG1YQEAAAKCiwjbBZsWKFVixYoW032AwAIBbpaevXLmC1157DUOHDsWvf/1r14Otw6JFi9plUmd8fDxWrVqF7du345///CeqqqogiCLCru6HNv8ycvrdBVNAuLfDbJBgMSH84i4E3zjmsD05ORkPPfQQgoJcayFHRO4LCAjAhAkT8O233wIAgq8fbXKihMJQBG1+TTuHmTNdq3ZIzhk0aJDUMqXIApw3WtHHr/Z7oGtVInJMtiRIPz8/VvkgaqOaNt3ezlNPPYVHH33Uk7EQuUWj0WDGjBnSekjaYeC2bP+G6HLOQ1GpBwAEBwdj4sSJHo+RiIiIiHzH/PnzpWVdzhkoKkqcPldTnAH/wusAbNUk5s2b5/H4iIiIyHfExsYCAHJycurcX73dncTJHTt2wGg0Qq/X495778U999wj/dmzZw8A4JNPPsE999yD1157zeXrtDdyuRyzZs3CunXrkJhYM6lKU5aDhEMfIejGL016htiS1KU5SDj4oUOSRFBQEJ588kk88cQTTJIg8gH2iQ3a/EtN+l4JAEEZx1Fdz2DQoEFMwG9mCoXCocLSz3ZVI+wdtts+YsQIqNXqZo+NiFqeyxUlnn76aU/GQeQRU6dOxRdffAGTyQRNaTY0JZkwBsc7da59eavp06dDqVQ2V5hERERE5AMSExPRr18/nD59GoIoIvj6ERT0muzUuSFph6TlcePGITq6dfa5JiIiIuf06dMHAKRy3bc7c+YMADi8iHfV+fPnpVYRt7t8+TIuX77MFzYuiImJwUsvvYStW7fik08+gclkgsxqRuT5HfAvuIrcvjNhVfp5O0wbUURw+s8Iv7gbgmiVNg8fPhyPPPIIgoODvRcbETmIj49H//79cerUKQgQEZRxHDe7j3fqXMFiQlDmSWl9+vTpzRQl2UtOTsb27dsBAEcNFiwWRYf2G6IoOiRQONu6iohaH5crShD5ouDgYIwdO1ZaD7qtJF191CXZ0JRmAwCUSiWmTp3aLPERERERkW+5++67peWgzBOQmYyNnqM0FEGbd1FanzNnTnOERkRERD5k5MiR0Gq1SE1NxZUrVxz2FRcX48CBAxAEAZMmTXL5GsuXL0dxcXGdfxYuXAgAWLlyJYqLi/Hpp5+69fO0V3K5HHPmzMHrr7+OhIQEaXtA/iUkHPwI6uJML0ZnIzNVIObEF4i48L2UJKHRaPDYY4/h6aefZpIEkQ+yT3AIzDwJWOuuUnC7gNwLkJtsLZ0iIyMxePDgZomPHPXq1Uv6LC2xAFcrHasKZZhE5Jtt2/z9/TFgwICWDpGIWggTJajNmTZtmrQckHsesipDo+cEZdQkVCQnJyMwMLBZYiMiIiIi3zJo0CDpIbnMYoIu63Sj5wTdOCaVRh08eDA6duzYjBESERGRL9BoNFiyZAkA4Mknn0RVVRUA26zTlJQUGI1GzJgxA/HxdVc2Xb16NYKDgxEcHIx9+/a1WNxUt44dO+L11193KJmvNJagw8//dHriVXNQleUh4dA/EJBfk5TbrVs3vPnmm5g0aRIEuxnPROQ7hg4dipCQEACAoqoc2vzLTp0XmHlcWp48eTLkcnmzxEeO5HI5hgwZIq2fqHBMbDlpqFkfOHAgq48TtWFMlKA2p1u3bujWrRsAQGa1QJdzrsHjBXMVdDk15QxZTYKIiIio/RAEwWH2T3AjPaoFi9k2Q+gWlkYlIiJqP1JSUpCYmIhdu3YhKSkJDzzwAEaOHImNGzciJiYGa9as8XaI1AQqlQoPPvggnn76afj7+wMABNGKyPPfIvLcdqdnhHtKQM55dDj8f1BWFEvbZs6cidWrVyM2NrZFYyGippHL5Q4Vhey/M9ZHaSiEf9ENAIBMJnOrIhE1nX2ixCmD4+f9qYqalkdJSUktFhMRtTwmSlCbNHHiRGk5sJFZgQF5FyGz2GYBxMXFoWfPns0aGxERERH5lnHjxsHPz9aPWmUohKak/pLL2vyLkJtt7TmioqIwaNCgFomRiIiIvE+n02HHjh343e9+BwDYtm0bSkpKsGTJEuzZs4cvs1upESNG4K233kKXLl2kbUEZJxD3yyan2rK5TRQRcu0nxJz6L2RWEwBbBZOnnnoKDz74IGcyE7US9okO2ptXIK8sb/B4+2qGQ4YMQWhoaLPFRrX1798fMpntFWlalYhyi23CRJVVxOXKmkSJgQMHeiM8ImohTJSgNmnMmDFQKBQAAE1pNpTlhfUeq8s5Ky1PmDCBJeyIiIiI2hk/Pz+MHj1aWg/MPFXvsfb7Jk6cyNKoRERE7YxOp8OqVatw6tQp5OXl4fz581i3bh2ioqIaPC8lJQXFxcUoLi7GmDFjmnzd9957D8XFxfjjH//oaujUgKioKKxevRpjx46VtvkXXUf8kY+hMJY234VvVbAIv7RH2hQTE4O1a9di5MiRzXddIvK4mJgY9O7dGwAgiKLDe4daRBGBWWek1QkTJjR3eHSbgIAAKUFOBHDBaEuOuFJphelWkcm4uDgmsBC1cUyUoDZJp9Nh8ODB0npA7vk6j5OZKuB/85q07soXVSIiIiJq/ewrkgXkptZZallWZYB/Yc294/jx41siNCIiIiJqAWq1Gn/84x+xaNGimm3lBYg/8k8oDUWev6DVgujTWxCUcVza1LdvX6xduxYdOnTw/PWIqNnZf0cMyKn7nQQAqEuyoDSWAAD8/f0xdOjQ5g6N6tCnTx9p+dKtKhKX7KpJ2O8noraJiRLUZiUnJ0vLAbmpdR6jzb8MQbT94uvevXuj2f9ERERE1Db16tUL4eHhAAC52Qj/wrRaxwTkXYAgitLxvHckIiIialsEQcC8efPwxz/+UapWqzSWIP7nfzZYsbbJrBbEnPovdDnnpE1jx47FypUrERAQ4LnrEFGLGjlypNTOwa8kE4qKkjqP09lN7BwxYgRb7HiJfRv26nYbl4zWOvcTUdvERAlqs4YOHVrTfqMsF3JjWa1jtPmXpGWWsyMiIiJqvwRBwKhRo6T1gNwLtY6x32Z/LBERERG1LePGjUNKSgpUKhUAQFGpR9wvn9b70rNJRCuizmxDQN5FadO0adOwYsUKviwlauUCAwMxYMAAaV1r9+9cIooO//7tJ3xSy+rRo4e0nFZphVUUkVZlrXM/EbVNTJSgNsvf3x+JiYnSurbgsuMBVgv8C65Kq0lJSS0VGhERERH5oOHDh0vL/gVXgFvVIwBAsJjgV3S9zmOJiIiIqO0ZMmQInn/+eSlZQmksRdwvGyEzVbg1bviF7xGYc1Zav+uuu/DQQw9Js9CJqHWz/64YYDdRs5pKnw9lRTEAwM/PD/3792+p0Og2YWFhCAwMBAAYRVtVieJbXTjVajViY2O9GB0RtQTefVGbZp/84H/zmsM+TUkW5JYqAEBERAR7/xERERG1c7169ZJKHSsry6DS50v7/AqvQ2a1PTFJSEhg2w0iIiKidqBfv35ISUmRqtaqDIWIOfklcOu+sKmC0o8iJP2otD516lQsXboUgiB4JF4i8r6hQ4dKy35F6RDMlQ777Sd0Dh48mJVkvEgQBHTu3Fla/0lf89nesWNHyOVyb4RFRC2IiRLUptlnY/oXXneYFWjfd3rgwIH8QkJERETUzsnl8tvuH9PslmuqSQwcOLAFoyIiIiIibxo0aBBWrFghrfsXXkf4pR+aPI6m6AYiLnwnrY8aNQoPPfQQn0kStTFhYWHSy3dBtMK/MN1hv39BzYTOIUOGtGhsVJv9BFr7RAlOrCVqH5goQW1ax44dERQUBACQmypumxVYc4PSr1+/Fo+NiIiIPE+v1+OFF17AgAEDEBUVhcTERKxYsQL5+fmNn9wEJSUlWLVqFUaOHIm4uDh06NABI0aMwJ///Gfo9fo6z7l27RqWLVuG7t27IyoqCsOGDcMbb7wBk8nk0djIPfb3hfb3i352iRIsjUpERETUvowePRqLFi2S1kOuH4E274LT58uqDIg+tRnCrUlc3bt3xx/+8Ae22yBqo+yT6/1v1rT/FiwmaIoz6jyOvCM+Pl5arqiZZ8tECaJ2gndi1KYJgoDevXtL65qSTNuC1QpNSZa0PTExsaVDIyIiIg/T6/WYMmUK3nnnHYiiiOnTp0On02HDhg0YP348srOzPXKda9euITk5Ga+//jpu3ryJCRMmYNy4cZDJZPjwww9RUlJS65xz585h3Lhx+OyzzxAfH49p06ahqKgIL730EubPnw+LxbXSveR5ffv2lZY1xRmAKEIwV0Fdlgug9v0lEREREbUP9957L4YNGyatR57dDnlVuVPnRqbugLKyDACg0+nw5JNPQq1WN0ucROR9AwYMkJb9im5Iy5qSTMhE2/f/+Ph4hIaGtnhs5GjYsGHQaDQO25RKJUaMGOGliIioJSm8HQBRc+vVqxcOHToEAPArzkBp/CCo9XmQWW2zN8PDwxEeHu7NEImIiMgDVq9ejbNnz2LixInYtGkTVCoVRFHEI488gk2bNuGpp57Cxx9/7NY1LBYLfvWrXyEjIwOPPvoo/vKXvzj0E01NTUVISEit85YvX47S0lI8/fTTePrppwHYqlJMmzYNu3fvxocffoiHHnrIrdjIM+Li4uDv7w+DwQCFyQBFRTGUxlIIsE0t6dChA7RarZejJCIiIqKWJggCfv/73+MPf/gDbt68CYWpAhGp3yGn/5wGz9PmXYAu57y0/vvf/x4RERHNHC0ReVPPnj0hk8lgtVqh0udBZqqAVennkDRhn6RP3hMaGooPPvgAly5dgnir6k+3bt0QGBjo5ciIqCWwogS1ed27d5eW1aU5Dv8LAD169GjxmIiIiMizjEYjNmzYAABYs2YNVCoVANvDzFdffRUajQZbt25FRkZGA6M07ssvv8TZs2cxYcIEvPzyyw5JEoAtQdPf399h28GDB3HixAnEx8fjiSeekLYHBQXhr3/9KwDgvffecysu8hyZTOZw/6gpzea9IxEREREBAAICAvDoo49K67qcc9DYtWu7nWAxIyL1e2l94sSJGDp0aLPGSETe5+fnh86dOwMABACaEluFS01xpnQMKxX6joCAAAwaNAiDBw/G4MGDmSRB1I4wUYLavC5dukAQBACAqrwAgsXk8LC7S5cu3gqNiIiIPOTgwYMoLy9Hr1690K1bN4d9wcHBSE5OhiiK2LVrl1vX+eKLLwAADz/8sNPnfP+97cHo1KlTIZfLHfZNnDgRWq0W165dw5UrV9yKjTzH/v5QXZYntd24fR8RERERtT+DBw/GmDFjpPWIi98DoljnsUHpR6E02lrz6XQ6LF26tEViJCLvs0+y15RkAaIITWl2nfuJiMg7mChBbZ6fnx9iYmIAAIIoQlVeALU+T9pfndlJRERErdfZs2cBAH369Klzf3VJy3Pnzrl1nWPHjgEARo0ahcuXL+PVV1/FihUr8PLLL+Pnn39ucmxyuRy9evXySGzkOZ06dZKWVWV5DveO9vuIiIiIqH1avHixVMVOU5oDbcHlWscI5iqEpB2S1hcuXAidTtdiMRKRd9lP4lCXZkNhLIHcVAHAVsEgOjraW6EREdEtCm8HQNQSEhISkJWVBQBQ6Qug0hc47CMiIqLWrfr3fPWDhs2bN2PdunVYvHgxli5dKm3PzMysd4zGlJeXIy8vD6Ghodi+fTt+97vfwWQySfvXrl2LhQsX4t1333WoHHF7bC+99BL27t2LVatWYfjw4S7H9sknn+DTTz916tjVq1ejf//+MBgMbv1/0F6IdjMCVeUFUFTqpXWTyYRLly55IywiIqIWERcXV6uVGBE5ioiIwJQpU7B161YAQMi1gyiP6O5wTGDWSShMBun4yZMnt3icROQ9DpUK9flQlzlO3qyugk1ERN7j84kSer0ea9aswVdffYWcnByEhYXhzjvvxLPPPouIiAi3xw8ODnbquNOnT6NDhw5On3fs2DGW5fUhHTp0wKFDtgxuv6J0yM1GAIBGo0F4eLg3QyMiIiIPKC8vB2CrJAUAa9aswblz53D58mUsXboUWq3W4ThXlJWVAQCqqqqwYsUK3HPPPXj88ccRERGBn376CStWrMDGjRvRo0cP/PGPf6wVm7+/PwoLC/HGG28AAN566y1s2rTJ5djS09Nx4MABp44tLS1t0tjtnf33DFVFsbSs1Wr54oiIiIiIAAB33303vvnmG5jNZvgVZ0BVmouqwCjbTlFEcPovDscqlUovRUpE3hAfHw+ZTAar1QplRbGt/cYtHTt29GJkRERUzacTJfR6PaZMmYKzZ88iISEB06dPx7lz57BhwwZ89913+P7776WWCq5auHBhvfvS0tJw8OBBdOrUCfHx8U06n2XUfEtsbKy07F9w1WE7MzeJiIhaP/G2nsD33Xcf1q5di0WLFjnsd+f3vtVqBWC7Rx06dCjef/99ad+0adNgtVqxaNEirF+/HitWrJCuZR9bSEgIpk2bhgMHDmDevHluxZaQkIDk5GSnjg0MDARgS9bo3r17I0cTAISFheHmzZsO2+Lj4/n/HxEREREBAEJDQzFy5Ejs27cPABCUdRL5gXcCADTFGVAZCgHY7sEnTJjgtTiJyDuUSiViY2ORkZEBANDmXZT22U/KJSIi7/HpRInVq1fj7NmzmDhxIjZt2gSVSgVRFPHII49g06ZNeOqpp/Dxxx+7dY333nuv3n0PPfQQDh48iPvvv7/eB9cNnU++w77fl7KyTFp2N9GGiIiIfENAQAAAoKLC1u9zxYoVWLFihbTfYLCVvHWnGoD9uXUly06fPh0qlQr5+fm4evUqunbt6hCbwWCAIAjYuHGjw3muxrZo0SIpEYQ8LzIyslaiRFRUlJeiISIiIiJfNHnyZClRIiD7HPJ73AHIZNBln5WOGT16tFT5jojaF/tECXV5gcN2IiLyPpm3A6iP0WjEhg0bANhKJ6tUKgC2mXavvvoqNBoNtm7dKv2S8bTi4mJs3boVMpmswaoT1DrU91CbD7uJiIjahuqHDDk5OXXur94eFxfn8jWCgoKkZIa6Zn8IgiDdWxQU1H4A0pyxkedFRkbW2uaJ1n9ERERE1Hb06dMHoaGhAACFyYCEQx8h4vy3CM44Jh0zduxYb4VHRF5WX0IEJ3ASEfkGn02UOHjwIMrLy9GrVy9069bNYV9wcDCSk5MhiiJ27drVLNf/z3/+g4qKCowdO5ZlkNqA4OBgKBS1C6iEh4d7IRoiIiLytD59+gAAzp49W+f+M2fOAAASExNdvoYgCNJ9aXFxcZ3HlJSUAAA0Go1TsVksFqSmprodG3leWFiYU9uIiIiIqP2Sy+UYNmyYtK7W5yH4Rk2ShE6nQ+/evb0RGhH5gLoS8BUKhZRgRURE3uWziRLVD5KrHyzfrm/fvgCAc+fONcv1//nPfwJAo+WM3333XfzpT3/CE088gQ8++AC5ubnNEg+5RyaTObTfqMaZm0RERG3DyJEjodVqkZqaiitXrjjsKy4uxoEDByAIAiZNmuTWdcaPHw8AOHDgQK19V65cQWlpKRQKBbp37y5tr77mt99+C4vF4nDO7t27UV5ejk6dOkmtOsg31DXDh7N+iIiIiOh2EyZMqLdt84QJEyCXy1s4IiLyFXW9f4iNjYVM5rOv5oiI2pXaU+x9RFZWFgBIL7c3b96MdevWYfHixVi6dKm0PTMz0+PXPnHiBE6fPo3AwEDMnDmzwWOfe+65WuurVq3Cgw8+2KRrfvLJJ/j000+dOnb16tXo378/DAZDs/z8bdXkyZOxbds2lJeXQxAE9O7dGxqNBpcuXfJ2aERERM0qLi5OahnRVmk0GixZsgTr16/Hk08+iY0bN0KlUkEURaSkpMBoNGLmzJmIj4+v8/zVq1fjtddeAwBs3boVY8aMqfO46mt8+umnmDNnjpQ4UVFRgWeeeQYAMGvWLIf/v0eOHIn+/fvj1KlTWLt2LZ5++mkAtuoTK1euBAA8/PDDHvn/gTxn7NixOHLkCFJTUyEIAgYPHowBAwZ4OywiIiIi8jE9e/bEa6+9hosXLzpsDwkJcag2QUTtT79+/TBp0iQcPXoUVqsVgYGBWLx4sbfDIiKiW3w2UaK8vBwA4OfnBwBYs2YNzp07h8uXL2Pp0qXQarUOx3nSxx9/DAC45557pOvf7v7778f8+fPRs2dP6HQ6XL16FR988AE+/vhjPP7444iIiMDs2bOdvmZ6enqdMxPrUlpa6vS4VCMxMZElrYmIiNqwlJQU7NmzB7t27UJSUhKSkpJw7tw5pKamIiYmBmvWrHH7Gl27dsXKlSvx/PPPY+7cuRg6dCgiIiJw/PhxZGZmIj4+Hq+88orDOYIgYP369Zg2bRpeffVV7Ny5Ex07dsSBAweQl5eHcePGNTnJlpqfWq3Gs88+6+0wiIiIiKgV6NGjB3r06OHtMIjIx8hkMjz22GPeDoOIiOrhs4kSoig6rN93331Yu3at1Aqjen99Zc1cZTAY8PnnnwNouO3G+vXrHdb79euHdevWIS4uDq+88gpefPHFJiVKJCQkIDk52aljAwMDAQD+/v4OZZ2JiIiI2jOdTocdO3bgtddew5YtW7Bt2zaEhYVhyZIleOaZZxAVFeWR6zz22GPo0aMH1q9fj5MnT+LYsWOIjY3FQw89hCeeeAIRERG1zunbty/27NmDV155BT/++CPOnj2LhIQELFu2DH/4wx+gUPjsbTkRERERERERERFRmyMUFxeLjR/W8p555hmsX78ejz76KF5++eVa+9977z2kpKRg5syZ+Ne//uWx63766adYvnw5evbsicOHDzf5/LKyMnTu3BlmsxknT55Ex44dPRYbERERERERERERERERERERuUfm7QDqExsbCwDIycmpc3/19ri4OI9e95///CeAhqtJNESn0yEsLAwAkJub67G4iIiIiIiIiIiIiIiIiIiIyH0+myjRp08fAMDZs2fr3H/mzBkAQGJioseueenSJRw8eBByuRzz5893aQyTyYSbN28CsLXGICIiIiIiIiIiIiIiIiIiIt/hs4kSI0eOhFarRWpqKq5cueKwr7i4GAcOHIAgCJg0aZLHrvnxxx8DAO644w6Xe1jv3r0bZrMZAQEB6NGjh8diIyIiIiIiIiIiIiIiIiIiIvf5bKKERqPBkiVLAABPPvkkqqqqAACiKCIlJQVGoxEzZsxAfHx8neevXr0awcHBCA4Oxr59+xq9nslkwqZNmwA03nZj48aNOH/+fK3tJ06cwOOPPw4AeOCBB6BSqRq9LhEREREREREREREREREREbUchbcDaEhKSgr27NmDXbt2ISkpCUlJSTh37hxSU1MRExODNWvWeOxa27dvR35+PsLCwjBt2rQGj926dSseeeQRdO7cGYmJiVCr1bh27RpOnjwJq9WKO+64A88995zHYiMiIiIiIiIiIiIiIiIiIiLP8NmKEgCg0+mwY8cO/O53vwMAbNu2DSUlJViyZAn27NmD2NhYj13rX//6FwBg3rx5UCqVDR47f/58zJo1CwBw4MABbNmyBdeuXUNycjL+9re/4T//+Q+rSRAREREREREREREREREREfkgobi4WPR2EEREREREREREREREREREREQtwacrShARERERERERERERERERERF5ksLbARCRe06dOoXS0lIEBgaif//+3g6HiHwEPxuIiKgu/P1ARHXhZwMREdWFvx+IqC78bCCitoKtN4hauRkzZuDAgQNITk7G119/7e1wiMhH8LOBiIjqwt8PRFQXfjYQEVFd+PuBiOrCzwYiaivYeoOIiIiIiIiIiIiIiIiIiIjaDSZKEBERERERERERERERERERUbvBRAkiIiIiIiIiIiIiIiIiIiJqN5goQURERERERERERERERERERO0GEyWIiIiIiIiIiIiIiIiIiIio3WCiBBEREREREREREREREREREbUbTJQgIiIiIiIiIiIiIiIiIiKidoOJEkRERERERERERERERERERNRuMFGCiIiIiIiIiIiIiIiIiIiI2g2FtwMgIvfcf//9GD16NBISErwdChH5EH42EBFRXfj7gYjqws8GIiKqC38/EFFd+NlARG2FUFxcLHo7CCIiIiIiIiIiIiIiIiIiIqKWwNYbRERERERERERERERERERE1G4wUYKIiIiIiIiIiIiIiIiIiIjaDSZKEBERERERERERERERERERUbvBRAkiIiIiIiIiIiIiIiIiIiJqN5goQURERERERERERERERERERO0GEyWIiIiIiIiIiIiIiIiIiIio3WCiBBEREREREREREREREREREbUbTJQgIiIiIiIiIiIiIiIiIiKidoOJEkRERERERERERERERERERNRuMFGCiIiIiIiIiIiIiIiIiIiI2g0mShAREREREREREREREREREVG7wUQJIiIiIiIiIiIiIiIiIiIiajeYKEHkQ0RR9HYIRERERNRK8N6RiIiIiJqC949ERERENZgoQeRDBEGQlq1WK6xWqxejISIiIiJfxntHIiIiImoK3j8SERER1VB4OwCi9kwURQiCAIvFgtOnTyMzMxNdu3ZFr169IJM55jFZrVYIguDwhYaI2r7qzwkiIiLeOxJRY3jvSERE9nj/SEQN4b0jEbV3TJQg8iJBEHD9+nUsXboUGRkZyM/Ph0ajQYcOHTBs2DCMGzcOw4cPR0JCQq0vL0TUPgiCgCtXrqBr167eDoWIiLyM945E1BjeOxIRkT3ePxJRQ3jvSETtnVBcXMzGZEQtzGq1QiaT4erVq1ixYgX27duHMWPGICgoCLt374bBYJCO9fPzQ8+ePZGcnIzk5GRMnTqVWZ5E7UD158TevXsxe/ZsvPzyy1i+fHmD51T3GuVnBBFR28J7RyJqDO8diYjIHu8fiaghvHckIrJhmiiRF1T3//viiy+wb98+PPnkk9iyZQv+/Oc/Q6fTYcSIEXj77bcxePBgVFVV4eTJk/jb3/6GBx98kDciRO2E2WwGAOzevRsajUbK7G6ofyhLZBIRtU28dySixvDekYiI7PH+kYgawntHIiIbtt4g8oLqUnb//e9/0bNnTyxYsAAAcOrUKeTm5uLZZ5/Fr3/9a/Tq1QtPPfUUCgoKMHnyZHTr1s2bYRNRC6moqICfnx8AYOfOnejSpQt69uwJoCZ7u1p1L8Hr16/ju+++wx133IFOnTq1dMhERNSMeO9IRA3hvSMREd2O949EVB/eOxIR1WBFCSIvkMlkKC4uRlpaGgYNGoTOnTsDAM6fPw8AmDRpEgBg+PDh2LBhA0RRxB133IFHH33UazETUcvIzMzE/fffjzfeeANffvklzp8/j/79+0tfQuRyOQBbhnf1HwA4fvw4nnjiCezevdtboRMRUTPhvSMR1Yf3jkREVBfePxJRXXjvSETkiBUliFpYdRZmamoq5HI5wsPDAQA3b97E1atXERkZidjYWFgsFsjlcnTq1AlKpRI7duzAtGnTpIxwImpbqj8b9u/fjz179mDfvn1Qq9UAgIsXL+KDDz5At27d0KtXL0RHR9f6LLhw4QIAYObMmS0eOxERNR/eOxJRXXjvSERE9eH9IxHdjveORER1Y6IEUQur7uNlNBqh1+sRFhYGwFbyqrS0FAkJCTAajZDJZJDL5bh+/Tr8/f2RlpbGLypEbVj1Z8OQIUPw9ttvIzc3Fx999BGMRiOOHTuGY8eOISIiAl27dkWfPn3Qv39/JCYmok+fPsjLy8Onn36K7t27IzIy0ss/CREReRLvHYmoLrx3JCKi+vD+kYhux3tHIqK6MVGCyEs6duyIQYMGwWq1wmQyIT4+HqIo4tSpU7h69SoSExMBAIcOHcKFCxcwdepUL0dMRC2hW7du6Nq1KwRBwD/+8Q+pl+j169dx7NgxnD17FocOHYJCoUBMTAwUCgX0ej3y8/Px3HPPeTt8IiJqJrx3JKK68N6RiIjqw/tHIrod7x2JiBwxUYLISzp37ox//vOfMJvNUCqVAIBevXrh8OHDeOqpp7B48WLIZDK88sorEAQBs2bN8nLERNQSrFYrZDIZcnJykJOTg9mzZ+P3v/89iouLkZ+fj7S0NKSmpuLEiRM4f/48MjIyUFZWht///vdYtGiRt8MnIqJmwntHIqoL7x2JiKg+vH8kotvx3pGIyBETJYi8KC4uzmH9iSeewKFDh7B//37s379f2v78889j0KBBLR0eEXlBdSm8I0eOIDg4GAMHDgQABAcHIzg4GN27d8f48eNRUlKCgoICWCwWaLVaxMXFSQ8+iIiobeK9IxHdjveORETUEN4/EpE93jsSETkSiouLRW8HQUSAKIoQBAGFhYXYsmULfvjhB1RUVGDhwoWYM2eOdBNDRO1DWloaTpw4gWHDhiE2NhYWiwUymYyfBUREBID3jkTkiPeORETUGN4/ElE13jsSEdkwUYKIiIiIiIiIiIiIiIiIiIjaDZm3AyCiulksFgC2bG8ian+sVqu3QyAiolaE945E7RvvHYmIqKl4/0jUfvHekYjIhokSRD5KLpcDAMtdEbUTt39Bkcmc/xXNhxpERMR7R6L2hfeORETkLt4/ErUfvHckIqobEyWImpnBYGjS8dU3HtnZ2diyZQsuX77cHGERkY+5/QuKM19Cqo/hQw0ioraD945E5AzeOxIRUTXePxJRY3jvSERUNyZKEDWjS5cuITExEcuXL8emTZtw+fJlmEymBs+pvgH57rvvsGTJEpw9e7YlQiUiLyktLcVnn32G8+fPO2y3/xIiiqLDF5jq5ZMnT+KDDz5AVlZWywRLRETNiveORNQY3jsSEZE93j8SUUN470hE1DAmShA1o127dqGkpAQbN27EI488gqFDh2LSpEl45pln8M0339R5k1Gd3XnmzBkAQFJSUovGTEQta+vWrXjooYfw97//HQCQlZWFr776CleuXJFmhQiCUOsLDAD85z//wdNPP82+gkREbQTvHYmoMbx3JCIie7x/JKKG8N6RiKhhCm8HQNSWbdmyBTExMVi8eDEuXbqEQ4cO4fTp0zh9+jTee+89+Pv7Y/DgwRg7diySk5PRu3dvAMCxY8ewdetWdO7cGXFx/3979x4U1X3/f/y1u4CgglxUxFXugmKNloJoEI21xqhBW03TTltHGzNNk3TaTkbHTDu2pk37bSczbcaJVdvaS5qkaY3axMQmpkYtF1u8xlWIAUVQlFSURUEROHt+fzjwg6iwi7BH4fn4x5k9y8x7/3DneZg3n+O0+FMA6E12u10pKSkaM2aMJOn3v/+9NmzYoMzMTI0ZM0ZpaWlKSUlRfHy8RowYoYCAANntdtXX18vlcik0NFSjRo2y+FMAAHoC7QigK7QjAKA9+hFAZ2hHAOicze12d/0wIgDdEh0drQULFrRtbDY2NurDDz9UXl6e8vLydPjwYV25cqXt/UOHDlV8fLxcLpeuX7+u1atX65lnnrFqfAB+0NzcrPPnzys0NFQRERGaPHmySktLFRUVpdraWgUEBCg6OlqpqakaP368UlNTlZ6ersrKSj3xxBOaOXOmNm3aZPXHAAD0ANoRQFdoRwBAe/QjgM7QjgDQOU6UAHrJkSNH1NTU1LZx2dLSouDgYGVlZSkrK0srVqzQpUuXtH//fuXl5amgoECVlZU6deqUYmNjtXTpUi1ZssTiTwGgtwUGBio2NlaS5Ha7VVpaqkWLFunRRx/Vxx9/LJfLpZKSEv33v//Vrl27FBISori4OAUHB6u2tlYPP/ywxZ8AANATaEcA3qAdAQCt6EcAXaEdAaBznCgB9KIzZ84oICBAMTEx8ng8stvt8ng8Mk1Tdru9w7O/JKmqqkpVVVWaMGGCQkJCLJoagL8ZhiGHw6E333xTy5Yt069//WstW7ZM0o2bmDNnzujkyZMqLi7W8ePHdeLECVVUVKilpUXl5eUKDw+3dH4AQM+gHQF4g3YEALSiHwF0hXYEgNtjUQKwmGEYkiSHw2HxJACstnXrVr377rt6+umnNXHixLZfcrRqaWlRfX29CgsLtWLFCg0ePFhFRUUWTgwA8DfaEUAr2hEA4A36EYBEOwLArfDoDcBi7W9STNO8adMbQP+xaNEizZw5U6GhoZLUdrNimjd2GgMCAhQeHq6IiAjV1dVx/B0A9EO0I4BWtCMAwBv0IwCJdgSAW2FRAriLcKMCICIi4qbXWr8bWn+hUVhYqKtXr2r+/Pn+Hg8AcBehHQHQjgAAX9CPQP9GOwJAR/au3wIAAO4GNptNhmGorq5OwcHBys7OtnokAAAA3KVoRwAAAHiLdgTQH7EoAfSC1uOqAKArHo9HkpSfn6+6ujqvfubRRx/Va6+9poAADoYCgL6AdgTgLdoRACDRjwC8QzsCQOdsbrebqgJ6iWEYkjo+CxAAbmXEiBF67733NHHixNu+x+PxtD0/EADQ99COALxFOwIAJPoRgHdoRwC4Nb71gB52+vRplZeXS7pxk9J6o2KapgzDaNvivJVt27bp5ZdfVnNzs19mBXB3OHPmjK5fv64XXnjhpmvt/0rEbrfr6tWr2rVrF98TANBH0I4AfEU7AkD/Rj8C8AXtCAC3x4kSQA/7+te/rh07digzM1NTpkzR9OnTlZGRofDw8A7v83g8bSHicDhUW1urxYsX6/Dhw6qtrbVgcgBWWrVqlX7729/qjTfe0KxZszpcM01TNTU1evXVV7Vnzx7t3buX7wkA6CNoRwDdQTsCQP9FPwLwFe0IALfGogTQwxISElRXV9dhG3PIkCFKT09XTk6Opk2bpokTJyooKKjDzx06dEhf+9rXNHXqVP3xj3/099gALHby5EnNmjVLaWlp2rp1q4KDg1VfX6+CggJt375dO3bsaLtJWbJkidauXWvxxACAnkA7AugO2hEA+i/6EYCvaEcAuLUAqwcA+pLi4mK53W499dRTWrBggXbv3q28vDwdOnRIu3fv1u7duyVJTqdTmZmZmj59urKzsxUUFKS1a9fqk08+0fz58y3+FAD8pf0vNZKSkvSd73xHP/vZz/Tmm2+qtLRUeXl5KioqkiSFhobq8ccf1xe+8AXdf//9Vo0MAOhBtCMAX9COAAD6EYC3aEcA6BonSgA96Oc//7leeOEF/elPf9LChQvbXq+qqtKRI0eUl5en/Px8HT9+vMPPBQcHq7GxUVOmTNHrr7+uIUOG+Ht0AH5y4MAB1dTUKCsrSxERER2uVVRUaNGiRTp16lTba3PmzNHnP/95felLX9KwYcP8PS4AoBfRjgC6QjsCANqjHwF0hnYEAN9wogTQg0zT1MyZMzV+/HhJkmEYcjgccjqdcjqdmj9/vpqbm1VeXq6ioiLt27dPRUVFstls+uIXv6gvf/nL3KgAfdyTTz6psrIyhYWFKTMzUzNmzFB2drZSU1MVFxenlStX6sknn9TcuXO1evVqjR07VjabTdKN54va7XaLPwEAoKfQjgC6QjsCANqjHwF0hnYEAN9wogTQg2pqanTt2jWNGjWqLTC80dDQoODgYDkcDpmm6dPPAri3rF69Wu+8847Ky8s7vB4dHa0HHnhAycnJevXVV2Wapnbu3Knhw4dLunGzYrPZ+H4AgD6EdgTQFdoRANAe/QigM7QjAPiGRQnAQgQI0H9duHBBeXl5evfdd7Vnzx5duHChw3WHw6FFixZp0aJFmjBhgpxOp0WTAgDuFrQj0H/RjgCA7qAfgf6JdgQA77AoAQCAn3g8HjU3NyswMPCmo+zKysr0wQcf6J///KcKCgrU3Nzcds1utyszM1PZ2dn64Q9/yDF4AAAA/QDtCAAAAG/RjgDgOxYlAACwgGEYMgxDNptNgYGBN10/cOCA3n//fe3cuVNHjhyRJAUHB+v8+fN+nhQAAABWox0BAADgLdoRALzDogTQQ+7k+X48GxDo+zwejw4dOqS4uDgNGzbspustLS3yeDyy2+0KCAjocK2hoUG7d++W3W7XvHnz/DUyAKAX0Y4AOkM7AgA+jX4EcDu0IwB0D4sSQC/hBgRAe3v27NFjjz2m6dOna9y4cRo3bpySkpLkdDoVHh5+0/ubm5tlmqYcDoccDof/BwYA+BXtCKA92hEA0BX6EUAr2hEAuieg67cA6EpRUZEaGxuVnp6uwYMHS1KHGxXTNG96TZKampq0c+dODRgwQLNnz/bfwAD8rqKiQpL0wQcf6K233lJoaKji4+M1YcIEpaamauzYsUpKSlJMTIxCQkI6HIvn8XhkGMYtj8oDANx7aEcAXaEdAQDt0Y8AOkM7AkD3cKIE0AMyMzNVU1OjzZs3KyMjQ//+978VFham+Pj4W25strS0KCAgQC6XS0uXLlVmZqY2btzo/8EB+M2lS5dUVlamU6dOyeVy6eTJk3K5XDp37pwGDhyoqKgojR49WmlpaRo/frySk5MVHx+vESNG3HQkHgDg3kY7AugK7QgAaI9+BNAZ2hEAuodvQOAOXb58WaNGjVJoaKhGjhwpj8ejp556StHR0UpJSVFaWtpNG5ut8fHxxx+rvLxcy5cvt/hTAOhtkZGRmjx5siZPnqzFixersLBQq1evVl1dnRobG2UYhoqLi7Vv3z4NGDBA8fHxGjNmjFJSUjR69GjNmzfvls8YBADcW2hHAN6gHQEArehHAF2hHQGge1iUAO5QWFiYfvOb36iurk4jR45Ufn6+qqqqdOXKFR07dkx///vfNXToUCUmJmr8+PFKS0tTSkqKxowZo4MHD0qS5s2bZ/GnANDbTNOUYRgKCAjQuXPn9OKLL+r8+fNav369srKydPbsWZ07d04lJSXas2ePCgsL9dFHH8nhcMgwDM2YMYMbFgDoA2hHAN6gHQEArehHAF2hHQGge1iUAHpATEyMYmJiJEnvvPOOgoODtXLlSkVEROjAgQMqKSlRWVmZioqK5HA4FBMTo8TERH300UcaNmyYEhISLP4EAHpb++eE/vWvf1VhYaHWrVun3NxcSdLw4cOVnp6uhx9+WEuWLNErr7yijRs3KjU1VXFxcYqPj7docgBAT6MdAXSFdgQAtEc/AugM7QgA3WNzu92m1UMA9zrTNGWapux2uyZNmqSBAwdq+/btioqK0pUrV/TJJ5/o5MmTOnHihI4dO6YTJ07o9OnTunz5sr7yla9ow4YNVn8EAH7g8Xhkt9uVm5urkpIS/etf/1J8fLxaWlrkcDgkdbyx+epXv6rq6mq99tprGjlypFVjAwB6GO0IwBu0IwCgFf0IoCu0IwD4jhMlgB5gs9lks9l0/fp1paenKy0tTREREZKk0NBQhYaGKjk5WXPmzNHFixdVV1entWvX6s9//rPmzp1r8fQA/MVut6ulpUU2m01NTU0yDKPtWusvPCSpublZgYGBysjI0MaNG1VTU8MNCwD0IbQjAG/QjgCAVvQjgK7QjgDgO7vVAwB9yYABA/SrX/1K3/zmN9vCQ/r/W9+SFBUVpcTERAUE3NhTmjFjhiWzArBGQECA5s6dqytXruj//u//2p4f2PqdYZqmAgMDJUkVFRWqqanRiBEjrBwZANBLaEcAXaEdAQDt0Y8AOkM7AoBvWJQAelh4eLiioqI6vNa69d16w1JZWal9+/YpKSlJ4eHhFkwJwEoPPfSQMjIytGXLFmVmZuqXv/ylCgsL5Xa72/5C5I033tDf/vY3TZgwQcOHD7d6ZABAL6EdAXSFdgQAtEc/AugM7QgA3uPRG0AvME2zw/O+WrW+duHCBdXU1Gj+/Pn+Hg3AXSAhIUFr1qzRs88+q2PHjukXv/iF1q9fr6FDhyosLEyBgYEqKipSTEyMnnjiCavHBQD0MtoRQGdoRwDAp9GPAG6HdgQA79ncbrdp9RBAX2YYhmw2W4fj8C5evKiCggJNnDhRcXFxFk4HwJ9aWlp04sQJ2Ww2paWlSZI2b96snTt3yuVyqbKyUteuXVNQUJDGjx+vVatWac6cORZPDQDwJ9oRQCvaEQDgDfoRgEQ7AkB3sCgB9CDTNHX27FlVV1crKSlJkZGRHa57PB6ZpimHw2HRhACsYBiGHA6H9u7dq29/+9uaNWuWnnvuOUVFRckwDF26dEk1NTVqbGyUx+NRQ0ODcnJybvnXIQCAvoN2BHArtCMA4HboRwCfRjsCQPfx6A3gDnk8HtntdpWVlemnP/2pXC6X3G63AgMDlZKSouzsbOXk5Cg9PV0hISFWjwvAQq+//rqqq6s1bdo0RUVFtf3yYtiwYRo2bFiH97Y+VxQA0LfQjgC8RTsCACT6EYB3aEcA8B0nSgA9ZPbs2Tpw4IAGDx6suLg4VVRUqL6+vu368OHDlZGRoQceeECZmZmaNGmSdcMCsERaWpqSkpL0l7/8ReHh4bd8z+2eMwoA6FtoRwBdoR0BAO3RjwA6QzsCgO84UQK4A61h4XK5dODAAU2dOlXPP/+8nE6nmpqaVFJSovz8fOXn5+vDDz/Ujh07tGPHDklSUVGRxowZY/EnAOAv1dXVcjgccjqdCg8Pv+2NCTcrANB30Y4AvEU7AgAk+hGAd2hHAOgeFiWAO9AaHIWFhQoJCdHy5cuVnp7ediTe6NGj9eCDD8owDFVWVurgwYPavXu3jh07xo0K0M9EREQoPj5e//vf/6weBQBgEdoRgLdoRwCARD8C8A7tCADdY7d6AOBeZrff+C/kdDo1aNCgthsQwzA6vM/hcCghIUGPPPKI1q1bp/fff9/vswKwRusz/wzD0Le+9S3V1tYqLy9PNptNHo9HhmHI4/FYPCUAwB9oRwBdoR0BAO3RjwA6QzsCwJ3hRAmgB4wdO1YOh0P79+/Xfffdp8DAQElqi5DWm5pWQUFBfp8RgDVaj7RLTExUYmKiKioq9NJLLykqKkppaWkd3uvxeNr+WuTT3xsAgL6DdgRwO7QjAOBW6EcAt0I7AsCdsbndbtPqIYB7UesRd4WFhVq5cqXCwsJUXV2tH//4x8rJyVFUVFSH95um2bbhSYgA/UtpaamysrLavgNaTZ06VbNmzdK0adM0adIkDRgwwKIJAQC9jXYE4C3aEQAg0Y8AvEM7AkD3sSgBdFPr9uVLL72k1atXy2aztcXI1KlTNWXKFH3mM59RWlqaEhISCBGgn3O73Tp+/LgKCgpUWFio/fv36+rVq23XnU6nMjMzdf/992vmzJlKTk62cFoAQE+jHQH4gnYEANCPALxFOwJA97AoAdyh06dPq6SkRCdPnlRxcbGOHDmiU6dO6fr16xo4cKBiY2OVmpqqiRMnKjk5WdnZ2YqMjLR6bAAWO3/+vA4fPqy8vDzl5+fr2LFjbdcWLVqkTZs2WTgdAKC30I4AuoN2BID+i34E4CvaEQC8w6IE0EOamprkdrtVXV2t8vJyuVwuHT16VMXFxTp//rzsdrtaWlr09ttvKzs72+pxAdxFDMNQeXm5Dh48qH/84x9aunSpHnroIavHAgD0ItoRQHfRjgDQP9GPALqDdgSA22NRArhDrc8L/LRr167p0qVLqqqqUmlpqVwulw4ePKht27Zp8ODBFkwKAAAAq9GOAAAA8AX9CAAA0DtYlADuwO1uVG7l8uXLunLlipxOZy9PBQAAgLsR7QgAAABf0I8AAAC9h0UJ4A5dvHhRNTU1qqio0JAhQ5SQkKDhw4dbPRYAAADuQrQjAAAAfEE/AgAA9I4AqwcA7lWmaergwYP6/ve/r5KSEg0aNEjR0dGKjY1VcnKyJkyYoLS0NCUnJyssLMzqcQEAAGAh2hEAAAC+oB8BAAB6FydKAD4yDEMOh0NFRUVtNyo5OTkKCQnRrl27ZBiGJCk0NFSxsbGKi4tTSkqKJk2apIULF1o8PQAAAPyJdgQAAIAv6EcAAAD/8O4BZwBu8oc//EElJSX63e9+p7feekuPPPKIHA6HcnNz9aMf/UhDhgzR8ePH9d577+nFF1/UK6+8YvXIAAAAsAjtCAAAAF/QjwAAAL2LR28APnI4HJKkHTt2aObMmXrwwQclSZWVlWpqatJ3v/tdZWRk6HOf+5yeffZZDRkyROPHj9eMGTOsHBsAAAAWoB0BAADgC/oRAADAPzhRAvCBad54Us3Ro0fV0NCgz372swoLC1NDQ4OOHj2qoKAgZWRkSJKmT5+uNWvWqKioSAsWLFBubq6VowMAAMDPaEcAAAD4gn4EAADwHxYlAB+03qyUlJTI4XDI6XRKkqqrq3Xq1Cndd999kqSmpiZJ0uTJkxUWFqYDBw5YMzAAAAAsQzsCAADAF/QjAACA/7AoAfjAbr/xX8bj8ai5uVlDhw6VJF2/fl0NDQ1yOp0yTbPtpqasrEzBwcE6c+aMZTMDAADAGrQjAAAAfEE/AgAA+A+LEkA3jBs3Tunp6QoKCpIkJScnq76+Xi6XS7W1tRowYIAkae/evaqurtbkyZOtHBcAAAAWoh0BAADgC/oRAACg99ncbrdp9RDAvaahoUHFxcUKCwtTamqqmpub9dhjj+ntt9/WjBkzlJubK4/HozVr1mjgwIH6z3/+o6ioKKvHBgAAgAVoRwAAAPiCfgQAAOh9LEoAXjJNUzabre3fTysqKtLSpUtVXV3d9tqIESO0YsUKLV++3J+jAgAAwGK0IwAAAHxBPwIAAPgXixKAlzwej+x2u2bPnq25c+dq2bJlioyMbHsmoM1mU1VVlbZs2aKysjI1NjYqNzdXubm5Fk8OAAAAf6MdAQAA4Av6EQAAwL9YlAB8cOnSJSUlJWnQoEFatmyZnnnmGUVGRkqSmpubFRgYqKamJpmm2fasQAAAAPRPtCMAAAB8QT8CAAD4j93qAYB7hWmaioyM1JYtWzRu3DitW7dOOTk52rx5syQpMDBQkhQUFKQBAwbI4/FYOS4AAAAsRDsCAADAF/QjAACAf3GiBNANhw4d0oYNG7RlyxaFh4frG9/4hpYvX67Y2Fh5PB6ZpimHw2H1mAAAALgL0I4AAADwBf0IAADQ+1iUAO7Atm3b9Nxzz6miokIZGRl6/vnnlZWVZfVYAAAAuAvRjgAAAPAF/QgAANB7WJQAusEwDNntdtlsNh0/flzr16/X1q1b5fF49Pjjj2vZsmVKTk62ekwAAADcBWhHAAAA+IJ+BAAA6H0sSgA+Mgzjlkfbbdq0ST/5yU90+fJlLV68WKtWrdKYMWMsmBAAAAB3C9oRAAAAvqAfAQAA/INFCaAbTNPU1atXNWjQINXX16umpkbR0dHat2+ffvCDH+jEiROaNm2atm/fbvWoAAAAsBjtCAAAAF/QjwAAAL0vwOoBgHvFyy+/rNLSUl2+fFmBgYGqrKzU2bNnFRoaqurqalVWVmro0KG6ePGiJGnhwoUWTwwAAACr0I4AAADwBf0IAADgXyxKAJ0wTVM2m00FBQX63ve+1/Z6QECAgoKCdPXqVcXGxiosLEyJiYlKTEzUqFGjVFtbq3nz5lk4OQAAAPyNdgQAAIAv6EcAAADrsCgBdMJms0mSIiMj9fTTT2vKlClqbm6W3W7XuHHjFBwcrPr6esXFxWnQoEFyu90KDw+3dmgAAABYgnYEAACAL+hHAAAA69jcbrdp9RBAX2KaN/5Ltd7oAAAAALdDOwIAAMAX9CMAAEDP4EQJoIdxkwIAAABv0Y4AAADwBf0IAADQM+xWDwAAAAAAAAAAAAAAAOAvLEoAAAAAAAAAAAAAAIB+g0UJAAAAAAAAAAAAAADQb7AoAQAAAAAAAAAAAAAA+g0WJQAAAAAAAAAAAAAAQL/BogQAAAAAAAAAAAAAAOg3WJQAAAAAAAAAAAAAAAD9xv8DWfZilDN6+O8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows, cols = 1, 3\n", "fig, ax = plt.subplots(rows, cols, figsize=(10 * cols, 6 * rows))\n", "\n", "for i, y in enumerate((\"result.training_mean\", \"result.val_mean\", \"result.test_mean\")):\n", " sns.violinplot(\n", " data=results_clean,\n", " x=\"config.model.embedding.model\",\n", " y=y,\n", " hue=\"config.model.load_pretrained\",\n", " inner=\"points\",\n", " ax=ax[i],\n", " scale=\"width\",\n", " )\n", " # ax[i].set_ylim([0.3,1.01])\n", " ax[i].set_xticklabels(ax[i].get_xticklabels(), rotation=75, ha=\"right\")\n", " ax[i].set_xlabel(\"\")\n", " ax[i].set_ylabel(y.split(\".\")[-1])\n", " ax[i].legend(title=\"Pretrained\", loc=\"lower right\", fontsize=18, title_fontsize=24)\n", "\n", "ax[0].get_legend().remove()\n", "ax[1].get_legend().remove()\n", "ax[2].legend(\n", " title=\"Pretrained\",\n", " fontsize=18,\n", " title_fontsize=24,\n", " loc=\"center left\",\n", " bbox_to_anchor=(1, 0.5),\n", ")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACEoAAAPTCAYAAACtkn4iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1hVdd7//9cGRRRBEA3xgHqrpYiHUXNSNBslzFM51khESXZbaZnRPWWDdvg2mSjm3e3cqdlpSEdRZ3JQHBMFg4rLaUSzFKQ7zTQxD4mAnCRg//7wxx63HGRx2JsNz8d1dV2wPp+11vtTe5z3Xr7X+2PKyckxCwAAAAAAAAAAAAAAoAVwsncAAAAAAAAAAAAAAAAAtkKhBAAAAAAAAAAAAAAAaDEolAAAAAAAAAAAAAAAAC0GhRIAAAAAAAAAAAAAAKDFoFACAAAAAAAAAAAAAAC0GBRKAAAAAAAAAAAAAACAFoNCCQAAAAAAAAAAAAAA0GJQKAEAAAAAAAAAAAAAAFoMCiUAAAAAAAAAAAAAAECLYahQYvny5Xr77bdrPX/9+vVavny54aAAAADg+MgdAQAAYAT5IwAAAABbMeXk5JhrO9nLy0s+Pj7KzMys1fzf/OY3+vrrr5WdnV3nAAEAAOCYyB0BAABgBPkjAAAAAFth6w0AAAAAAAAAAAAAANBiNGqhRHZ2tlq3bt2YtwAAAEAzQe4IAAAAI8gfAQAAANRVoxVKHDhwQD/++KO6dOnSWLcAAABAM0HuCAAAACPIHwEAAADUR6uaBv/xj39o165dVsfy8vL09NNPV3tOWVmZfvrpJ+3fv1+SNGHChAYIEwAAAE0duSMAAACMIH8EAAAAYC+mnJwcc3WDy5Yt0/Lly+t88YEDB2r79u3y9vau8zUAAADgGMgdAQAAYAT5IwAAAAB7qbGjxJgxY6x+X758udq3b19jVbeTk5M8PDwUEBCgwMBAmUymhokUAAAATRq5IwAAAIwgfwQAAABgLzV2lLiRl5eXfHx8lJmZ2ZgxAQAAoBkgdwQAAIAR5I8AAAAAbMXJ3gEAAAAAAAAAAAAAAADYCoUSAAAAAAAAAAAAAACgxTC09QYAAAAAAAAAAAAAAIAjo6MEAAAAAAAAAAAAAABoMSiUAAAAAAAAAAAAAAAALUarup6Ym5urU6dOqaCgQOXl5TXODQwMrOttAAAA0AyQOwIAAMAI8kcAAAAAjclwocSePXu0bNkyHT58uFbzTSaTLl26ZPQ2AAAAaAbIHQEAAGAE+SMAAAAAWzBUKLF9+3Y99thjMpvNMpvNatOmjTp16iQnJ3bwAAAAgDVyRwAAABhB/ggAAADAVkw5OTnm2k6+8847deTIEd1+++2Kjo7W0KFDGzE0AAAAODJyRwAAABhB/ggAAADAVgwVSnTp0kUlJSU6evSounbt2phxAQAAwMHZOnfMz89XdHS0tm/frnPnzsnb21vBwcFavHixOnfu3CD3SElJUWpqqtLS0nTw4EHl5uaqR48eOnLkSJXzp0yZotTU1Jted+3atQoNDa31eX/60580a9Ys4wsAAABownj2CAAAAMBWDG290aFDBxUXF/NFBQDQ7GVnZ+vNN9/UCy+8IC8vL3uHAzgkW+aO+fn5mjhxotLT0+Xn56fJkycrIyNDMTEx2rt3rxITE+Xr61vv+8yfP18//vijpGv7Yd9MUFCQ/Pz8qhwrLCzU9u3bZTKZNHr06CrnTJgwQbfcckul43369DEQNQCgsZE7Ag2DZ48AgJaA3BEAmgZDhRLjxo3Txx9/rIsXLzbYW3kAADRFW7du1bFjx7RlyxbNnTvX3uEADsmWuWNUVJTS09M1fvx4bd68WS4uLjKbzZo3b542b96sF198UevXr6/3fYKDg+Xn56fbb79dpaWluvfee2uc/9xzz1U7tn79em3fvl1jx45Vz549q5wTERGhsWPH1itmAEDjI3cEGgbPHgEALQG5IwA0DU5GJr/00kvy8vJSRESEioqKGismAADsKjs7W/v27ZPZbNa+fft0+fJle4cEOCRb5Y7FxcWKiYmRJEVHR8vFxUXStY4Py5Ytk6urq+Lj43XmzJl632vlypV69tlnNXr0aLVt27Ze16oo3AgLC6t3XAAA+yF3BBoOzx4BAM0duSMANB2GOkqkpqbq8ccf16pVqzRw4EDNmDFDvXr1kre3d43nXb/fMgAATd3WrVtVXl4uSSovL6e6G6gjW+WO+/fvV0FBgfr376++fftajXl6eiowMFBJSUlKSkpSeHi44XU0hmPHjiktLU0eHh6aNm2avcMBANQDuSPQcHj2CABo7sgdAaDpMFQo8dRTT8lkMslsNquoqEgffvhhrc7jywoAwJGkpKSotLRUklRaWqqUlBS+sAB1YKvcMT09XZI0cODAKscDAgKUlJSkjIwMQ9dtTB999JEk6be//a3atWtX7bxdu3YpPj5epaWl6tGjhyZOnCh/f39bhQkAqAVyR6Dh8OwRANDckTsCQNNhqFBi9OjRMplMjRULAABNwrhx45SYmKjS0lK1atVK48aNs3dIgEOyVe549uxZSVKXLl0kSXFxcVq1apVmzZql2bNnW45nZWU1eiy1UVJSoq1bt0q6+bYba9eutfr9tdde0yOPPKKVK1dathiprY0bN2rTpk21mhsVFaXBgwersLCwyfx7A4CmaujQofrXv/6lsrIyOTs7a+jQofruu+/sHRZQZ926dauxkLMx8ewRANDc8dwRAJoOQ4US//jHPxorDgAAmoyZM2dq3759kiQnJyeFhITYOSLAMdkqdywoKJAktW3bVpIUHR2tjIwMHT9+XLNnz5abm5vVPHvbuXOnsrOz1a9fP40cObLKOWPGjNGcOXM0bNgw+fj4KCsrS7t27dLy5cu1YcMGubq6asWKFYbue/r0aaWmptZqbl5enqFrA0BLFhQUpAMHDki6ljsGBQXZOSLAcfHsEQDQ3PHcEQCaDkOFEgAAtAQdO3bU+PHjlZCQoPHjx8vLy8veIQGogdlstvp95syZWrFihaVbQ8V4U3k7cf369ZJq7iYRGRlp9XufPn30zDPPaNiwYZoyZYo+/PBDLViwQD169Kj1ff38/BQYGFiruR4eHpKkdu3aqV+/frW+BwC0VEFBQUpISNCECRM0fPhwe4cDAACAJornjgDQdDTpQon8/HxFR0dr+/btOnfunLy9vRUcHKzFixerc+fODXKPlJQUpaamKi0tTQcPHlRubq569OihI0eOVDl/ypQptXoTb+3atVb7I97svD/96U+aNWuW8QUAABrFzJkzdfr0aaq6AQfQvn17SVJRUZEkKSIiQhEREZbxwsJCSbJbC+nrnTp1SikpKXJ2dq7Tny+BgYEaPny4Dh48qM8+++ymW3dcLywszNB8AEDtkTsCAACgtsgdAaBpqHOhxL/+9S998cUXOnv2rIqLi/X2229bxgoKCnTx4kVJUq9evep0/fz8fE2cOFHp6eny8/PT5MmTlZGRoZiYGO3du1eJiYny9fWta/gW8+fP148//iipdm8ZBgUFyc/Pr8qxwsJCbd++XSaTSaNHj65yzoQJE3TLLbdUOt6nTx8DUQMAGlvHjh21dOlSe4cBNBuNmTt27dpVknTu3LkqxyuOd+vWzfC1G9qGDRtkNps1YcKEOueyvXr10sGDB3X+/PkGjg4AUFfkjkDDs8WzR17QAgDYA7kjADQNhgslTp06pSeeeMKy/6bZbJbJZKr0ZSUwMFDFxcXat2+fhgwZYjiwqKgopaena/z48dq8ebNcXFxkNps1b948bd68WS+++KKlbXF9BAcHy8/PT7fffrtKS0t177331jj/ueeeq3Zs/fr12r59u8aOHauePXtWOSciIkJjx46tV8wAAACOwha548CBAyVJ6enpVY4fPXpUkuTv71+XJTSYsrIyxcbGSqp5242bOXv2rKSm0SEDAACgodkif+QFLQAAAACGCiWys7M1depUnTlzRn379tXYsWO1detWSzvjCrfccovCwsL03nvvKS4uzvCXleLiYsXExEiSoqOj5eLiIunaF4ply5YpLi5O8fHxOnPmjLp3727o2jdauXKl5eeKL2B1VZv9pgEAAFoKW+WOo0aNkpubmzIzM3XixAmrB8E5OTlKTU2VyWTShAkTGmRddZWYmKisrCx17NhRkyZNqtM1Lly4YHkDcdiwYQ0ZHgCgHrKzs/Xmm2/qhRdeYJ9poB5slT/yghYAAAAAJyOT/+d//kdnzpzRfffdp/379+u///u/5ebmVuXcBx98UJK0f/9+w0Ht379fBQUF6t+/v/r27Ws15unpqcDAQJnNZiUlJRm+dmM5duyY0tLS5OHhoWnTptk7HAAAALuzVe7o6uqq8PBwSdLChQtVUlIi6drbh5GRkSouLtaUKVOqLbCNioqSp6enPD099fnnnxu+f21VPGx/4IEHLIXAVUlJSVFycrLKy8utjp8/f15PPPGE8vPzNXz4cI0cObLRYgUAGLN161YdO3ZMW7ZssXcogEOzRf54sxe0XF1dLS9o1dfKlSv17LPPavTo0Wrbtm29rsULWgAAAEDDMtRR4pNPPpHJZNJrr72mVq1qPnXo0KFq3bp1nb5UVLRNrmijfKOAgAAlJSUpIyPD8LUby0cffSRJ+u1vf1tjG+Rdu3YpPj5epaWl6tGjhyZOnGj3NtAAAACNwVa5oyRFRkYqOTlZSUlJGjFihEaMGKGMjAxlZmbK19dX0dHRdbrujaKjo7Vnzx5J11o+S9cKGIKCgixz3nzzTQ0dOtTqvAsXLighIUHSzR9up6ena9GiRerUqZOGDh0qLy8vZWVl6ZtvvlF+fr569eqlDz/8sEHWAwCov+zsbO3bt09ms1n79u1TSEgIXSWAOrJF/libF7SSkpKUlJRkKca1N17Qan7oRAQAAGB/hgolfvzxR7m5uVXb3u16Tk5Oat++vS5evGg4qIp9l7t06SJJiouL06pVqzRr1izNnj3bcjwrK8vwtRtDSUmJtm7dKunmD77Xrl1r9ftrr72mRx55RCtXrqzxzcKqbNy4UZs2barV3KioKA0ePFiFhYVN5t8bAACwjW7dutVYyNlYbJU7SpK7u7sSEhK0fPly7dixQzt37pS3t7fCw8O1aNEi+fj41Om6Nzp58qTS0tKsjpWUlFgdu3LlSqXzYmNjVVpaqoCAgJu2hg4MDFRYWJgOHTqkw4cPKzc3Vy4uLurbt6+mTJmiuXPnysPDo0HWAwCov61bt1q6AJWXl2vLli2aO3eunaMCHJMt8kde0EJTcH0nIv4/AwAAwD4MFUq4urqqoKBAZWVlcnZ2rnFuYWGh8vLy6lQRW/F2XkVLuujoaGVkZOj48eOaPXu2peVexTx727lzp7Kzs9WvX79qWyCPGTNGc+bM0bBhw+Tj46OsrCzt2rVLy5cv14YNG+Tq6qoVK1YYuu/p06eVmppaq7l5eXmGrg0AAFBftsodK7i7u2vJkiVasmSJofMiIyMVGRlZq7lr166tVPhaG88++6yeffbZWs0dMmSIVq9ebfgeAAD7SElJUWlpqSSptLRUKSkp/KUXUEe2yB95QQv2RiciAHSVAYCmwVChxIABA/Tll19q//79GjNmTI1zt23bprKyMg0aNMhwUGaz2er3mTNnasWKFZYvAxXjJpPJ8LUbQ232CLzx4XufPn30zDPPaNiwYZoyZYo+/PBDLViwQD169Kj1ff38/BQYGFiruRVvHbZr1079+vWr9T0AAADqyla5IwAA9jRu3DglJiaqtLRUrVq10rhx4+wdEuCwbJE/8oJW7dDJtvFUfHYlqaysTO+++65mzJhh56gA2NK2bdt07Ngx/vePZsFenWyBhmCoUOKBBx7QP//5T0VGRmr79u3q2LFjlfO+/PJLLV68WCaTSQ888IDhoNq3by9JKioqkiRFREQoIiLCMl5YWChJTeJ/eKdOnVJKSoqcnZ0VEhJi+PzAwEANHz5cBw8e1GeffXbTyvDrhYWFGZoPAABgS7bKHQEAsKeZM2dq3759kq5tBVCXZwMArrFF/sgLWrVDJ9vGc+jQIatCiUOHDvEXpUALkpeXpwMHDshsNistLU1BQUFsrwkAdmKoUOLRRx9VbGysDh48qLFjx+r++++3FDMkJCQoKytL+/bt0+7du1VWVqaRI0fqwQcfNBxU165dJUnnzp2rcrzieLdu3Qxfu6Ft2LBBZrNZEyZMkK+vb52u0atXLx08eFDnz59v4OgAAADsx1a5IwAA9tSxY0eNHz9eCQkJGj9+PO2TgXqwRf7IC1q1QyfbxvOb3/zGqhPRb37zG/69AS3IO++8Y/nZbDbrwIEDbNsGAHZiqFDC2dlZf/3rXzV79mylpKTo7bfftoyFhoZK+nfV9dixYxUTEyMnJyfDQQ0cOFCSlJ6eXuX40aNHJUn+/v6Gr92QysrKFBsbK+nmewTWpGJvxKbwBQwAAKCh2Cp3BADA3mbOnKnTp0/TTQKoJ1vkj7ygVTt0sm08dCICWraUlBSVlpZKkkpLS5WSkkKhBADYieEn0V5eXoqLi9PmzZs1ffp0de/eXW3atFGbNm3UrVs33XffffrLX/5SY3u8mxk1apTc3NyUmZmpEydOWI3l5OQoNTVVJpNJEyZMqNP1G0piYqKysrLUsWNHTZo0qU7XuHDhgo4cOSJJGjZsWEOGBwCoh+zsbC1atEiXL1+2dyiAQ7NF7ggAgL117NhRS5cupZsE0AAaO3/kBS3YW0UnIpPJRCcioAUaN26cWrW69g5zq1atNG7cODtHBAAtl6GOEtebOHGiJk6c2JCxWLi6uio8PFxr1qzRwoULFRsbKxcXF5nNZkVGRqq4uFhTp05V9+7dqzw/KipKy5cvlyTFx8dr7NixjRJnxR6BDzzwgFxcXKqdl5KSIrPZrDvvvNOqyv38+fN68sknlZ+fr+HDh2vkyJGNEicAwLitW7fq2LFj2rJlC1XdQANozNwRAAAAzU9j5Y83vqDVp08fyxgvaMFW6EQEtFx0lQGApqPJ9jaOjIyUv7+/kpKSNGLECD322GMaNWqUYmNj5evrq+jo6Aa5T3R0tIKCghQUFKQFCxZIulbAUHEsKChIhw8frnTehQsXlJCQIOnmVd3p6emaPn26br31Vj3wwAN6/PHHNXnyZA0fPlzJycnq1auXPvzwwwZZDwCg/rKzs7Vv3z6ZzWbt27ePrhIAAAAA0ExUvKAlSQsXLlRJSYkkWb2gNWXKlBpf0PL09JSnp6c+//zzRovTyAtaycnJKi8vtzp+/vx5PfHEE7yg1UTRiQhouegqAwBNR507SmRlZennn3/W1atXVVpaatkfsCqBgYGGr+/u7q6EhAQtX75cO3bs0M6dO+Xt7a3w8HAtWrRIPj4+dQ3dysmTJ5WWlmZ1rKSkxOrYlStXKp0XGxur0tJSBQQEaMiQITXeIzAwUGFhYTp06JAOHz6s3Nxcubi4qG/fvpoyZYrmzp0rDw+PBlkPAKD+tm7dannIVF5eTlcJoAE0du4IAACA5qUx88fIyEglJydbXtAaMWKEMjIylJmZ2eAvaO3Zs0eSVFBQIOnfL2hVePPNNzV06FCr84y+oLVo0SJ16tRJQ4cOlZeXl7KysvTNN98oPz+fF7QAoAmiqwwANA2mnJyc6r9l3OD8+fNatGiR9uzZY0nub3oDk0mXLl2qc4AAANhaaGioioqKLL+3bdvWsjcsgNojdwQAAIARtswfr1y5YnlB69y5c/L29lZwcPBNX9AysuXvvHnzbvpdsqprrFq1Sq+++qoCAgL0xRdf1Hj+119/rXfffVeHDh3SxYsXeUELAAAAqCVDhRLTpk1TamqqzGazevTooc6dO8vFxUXOzs41nrdz5856BwoAgK288847SkxMVGlpqVq1aqWgoCA6SgB1QO4IAAAAI8gfAQAAANiKoUIJX19flZSUKCkpqVJLOAAAmovs7GzNnTtXJSUlcnFx0bp169gvEKgDckcAAAAYQf4IAAAAwFacjEzu3bu3XFxcNGjQoMaKBwAAu+vYsaPGjx8vk8mk8ePHUyQB1BG5IwAAAIwgfwQAAABgK4Y6Snz55ZeaNWuWBg4cqBkzZsjHx0eurq5ycqq53iIwMLDegQIAYEvZ2dl688039cILL1AoAdQRuSMAAACMIH8EAAAAYCuGCiWOHz+u//zP/9SRI0dqfwOTSZcuXapTcAAAAHBc5I5oSmJjY7VlyxZ7h1FvISEhCg0NtXcYAAA0CvJHAAAAALbSysjkJ598UkeOHJHZbFb37t3VuXNntWnTRs7Ozo0VHwAAABwUuSMAAACMIH8EAAAAYCuGCiUyMjIkSXv27NHtt9/eKAEBAACgeSB3BAAAgBHkjwAAAABsxdDWG1OnTtWhQ4d05syZm+4NCAAAgJaN3BEtyfTp0y0/x8XF2S0OAAAcGfkjAAAAAFsx1FFi1qxZSk9P18yZMzV9+nT5+PjI1dX1pl9cAgMD6xUkAAAAHA+5IwAAAIwgfwQAAABgK4Y6Snh5eclkMslsNstkMtXuBiaTLl26VOcAAQAA4JjIHdGS0FECAID6I38EAAAAYCuGOkqMHj261l9SAAAA0LKROwIAAMAI8kcAAAAAtmKoowQAAAAAoDI6SgAAAAAAAACOo+YN/gAAAAAAAAAAAAAAAJoRQ1tvXO9f//qXvvjiC509e1ZFRUVavXq1ZaygoEAXL16UJPXq1aveQQIAAMCxkTsCAADACPJHAAAAAI3J8NYbp06d0hNPPKEDBw5Iksxms0wmk7Kzsy1zLly4oF/96lcqLi7Wvn37NGTIkIaNGgAAAA6B3BEtBVtvAADQMMgfAQAAANiCoa03srOzNXXqVP3rX/9Snz599Oijj8rNza3SvFtuuUVhYWEqLy/nISEAAEALRe4IAAAAI8gfAQAAANiKoUKJ//mf/9GZM2d03333af/+/frv//7vKr+sSNKDDz4oSdq/f3/9owQAAIDDIXcEAACAEeSPAAAAAGzFUKHEJ598IpPJpNdee02tWrWqce7QoUPVunVrnTlzpl4BAvaSnZ2tRYsW6fLly/YOBQAAh0TuCAAAACPIHwEAAADYiqFCiR9//FFubm7q2bPnzS/s5KT27dvr4sWLdQ4OsKetW7fq2LFj2rJli71DAQDAIZE7AgAAwAjyRwAAAAC2YqhQwtXVVcXFxSorK7vp3MLCQuXl5cnDw6POwQH2kp2drX379slsNmvfvn10lQAAoA7IHQEAAGAE+SMAAAAAWzFUKDFgwACVlZXVau+/bdu2qaysTIMGDapzcIC9bN26VeXl5ZKk8vJyukoAAFAH5I4AAAAwgvwRAAAAgK0YKpR44IEHZDabFRkZqezs7Grnffnll1q8eLFMJpMeeOCBegcJ2FpKSopKS0slSaWlpUpJSbFzRAAAOB5yRwAAABhB/ggAAADAVloZmfzoo48qNjZWBw8e1NixY3X//ferqKhIkpSQkKCsrCzt27dPu3fvVllZmUaOHKkHH3ywUQIHGtO4ceOUmJio0tJStWrVSuPGjbN3SAAAOBxyRwAAABhB/ggAAADAVkw5OTlmIydcvnxZs2fPVkpKikwmU6Vxs/na5caOHauYmBh17NixYSIFbCg7O1tz585VSUmJXFxctG7dOnl5edk7LAAAHA65I1qK6dOnW36Oi4uzWxwAADg68kcAAAAAtmC4UKJCQkKCtmzZorS0NF28eFGS1KlTJw0fPly/+93vNHny5Cq/zACO4p133lFCQoImTpyouXPn2jscAAAcGrkjmjsKJQAAaFjkjwAAAAAaU50LJYDmLjs7W2+++aZeeOEFukkAAACgRhRKAAAAAAAAAI6jlb0DAJqqjh07aunSpfYOAwAAAAAAAAAAAADQgJzsHQAAAAAAAAAAAAAAAICtNGqhRH5+vvLy8hrzFgAAAGgmyB0BAABgBPkjAAAAgLpq1EKJ4cOHq3fv3o15CwAAADQT9c0d8/Pz9corr2jIkCHy8fGRv7+/IiIidPHixQaLMSUlRUuXLtWMGTPUs2dPeXp6atCgQTWe4+npWeM/33//vd3WAwAA4Mh49ggAAACgrlo19g3MZnNj3wIAAADNRF1zx/z8fE2cOFHp6eny8/PT5MmTlZGRoZiYGO3du1eJiYny9fWtd3zz58/Xjz/+KEkymUyGzg0NDa3yuLu7e6VjtloPAACAo+PZIwAAAIC6aNRCiZKSEsMPkAEAANAy1Sd3jIqKUnp6usaPH6/NmzfLxcVFZrNZ8+bN0+bNm/Xiiy9q/fr19Y4xODhYfn5+uv3221VaWqp777231ueuXbu21nNttR4AAABHxrNHAAAAAHXVaFtvHDx4UDk5OerUqVNj3QIAAADNRH1yx+LiYsXExEiSoqOj5eLiIulax4dly5bJ1dVV8fHxOnPmTL3jXLlypZ599lmNHj1abdu2rff1qmLL9QAAADgqnj0CAAAAqI9qO0rExsbW6YJFRUX69ttvtWXLFplMJk2aNKnOwQEAAMAx2DN33L9/vwoKCtS/f3/17dvXaszT01OBgYFKSkpSUlKSwsPD6xSnLTW39QAAAFTF3s8e8/PzFR0dre3bt+vcuXPy9vZWcHCwFi9erM6dO9fpmjdKSUlRamqq0tLSdPDgQeXm5qpHjx46cuRIted4enrWeM1Dhw7pP/7jPyodt8V6AAAAgOak2kKJp556ql6t68xmswYPHqz/9//+X52vAQAAAMdgz9wxPT1dkjRw4MAqxwMCApSUlKSMjIw6x9cQ3n77bX3//fdydnbWbbfdpmnTpsnHx6fSPEdZDwAAQH3YM3/Mz8/XxIkTlZ6eLj8/P02ePFkZGRmKiYnR3r17lZiYKF9f3zrHVmH+/Pn68ccfJcnwWkNDQ6s87u7uXumYrdYDAAAANCfVFkpIUuvWrXX77bcbuqCLi4t8fX01btw4zZgxQ61a1XgLAAAANBP2yh3Pnj0rSerSpYskKS4uTqtWrdKsWbM0e/Zsy/GsrCzD125IL730UqXflyxZojlz5lgdb6z1bNy4UZs2barV3KioKA0ePFiFhYV2//fmiL777jt7hwAAQJ1169ZN7dq1s8m97JU/RkVFKT09XePHj9fmzZvl4uIis9msefPmafPmzXrxxRe1fv16w9e9UXBwsPz8/HT77bertLRU9957b63PXbt2ba3n2mo9AAAAQHNS4zcJLy8v7dy501axVEILPAAAAMdhr9yxoKBAktS2bVtJUnR0tDIyMnT8+HHNnj1bbm5uVvNs7aGHHlJISIhuu+02ubu76/vvv9f777+v9evX6/nnn1fnzp113333WeY31npOnz6t1NTUWs3Ny8szdG0AAIC6sEf+WFxcrJiYGEnX8iwXFxdJ1zo+LFu2THFxcYqPj9eZM2fUvXv3et1r5cqVlp8PHDhQr2tVx5brAQAAAJqTJtvugRZ4AAAAqA2z2Wz1+8yZM7VixQqFhYVZjdentXN9rFmzxur3QYMGadWqVerWrZuWLl2qP/7xj1aFEo21Hj8/PwUGBtZqroeHhySpXbt26tevn6H7QPw7AwCgCdu/f78KCgrUv39/9e3b12rM09NTgYGBSkpKUlJSksLDw+0UZe01t/UAAAAAttJkCyVogQcAAIDaaN++vSSpqKhIkhQREaGIiAjLeGFhoSTZrIV0bc2bN0/R0dE6ceKETp06pZ49e0pqvPWEhYVZii0AAABaqvT0dEnSwIEDqxwPCAhQUlKSMjIybBlWJW+//ba+//57OTs767bbbtO0adPk4+NTaZ6jrAcAAABoaqotlPjss8/UunVrW8ZiQQs8AAAAx2LP3LFr166SpHPnzlU5XnG8W7duNoupNtzd3eXt7a3z58/r/PnzlkIJR10PAACAEfbKH8+ePStJ6tKliyQpLi5Oq1at0qxZszR79mzL8aysLJvHdr2XXnqp0u9LlizRnDlzrI431no2btyoTZs21WpuVFSUBg8erMLCQrv/ewMAALbVrVu3JvdyElBb1RZKDBo0yJZxWGluLeOa23oAAABuZM/cseLtuYq36W509OhRSZK/v7/NYqqNX375RZcuXZJk3R3CUdcDAABghL3yx4KCAklS27ZtJV17qSkjI0PHjx/X7Nmz5ebmZjXP1h566CGFhITotttuk7u7u77//nu9//77Wr9+vZ5//nl17tzZatu2xlrP6dOnlZqaWqu5eXl5hq4NAAAANAVNcusNR2kZRws8AAAA+xs1apTc3NyUmZmpEydOqE+fPpaxnJwcpaamymQyacKECXaMsrJ9+/aptLRU7du316233mo57qjrAQAAcARms9nq95kzZ2rFihWWLcoqxk0mk81jk6Q1a9ZY/T5o0CCtWrVK3bp109KlS/XHP/7RqlCisdbj5+enwMDAWs318PCQdK34t1+/fobuAwAAANhLkyyUoAVe7dACDwAA1EZzb4Hn6uqq8PBwrVmzRgsXLlRsbKxcXFxkNpsVGRmp4uJiTZ06tdotzqKiorR8+XJJUnx8vMaOHdtgscXGxmro0KEaMGCA1fHDhw/r+eeflyQ99thjlq3ZGmI9AAAAqF779u0lSUVFRZKkiIgIRUREWMYLCwslqcnlz/PmzVN0dLROnDihU6dOWbZta6z1hIWFWYotAAAAgObIUKHEtGnTDF3cZDKpXbt26tatm+644w5NmzZNrq6uNz2PFni1Qws8AADQlNkqd5SkyMhIJScnKykpSSNGjNCIESOUkZGhzMxM+fr6Kjo6ui5LqCQ6Olp79uyR9O/c7fz58woKCrLMefPNNzV06FBJ1wov5s2bp969e8vf319t2rTRyZMn9fXXX6u8vFxBQUGVim9tuR4AAICmxBb5Y9euXSVJ586dq3K84ni3bt0MxdLY3N3d5e3trfPnz+v8+fOWQglHXQ8AAABgb4YKJb744gtJ/27VdmNrtwpVjf/5z3/WK6+8onXr1unOO++s8T60wKsdWuABAICmzFa5o3TtwXFCQoKWL1+uHTt2aOfOnfL29lZ4eLgWLVpU5fZodXHy5EmlpaVZHSspKbE6duXKFcvPISEhcnZ21tGjR5Wamqr8/Hy1b99egYGBevDBBxUaGionJye7rQcAAKApsUX+WLE1bsVWuTc6evSoJMnf399g9I3rl19+0aVLlyRZd4dw1PUAAAAA9mbKycmp+htHFTZt2qSvvvpKH3zwgdq1a6fg4GANGjRI3t7eMpvNunTpkr755hvt3btXZWVlmjt3rv7jP/5D58+f1+7du3Xo0CG1a9dOycnJNf5l/aJFi7RmzRo9/fTTeuONNyqNr127VpGRkZo6dar+8pe/1G3lVThw4IDuvvtu9ejRQ0eOHDF8/pUrV9S7d2+Vlpbq66+/tlR222s9AAAA9mSr3BFoCqZPn275OS4uzm5xAADgyGyRPxYXF6tPnz4qKCjQwYMH1adPH8tYTk6O+vfvr6tXr+rIkSMNutVZfZ87JiQkKCQkRO3bt9f3339v2brNXusBAAAAHJ2hjhJ9+/bVc889pzFjxujPf/6zvL29q5x38eJFPfroo3r//fcVHx+vWbNm6YUXXtDTTz+tTZs2adWqVXr77bervY+jtoyjBR4AAMC/2Sp3BAAAQPNgi/zR1dVV4eHhWrNmjRYuXKjY2Fi5uLjIbDYrMjJSxcXFmjp1arVFBVFRUVq+fLmka9usjR07tmEWLyk2NlZDhw7VgAEDrI4fPnxYzz//vCTpsccesxRJNMR6AAAAgJbKUKHEkiVLVFpaqnfffbfaLyqS1LlzZ73//vsaOHCgXn/9dW3btk2S9PLLL2vTpk1KSUmp8T6O2jKOFni2Exsbqy1bttg7jAYREhKi0NBQe4cBAECDs1XuCAAAgObBVvljZGSkkpOTlZSUpBEjRmjEiBHKyMhQZmamfH19FR0d3SDriY6O1p49eyRJBQUFkqTz588rKCjIMufNN9/U0KFDJV0rvJg3b5569+4tf39/tWnTRidPntTXX3+t8vJyBQUF6aWXXrLbegAAAIDmpPKGyDU4fPiwPDw81KVLl5vO9fX1lYeHh9V+zV26dFH79u114cKFGs8dNWqU3NzclJmZqRMnTliN5eTkKDU1VSaTSRMmTDASfqPbt2+fSktL1b59e916662W4466HgAAgPqwVe4IAACA5sFW+aO7u7sSEhI0f/58SdLOnTuVm5ur8PBwJScnW7rD1tfJkyeVlpamtLQ0HTt2TJJUUlJiOZaWlqYrV65Y5oeEhGjatGmSpNTUVO3YsUMnT55UYGCgVq9era1bt1p1k7D1egAAAIDmxFChhMlkUl5ens6fP3/TuWfOnFFeXp5MJpPlWGlpqYqKitS+ffsaz61oGSdJCxcuVElJiSRZtYybMmVKjS3wPD095enpqc8//7y2y6uV2NhYyxeb69WmBV5d1wMAAOCIbJU7AgAAoHmwZf7o7u6uJUuW6JtvvtGFCxd07NgxrVq1Sj4+PjWeFxkZqZycHOXk5Nx02421a9da5lb3z/XXuO+++7RhwwZ99dVX+uGHH/Tzzz/rhx9+UHx8vMLCwuTkVP2j3LquBwAAAGipDG29MXLkSCUlJWn+/PmKiYmRm5tblfOuXLmip556SpL061//2nL822+/VVlZWa0KAmiBh5qEhoY2+nYV06dPt/wcFxfXqPcCAKA5smXuCAAAAMdH/ggAAADAVgwVSkRGRiolJUVJSUn61a9+penTp2vo0KHq1KmTzGazfv75Zx0+fFjbtm3T5cuX1apVK0VGRlrO//vf/y5JGj169E3vVdEybvny5dqxY4d27twpb29vhYeHa9GiRQ1WDV3RAu96FS3wKtzYAs/Z2VlHjx5Vamqq8vPz1b59ewUGBurBBx9UaGholdXdtloPAABAU2HL3BEAAACOj/wRAAAAgK2YcnJyzEZOSEpK0ty5c/Xzzz9btba7ntlslre3t9auXau7777bcvy9997T2bNndf/99ysgIKB+kQONjI4SAADUH7kjWgpyRwAAGgb5IwAAAABbMFwoIUl5eXnatGmT9uzZo2PHjik7O1uS1LFjRw0YMEDBwcEKDQ1Vhw4dGjxgwFZ42A0AQMMgd0RLQO4IAEDDIX8EAAAA0NjqVCgBtAQ87AYAAEBtkTsCAAAAAAAAjsPJ3gEAAAAAAAAAAAAAAADYCoUSAAAAAAAAAAAAAACgxWhV1xNzc3N16tQpFRQUqLy8vMa5gYGBdb0NAAAAmgFyRwAAABhB/ggAAACgMRkulNizZ4+WLVumw4cP12q+yWTSpUuXjN4GAAAAzQC5IwAAAIwgfwQAAABgC4YKJbZv367HHntMZrNZZrNZbdq0UadOneTkxA4eAAAAsEbuCAAAACPIHwEAAADYiqFCiZUrV6q8vFy33367oqOjNXTo0EYKCwAAAI6O3BEAAABGkD8CAAAAsBVDhRL/93//J5PJpJiYGHXt2rWxYgIAAEAzQO4IAAAAI8gfAQAAANiKoUKJDh06qLi4mC8qAAAAuClyRwAAABhB/ggAAADAVgxt8Ddu3Djl5+fr4sWLjRUPAAAAmglyRwAAABhB/ggAAADAVgwVSrz00kvy8vJSRESEioqKGismAAAANAPkjgAAADCC/BEAAACArRjaeiM1NVWPP/64Vq1apYEDB2rGjBnq1auXvL29azwvNDS0XkECAADA8ZA7AgAAwAjyRwAAAAC2YsrJyTHXdrKXl5dMJpPM5munmEymWp2XnZ1dt+gAO5o+fbrl57i4OLvFAQCAoyJ3REtC7ggAQP2RP6KpiI2N1ZYtW+wdRr2FhIRQSAQAAFANQx0lRo8eXesvKAAAAGjZyB0BAABgBPkjbub64lTc3JYtW2xW8EGxMAAAcDSGCiX+8Y9/NFYcAAAAaGbIHQEAAGAE+SMAAAAAWzFUKAEAAAAAAAAAAAA0V2y/AwAtA4USAAAAAAAAAACH8l3wInuH0OL127PU3iEAAADUGYUSAAAAAAAAAAAAaNKmT59u7xAcypYtW2zWGSMuLs4m9wGAhlSnQoldu3bp448/1vfff6/8/Hz98ssvMpvNVc41mUw6fPhwfWIEAACAAyN3RE2a44Ou5rImHnQBAOyF/BEAAABAYzNcKLFo0SK988471X45ka59QakYN5lMdY8OAAAADo3cEQAAAEaQPwIAAACwBUOFEgkJCVq7dq3at2+viIgIDR48WDNnzpSXl5f+/Oc/69KlS9q/f782b94sJycnLVmyRL17926s2AEAANCEkTsCAADACPJHAEBtfRe8yN4htHj99iy1dwgAUC+GCiViYmJkMpm0atUqzZgxw3LcxcVF48aNkyTNmDFDzzzzjKZPn64lS5YoJSWlYSMGAACAQyB3hFE86LI/HnQBAOyJ/BEAAACArTgZmfzVV19JkqZNm1bjPD8/P7311lu6cOGCoqOj6x4dAAAAHBa5IwAAAIwgfwQAAABgK4YKJS5fvixPT0+1bt3acqxVq1YqKCioNPfOO+9U27ZttXfv3vpHCQAAAIdD7ggAAAAjyB8BAAAA2IqhQgkvLy8VFRVZHevYsaMKCgqUk5NjddxkMsnJyUkXLlyod5AAAABwPOSOAAAAMIL8EQAAAICtGCqU6N69u65evaoffvjBcmzgwIGSpLi4OKu5X331lQoKCuTp6VnfGAEAAOCAyB0BAABgBPkjAAAAAFtpZWTymDFjdOjQIe3bt0+PPfaYJGn69On69NNP9fLLL8vJyUkjR47UyZMn9fLLL8tkMuk3v/lNowQOAGh6pk+fbu8QUIMbHywCjY3cEQAAAEaQPwIAAACwFUMdJaZNmyaz2ayYmBjLsYcfflh33HGH8vPzFRERodGjRyssLEwnTpyQt7e3Fi1a1NAxAwAAwAGQOwIAAMAI8kcAAAAAtmKoUGL48OE6c+aMPvnkk39fwMlJf/vb3xQRESE/Pz+1atVKHTt21AMPPKC9e/fKz8+vwYMGAABA00fuCAAAACNsmT/m5+frlVde0ZAhQ+Tj4yN/f39FRETo4sWLDbUcpaSkaOnSpZoxY4Z69uwpT09PDRo0qNr5OTk5io2N1cMPP6zbb79dvr6+6tGjh+6++2699957Kisrq/K8KVOmyNPTs9p/1q9f32BrAgAAAJoLQ1tvSJKbm1uVx1599VW9+uqrDRIUAMDxfRfMWz1NQb89S+0dAlo4ckcAAAAYYYv8MT8/XxMnTlR6err8/Pw0efJkZWRkKCYmRnv37lViYqJ8fX3rfZ/58+frxx9/lCSZTKabzl+7dq2WL18uJycnDR48WJMmTdKlS5f05Zdf6sCBA9qxY4e2bt2qtm3bVnn+hAkTdMstt1Q63qdPn/otpIni+y4AAADqw3ChBFCT6dOn2zuERtFc1hUXF2fvEAAAAAAAAOwqKipK6enpGj9+vDZv3iwXFxeZzWbNmzdPmzdv1osvvtggXRiCg4Pl5+en22+/XaWlpbr33ntrnO/m5qb/+q//0pw5c9S1a1fL8R9++EH33HOPPv/8c7355pt6+eWXqzw/IiJCY8eOrXfcAAAAQEtgaOsNAAAAoKmifTIAAABupri4WDExMZKk6Ohoubi4SLrW8WHZsmVydXVVfHy8zpw5U+97rVy5Us8++6xGjx5dbReI6y1YsECvvPKKVZGEJPXq1UvPPvusJGnr1q31jgsAAAAAHSUAAADQDNA+GQAAALWxf/9+FRQUqH///urbt6/VmKenpwIDA5WUlKSkpCSFh4fbKcrKKmK9cOGCnSNpOtjy0/7Y/gQAADgyQ4USXl5e6tKli44dO1ar+b/5zW/0zTff6NKlS3UKDo6NLytNA19YAAD2YsvckfbJAICaxMbGasuWLfYOo95CQkIUGhpq7zCARmOL/DE9PV2SNHDgwCrHAwIClJSUpIyMjFpf0xZOnz4tSerevXu1c3bt2qX4+HiVlpaqR48emjhxovz9/W0VIgAAAOBQDHeUMJvNjTofAAAAzYctcsebtU+Oi4uztE+u6cFybaxcudLy84EDB246f8GCBVUer2ifHBkZqa1bt1ZbKAEAzdn06dPtHYLD2bJli80KPuLi4mxyH+BGjZ0/nj17VpLUpUsXSdc+66tWrdKsWbM0e/Zsy/GsrCxD121M5eXllnz3/vvvr3be2rVrrX5/7bXX9Mgjj2jlypWWHLm2Nm7cqE2bNtVqblRUlAYPHqzCwsIm9e8NtvXdd9/ZOwS0MLwg2LTwZ0DL1a1bN7Vr187eYQB10qhbb/zyyy/1Oj8/P1/R0dHavn27zp07J29vbwUHB2vx4sXq3Llzg8SYkpKi1NRUpaWl6eDBg8rNzVWPHj105MiRKufn5OTok08+0T/+8Q99++23OnPmjFq1aqX+/ftr5syZeuyxx+Ts7FzpvClTpig1NbXaOP70pz9p1qxZDbImAAAAR1TX3JH2yQAAAC1TXfLHgoICSbJsfRYdHa2MjAwdP35cs2fPlpubm9W8puB///d/deTIEXXt2lXz58+vND5mzBjNmTNHw4YNk4+Pj7KysrRr1y4tX75cGzZskKurq1asWGHonqdPn67xWeb18vLyDF0bAAAAaAoarVDi6tWrOn36tNq3b1+n89lnGgAAoOWoT+5I++TmgzeCAABAbdU1f7yxA8XMmTO1YsUKhYWFWY3X5jmhLXz++ed6/fXX5eLiopiYGHl4eFSaExkZafV7nz599Mwzz2jYsGGaMmWKPvzwQy1YsEA9evSo9X39/PwUGBhYq7kVMbVr1079+vWr9T3QvPDfHmjZ+DMAgCOqsVAiLy9Pubm5VsfKysp05syZatvalZWV6aefftI777yjK1eu6I477qhTYOwzDQAA4FjslTvSPrl2aJ8Mo2idClv6LniRvUOArAvW+DOg5bJl+2R75I8VhRVFRUWSrj2ri4iIsIwXFhZKUpNoIZ2enq6HH35YZWVlWrdunUaOHGno/MDAQA0fPlwHDx7UZ599ZikGqY2wsDBD8wHA1sgf7Y+XHQA4uhoLJdasWaPo6GirY5cuXdLgwYNveuGKLzNz5841HBT7TAMAADgee+WOtE+uHdonAwCApsYe+WPFi0/nzp2rcrzieLdu3Qxdt6GdOnVK999/v3Jzc7VixYoai2tr0qtXLx08eFDnz59v4AgBAAAAx1ZjoYTZbK5UvV1dNXcFk8kkDw8PBQQE6PHHH9d9991nOCj2mQYAAHA89sodaZ9cO47QPpk3guzv+jeCaJ0KtGz8GQBbsEf+WLFdW8X2bTc6evSoJNl1u7MLFy7ot7/9rc6dO6eXX35Zjz/+eJ2vVdF9rSl0yACAhkQ3AwBAfdVYKBEZGWn1kNbLy0s+Pj7KzMxs1KDYZxoAAMDx2Ct3pH1y7dA+GQDQ1MTGxmrLli32DqNBhISEKDQ01N5hOBx75I+jRo2Sm5ubMjMzdeLECfXp08cylpOTo9TUVJlMJk2YMKHRYqhJTk6OZsyYoe+//17PPfecfv/739f5WhcuXNCRI0ckScOGDWuoEAEAAIBmocZCCXthn+naYZ9pGMUes0DLxp8BLZct95m2B9onAwAAoLZcXV0VHh6uNWvWaOHChYqNjZWLi4vMZrMiIyNVXFysqVOnVvsiVFRUlJYvXy5Jio+P19ixYxsstsLCQj344IM6evSonnjiCb366qs3PSclJUVms1l33nmnnJycLMfPnz+vJ598Uvn5+Ro+fLjhAl0AAACguWuShRLsM1077DMNAABA+2QAAAAYExkZqeTkZCUlJWnEiBEaMWKEMjIylJmZKV9fX0VHRzfIfaKjo7Vnzx5J/36Oef78eQUFBVnmvPnmmxo6dKgk6fXXX9c///lPtW3bVnl5eZo3b16V112yZIm8vb0lXcuBFy1apE6dOmno0KHy8vJSVlaWvvnmG+Xn56tXr1768MMPG2Q9AGBvcXFx9g6hQUyfPt3yc3NZEwA4IkOFEi+++KKlSKExsc907TjCPtNoWvhvD7Rs/BkAW7NV7kj7ZAAAHFNoaGijb1fBX0Q4Flvlj+7u7kpISNDy5cu1Y8cO7dy5U97e3goPD9eiRYvk4+PTIPc5efKk0tLSrI6VlJRYHbty5Yrl55ycHEnXtpTbvHlztdf9wx/+YCmUCAwMVFhYmA4dOqTDhw8rNzdXLi4u6tu3r6ZMmaK5c+dW+awSAAAAaOkMFUr84Q9/aKw4rLDPdO2wzzQAAGjKbJU70j4ZAACgebBV/ihdK5ZYsmSJlixZYui8yMjISi9EVWft2rWVtuFtyPmSNGTIEK1evdrQOQAAOKrY2Fht2bLF3mHUW0hISKMXDAO4uSa59Qb7TAMAAMAI2icDgGPrt2epvUMAAAAAAAAtSJMslGCfaQBwfDzsBmBLtE8GAAAAAAAAANRWnQol9uzZo+TkZP3www8qKChQeXl5tXNNJpN27Nhh6PrsM9088JekAABAavzcsQLtkwEAAJoHW+WPAADAsYSGhjbqlhXTp0+3/BwXF9do9wHQNBgqlLh8+bJCQkIsb8yZzeabnmMymQwHxT7TAAAAjs9WuSMAwPF9F7zI3iFAvPAA+yN/BAAAAGArhgolXn75ZR04cEBOTk66++679etf/1qdOnWSs7NzgwfGPtMA4Nh42N008LAb9mTL3BEAAACOj/wRAADHc30XhuakuayLzhhA9QwVSuzevVsmk0l/+tOfFBYW1lgxSWKf6eaAvyRtGvhLUgCAvdgydwQAAIDjI38EAAAAYCuGCiUKCwvl4uKiBx98sLHiscI+0wAAAI7L1rkjAAAAHBv5IwAAAABbcTIyuU+fPnJ2dqbdHQAAAG6K3BEAAABGkD8CAAAAsBVDhRKPP/64CgsLFR8f31jxAAAAoJkgdwQAAIAR5I8AAAAAbMXQ1huzZs3SiRMn9PTTT+vEiRN6+OGH1alTp8aKDQAAOJjY2Fht2bLF3mE0iJCQEIWGhto7DIdG7ggAAAAjyB8BAAAA2IqhQokhQ4ZIkkpKSvTHP/5Rf/zjH+Xm5qaOHTtWe47JZNLhw4frFSQAAAAcD7kjAAAAjCB/hBH99iy1dwgAgBts6N3W3iFA0iMni+wdAuAQDBVKnD59utKx/Px85efnV3uOyWQyHhUAAAAcHrkjAAAAjCB/BAAAAGArhgol2B8QAADUJDQ0tFG3q5g+fbrl57i4uEa7DxoGuSMAAACMIH8EAMCx0ckAgCMxVCgxZsyYxooDAAAAzQy5IwAAAIwgf8TNNJeCeV4CAAAAsD8newcAAAAAAAAAAAAAAABgK4Y6StyovLxc2dnZKioqUo8ePRoqJgAAADRD5I4AADiO6992bi6ay5pa0tvn5I8AAHuIjY3Vli1bbHKvxsxPQkJCGnWL3ArNKTeh4w/QstSpo8S+ffs0Y8YMde/eXbfeequGDh1qNX7y5Ek9+eSTmjdvngoKChoiTgAAADgockcAAAAYQf4IAAAAoLEZ7ijxxhtvaOXKlTKbzdXO6d27t7777jsdPnxYd955p00q1gAAAND0kDsCAADACPJHNAW8TQ4AAND8GSqU2LNnj9588015enrqjTfeUFBQkMaOHauLFy9Wmvuf//mfmj9/vhISEkjGWqh+e5baOwQAwHWaS6vhCs1pPc21lR+5IwCgtvj+2HRt6N3W3iFA0iMni+wdgk2QPwIAmoLQ0FD+vwUAWgBDhRLr1q2TyWTSypUrNWPGjBrnTpw4UZL07bff1j06AAAAOCxyRwAAHF9L+Qt6NA3kjwAAAABsxVChxKFDh2QymTR16tSbzu3UqZPc3d2VlZVV5+AAAI6LtwIBkDsCAADACPJHNBW8TQ4AAND8GSqUKCwslJubm1xcXGo1v7y8vMb9BNH8NKfW4de3dG9O6wIA2ic3DS3h7UxyRwBATZrT96zm9v2xOW1xBsdC/ggAAADAVgwVSvj4+OjMmTP6+eef1alTpxrnZmZmqqCgQP369atXgAAAAHBM5I4AgKYiNjZWW7Zsscm9GrPIICQkxOZvOFNk2zS0hCJbifwRAADUjLweQEMyVCgxduxYxcbGat26dVq8eHGNc1977TWZTCaNGzeuXgECABxHc3h7rgJvBQL1R+4Io9i2CQCAlo38EQAAAICtOBmZ/Oyzz8rZ2VlvvfWWVq5cqby8vEpzjh49qpkzZ2r37t1q3bq1nnrqqQYLFgAAAI6D3BEAAABGkD8CAAAAsBVTTk6OoY38Nm7cqAULFshsNqtVq1YqLy9XeXm5Bg8erLNnz+rnn3+W2WyWk5OT/vd//1cPPfRQY8UONKrm9jY5AGOa258B16+H9slNw/Xtk5vDZ6w65I64GTreNF3N+c8mADUjd2x6WkruKJE/AgAAALANQ1tvSFJYWJh69eqlxYsX6+uvv7Ycv/7nQYMGacmSJbrzzjsbJkoAAAA4JHJH3Exz+cue5lZgBwCAvZA/AgAAALAFw4USkhQYGKjk5GT93//9n9LS0nTx4kWZzWZ17txZw4cPV//+/Rs6TgAAADgockcAAAAYQf4IAAAAoLHVqVCiwq233qpbb721oWIBAAA2cH3bXsCWyB0BAABgBPkjAAAAgMbiZO8AAAAAAAAAAAAAAAAAbKVeHSUAAAAAAADQfNGNDAAAAADQHDVoocT+/ft1+PBhtWrVSnfddZf69evXkJcHAAANYEPvtvYOAeIvHSRyRwAAABhD/ggAAACgoRgqlEhJSdHChQs1ePBgvffee1ZjTzzxhP72t79ZfndyctIf/vAHPf/88w0TKQAAaBD8BT1shdwRAAAARtgyf8zPz1d0dLS2b9+uc+fOydvbW8HBwVq8eLE6d+5cr3VUSElJUWpqqtLS0nTw4EHl5uaqR48eOnLkSI3nnTx5UkuXLlVycrLy8vLUs2dPhYSEaMGCBWrdurXd1gMAAAA0J4YKJbZt26bvvvtOERERVsc3b96sv/71r5Kku+66S0VFRfryyy+1dOlSjRgxQnfddVdDxQsAAAAHQe4IAIBjiouLs3cIDWb69OmWn5vTuporW+WP+fn5mjhxotLT0+Xn56fJkycrIyNDMTEx2rt3rxITE+Xr61vv9cyfP18//vijJMlkMtXqnIyMDN1zzz3Ky8vTr371K/Xs2VOpqal6/fXXlZqaqr/+9a9ydna2y3oAAACA5sTJyOQDBw5IkiZOnGh1/G9/+5tMJpMiIiL097//Xbt379bvf/97mc1mvf/++w0XLQAAABwGuSMAAACMsFX+GBUVpfT0dI0fP15paWn685//rH/+85968MEHlZWVpRdffLFB1hMcHKzXXntNu3bt0vbt22t1zlNPPaW8vDz94Q9/0KeffqqYmBilpaXJ399f+/bt0wcffGC39QAAAADNiSknJ8dc28m9evWSJP3www+WY2azWT179lRRUZG+++47eXp6SpKlLZyPj48yMzMbMmbAJnjrBGjZ+DOgaeK/i2Mhd0RLwp9PANA08eezY7FF/lhcXKw+ffqooKBAaWlp6tu3r2UsJydH/fv319WrV3XkyBF17969IZYl6VoRyN13313j1hv79+/XpEmT1L17d3399ddWnSP27t2r3/3ud+rdu7e++uoru68HAAAAcHSGOkoUFRWptLTU6tj//d//6cqVKxoyZIjli4okeXh4qEOHDsrOzm6QQAEAAOBYyB0BAABghC3yx/3796ugoED9+/e3KiqQJE9PTwUGBspsNispKanO66irxMRESdI999xTaXuN8ePHy83NTSdPntSJEycsx5vyegAAAICmzFChhK+vrwoLC62quiuS7Ntvv91qrtlsVnFxsTp06FD/KAEAAOBwyB0BAABghC3yx/T0dEnSwIEDqxwPCAiQJGVkZBi6bkOoKTZnZ2f1799fknVsTXk9AAAAQFPWysjkMWPGaOPGjfr973+vV155RZcvX9bbb78tk8mkCRMmWM3NzMzU1atXLQk8AAAAWhZyRwAAABhhi/zx7NmzkqQuXbpIurYly6pVqzRr1izNnj3bcjwrK6sBVmTMjbG9/vrr+uyzz7RkyRL9+te/rjK2xlrPxo0btWnTplrNjYqK0uDBg/XFF19o6tSpevzxx/XEE09YzXnrrbcs13v22Wf18MMPW42/8cYblu1xIiMjNWPGDKvxl156SQkJCZKu/Xu55557rMafe+45ffHFF5KklStX6s4777Qaf/LJJ3Xo0CFJ0jvvvKPhw4dbjT/yyCOWLVzWr1+vAQMGWI3ff//9On36tCTpb3/7m3r27Gk1PmnSJP3888+SpF27dqlz585W4+PGjVNhYaEkKTk5WW5ublbj1xcCHThwwGqsoKBAd911lySpXbt2SklJsRq/ePGiJk+eLEnq1KmTPvnkE6vxU6dO6YEHHpAk+fn56eOPP7YaP3bsmGbNmiVJ6t+/vzZs2GA1fvDgQc2dO1eSNGzYMK1bt85q/LPPPtPvf/97Sdf+N/zWW29Zje/evVsvv/yyJGnixIlasmSJ1fi2bdsUFRUl6dp2SYsXL7Ya/8tf/qJVq1ZJkh566CE999xzVuPvvvuu3nvvPUnis8dnz2qczx6fPYnPni0+e6GhoWrXrp0AR2SoUOK5555TXFycPv30U3366aeSrlVvDxo0qNKXlV27dslkMmnkyJENFy0AAAAcBrkjAACoSWxsrLZs2WKz+02fPr3Rrh0SEqLQ0NBGu35LYYv8saCgQJLUtm1bSVJ0dLQyMjJ0/PhxzZ492/IXORXzbKninu3atVN2drZWrlwp6dpfeGzevLnK2BprPadPn1Zqamqt5ubl5Rm6NgAAANAUGCqU6NOnj+Lj4/Xqq6/q4MGDatu2re666y698cYbMplMlnllZWWKiYmR2WxWUFBQgwcNAACaJls+7G7MB90SD7sbArkjAAAAjLBF/mg2m61+nzlzplasWKGwsDCr8evvZyvXx+bl5aVJkyYpNTVVv/vd76qNrbHW4+fnp8DAwFrN9fDwsPq9Y8eO6tevn9UxLy8vy8+dOnWqNH79Fio+Pj6Vxt3d3S0/d+nSpdL49W8qd+3atdJ4RSGJJHXr1q3SeJs2bSw/+/n5VRpv3bq15edevXqpb9++VuOtWv37MXvv3r3l6+trNe7k9O8dsPv06WO1nhvdeO8rV65YXefG8fbt21vFceP49f/tW7duXWn8+iKaNm3aVBo/d+6c5ee2bdtWGj9+/LjlZzc3t0rjhw8ftvzs7u5eadzHx8fyc4cOHSqNd+rUyfKzl5dXpfGOHTta/cxnj89eBT57fPYq1sFnr3E/e3STgCMz5eTkmG8+zRiz2WypJPbw8LDLFwugvq7/C7iKNkQAWg7+DKgbW78V2JgolLAdckc0B/z/BgAYR+6IuqpP/rho0SKtWbNGTz/9tN54441K42vXrlVkZKSmTp2qv/zlLw0W84EDB3T33XerR48eOnLkSJVz7rzzTn3zzTeKjY3VpEmTKo2HhYXpH//4h5YtW2ZpCW6v9QAAAACOzlBHidoymUxWFUl1lZ+fr+joaG3fvl3nzp2Tt7e3goODtXjx4kr7HdVVSkqKUlNTlZaWpoMHDyo3N7fGLywVTp48qaVLlyo5OVl5eXnq2bOnQkJCtGDBAqtKO1uvBwAAwNGQO5I7AgBaptDQUIoLUCf1yR+7du0qyfpt0etVHO/WrVvdgquHrl276ptvvjEUW1NeDwAAANCUNUqhREPIz8/XxIkTlZ6eLj8/P02ePFkZGRmKiYnR3r17lZiYWKmVT13Mnz9fP/74o6Tat6DLyMjQPffco7y8PP3qV79Sz549lZqaqtdff12pqan661//KmdnZ7usBwAAe+JhN+yF3BEAAAC1MXDgQElSenp6leNHjx6VJPn7+9sspgoDBw7U7t27q4ytrKxMmZmZkqxja8rrAQAAAJoyp5tPsY+oqCilp6dr/PjxSktL05///Gf985//1IMPPqisrCy9+OKLDXKf4OBgvfbaa9q1a5e2b99eq3Oeeuop5eXl6Q9/+IM+/fRTxcTEKC0tTf7+/tq3b58++OADu60HAACgJSJ3BAAAQG2MGjVKbm5uyszM1IkTJ6zGcnJylJqaKpPJpAkTJtg8top77t69W2VlZVZj+/btU0FBgXr16qU+ffpYjjfl9QAAAABNWaMWSowfP15Dhw41fF5xcbFiYmIkSdHR0XJxcZF07a29ZcuWydXVVfHx8Tpz5ky9Y1y5cqWeffZZjR49Wm3btr3p/P379+vw4cPq3r27XnjhBcvxDh066LXXXpN0be8/e60HAADAUZE72n49AAAAjqwu+aOrq6vCw8MlSQsXLlRJSYkkyWw2KzIyUsXFxZoyZYq6d+9e5flRUVHy9PSUp6enPv/883rFf6NRo0Zp8ODBOnPmjFasWGE5npubq1dffVWSNHfu3AZdDwAAANBSNWqhRFZWlk6fPm34vP3796ugoED9+/dX3759rcY8PT0VGBgos9mspKSkhgq11hITEyVJ99xzT6UWyePHj5ebm5tOnjxpVcHdlNcDAADQVJA7XtOU1wMAANCU1DV/jIyMlL+/v5KSkjRixAg99thjGjVqlGJjY+Xr66vo6OgGiS86OlpBQUEKCgrSggULJEnnz5+3HAsKCtLhw4ct800mk9asWSN3d3ctW7ZM48eP1+zZs3X77bcrIyND48aN05w5c+y2HgAAAKA5aZJbb1TsqVexx96NAgICJF3b79nWaorN2dlZ/fv3l2QdW1NeDwAAgKNryrkWuSMAAEDT4+7uroSEBM2fP1+StHPnTuXm5io8PFzJycnq2rVrg9zn5MmTSktLU1pamo4dOyZJKikpsRxLS0vTlStXrM4JCAhQcnKy7r//fp0+fVq7du1Shw4dtHjxYv31r39Vq1at7LYeAAAAoDmpnFk3AWfPnpUkdenSRZIUFxenVatWadasWZo9e7bleFZWlt1je/311/XZZ59pyZIl+vWvf11lbE15PQAAAI6uKedaTSl33LhxozZt2lSruVFRURo8eLC++OILTZ06VY8//rieeOIJqzlvvfWW5XrPPvusHn74YavxN954Q3FxcZKuveU4Y8YMq/GXXnpJCQkJkq79e7nnnnusxp977jl98cUXkq5teXLnnXdajT/55JM6dOiQJOmdd97R8OHDrcYfeeQRZWZmSpLWr1+vAQMGWI1X/OWDJP3tb39Tz549rcYnTZqkn3/+WZK0a9cude7c2Wp83LhxKiwslCQlJydbjX333Xe6/fbbLb8fOHDAarygoEB33XWXJKldu3ZKSUmxGr948aImT54sSerUqZM++eQTq/FTp07pgQcekCT5+fnp448/tho/duyYZs2aJUnq37+/NmzYYDV+8OBBS9vuYcOGad26dVbjn332mX7/+99LksaMGaO33nrLanz37t16+eWXJUkTJ07UkiVLrMa3bdumqKgoSdL06dO1ePFiq/G//OUvWrVqlSTpoYce0nPPPWc1/u677+q9996TJD57tfjsubm5WY3z2eOzJ/HZ47NXv89eaGio2rVrp+bO3d1dS5YsqfTf82YiIyMVGRlZq7lr166ttM1abfTp00cffPCBoXPquh4AAACgpaq2UGL58uWSJG9vb0tLt4pjtVVQUFCnoCrOq9j3OTo6WhkZGTp+/Lhmz55t+TJe1+vXR8U927Vrp+zsbK1cuVLStS+tmzdvrjK2xloPD7t52F2Bhz7N67PHA8d/s/dn79tvv9VPP/0kT09PPnt89qzGHe3PPVs87CZ3rDm2ppA7nj59WqmpqbWam5eXZ+jaAAAARtkzfwQAAACAagslli1bJpPJpH79+lm+rFQcqy2z2Wxo/vXnXW/mzJlasWKFwsLCrMbrcu36uj42Ly8vTZo0Sampqfrd735XbWyNtR4edgMAgKaC3PHmsdk7d/Tz81NgYGCt5np4eFj93rFjR/Xr18/qmJeXl+XnTp06VRrv0KGD5WcfH59K4+7u7pafu3TpUmn8+uKtrl27VhqvKCSRpG7dulUab9OmjeVnPz+/SuOtW7e2/NyrVy/17dvXavz6tta9e/eWr6+v1biT0793MezTp4/V2I33uvH361tsOzk5VRpv3769VRw3jl//375169aVxq//S6M2bdpUGj937pzl57Zt21YaP378uOVnNze3SuPX76Xu7u5eadzHx8fyc4cOHSqNd+rUyfKzl5dXpfGOHTta/cxnr+bP3vXruRGfPT571+Ozdw2fvZt/9mzVTcKe+SMAAAAAVFso8eCDD8pkMlla+1ZwdXXV9OnTa3Xxv//977p69arhoCq+IBcVFUmSIiIiFBERYRmvePvVHm0AK2IrLCyUyWRSbGys1XhVsTXWenjYzcPuCjz0aV6fPR44/pu9P3s3xsJn79/47DnWn3u2yJnIHWuOrSnkjmFhYZZii9oaM2aMcnJyqhx744039MYbb1R77qpVqyydV6ry/vvv6/333692fMuWLTXG9o9//KPG8Rs73dzo4MGDNY5XdPSpzpkzZ2ocr+7fm3Ttf8M1jfv6+tY43rdv3xrHhw4dWuP42LFjaxyfNGlSjeO/+93vLMU+VXn00Uf16KOPVjv+zDPP6Jlnnql2/GYtzfns8dmrDp89PnvV4bNXv89eY7Fn/ggAAAAAppycHPPNp13j5eUlHx+fm355rnDbbbfp4sWLys7ONhTU22+/rZdeekn3339/lfvxvfrqq1q1apWefPJJwy35anLgwAHdfffd6tGjh44cOVLlnAcffFC7d+/WW2+9pdmzZ1canzBhgg4ePKgNGzZo2rRpdl0P6uf6L+UV7c8BtBz8GQDUH7kjuWNLwv9vAABQf7bKHwEAAACg2o4S9jRw4EBJUnp6epXjR48elST5+/vbLKYKAwcO1O7du6uMrayszPJF7vrYmvJ6HFVsbKxN33io7ZsMdRESEqLQ0NBGuz4AAM1dU861yB0BAAAAAAAAoOlxuvmUf3NxcbFqA95YRo0aJTc3N2VmZurEiRNWYzk5OUpNTZXJZNKECRMaPZYbVdxz9+7dKisrsxrbt2+fCgoK1KtXL6utG5ryegAAABoLuSO5IwAAgBG2yh8BAAAAwFBHifPnzxu6eNeuXev05cbV1VXh4eFas2aNFi5cqNjYWLm4uMhsNisyMlLFxcWaOnWqunfvXuX5UVFRljbE8fHxGjt2rOEYqjNq1CgNHjxY33zzjVasWKE//OEPkqTc3Fy9+uqrkqS5c+c26HoAAAAcEbkjuWNTYsuOZHQjAwCgbmyVPwIAAACAKScnx2zvIKpy5coVTZw4URkZGfLz89OIESOUkZGhzMxM+fr6KikpSV27dq3yXCMPu6Ojo7Vnzx5JUkFBgY4dOyYXFxcNHjzYMufNN9/U0KFDLb8fPXpUkyZN0pUrVzRs2DD17NlTqampunDhgsaNG6ePP/5YrVpZ16DUZz0AANtjr3nAsZA74mZsvXVbY6FQAgAAAAAAAKg/Q1tv2JK7u7sSEhI0f/58SdLOnTuVm5ur8PBwJScnN9iD4ZMnTyotLU1paWk6duyYJKmkpMRyLC0tTVeuXLE6JyAgQMnJybr//vt1+vRp7dq1Sx06dNDixYv117/+tdKDbluuBwAAoCUidwQAAAAAAAAA1FaT7SgBAEB1mstbwRJvBgMAAAAAAAAAANhak+0oAQAAAAAAANRHdna2Fi1apMuXL9s7FAAAAABAE1K5z+//b9q0aQ1yA5PJpB07djTItQAAANA0kTsCAICmaOvWrTp27Ji2bNmiuXPn2jscXIf8EQAAAIA9Vbv1hpeXV/UnmUySJLO56l07rh83mUzKzs6ub5wAAABowsgdAQBAU5Odna25c+eqpKRELi4uWrduXY05C2yL/BEAAACAPVXbUWL16tVVHv/nP/+pDRs2qF27drr77rs1ePBgeXt7S5IuXbqkb775Rnv37lVRUZHCw8M1cuTIxokcAAAATQa5IwAAaGq2bt2q8vJySVJ5eTldJZoY8kcAAAAA9lRtR4mq7N+/X/fee69GjBih9evXq3PnzlXOu3DhgmbNmqWvvvpK8fHxfGEBAABogcgdAQCAPYWGhqqoqMjye9u2bRUbG2vHiHAz5I8AAAAAbMXJyOSlS5eqrKxM7777brVfVCTplltu0bp16/TLL7/ojTfeqHeQAAAAcDzkjgAAwJ7GjRunVq2uNVNt1aqVxo0bZ+eIcDPkjwAAAABsxVBHiR49eqhVq1Y6efJkreb37t1bpaWl+vHHH+scIAAAABwTuSMAALCn7OxszZ07VyUlJXJxcdG6devk5eVl77BQA/JHAAAAALZiqKOEs7Ozrly5ouzs7JvOvXTpkvLy8uTs7Fzn4AAAAOC4yB0BAIA9dezYUePHj5fJZNL48eMpknAA5I8AAAAAbMVQocTIkSNVXl6uiIgIlZSUVDuvpKREERERMpvN+vWvf13vIAEAAOB4yB0BAIC9zZw5UwMGDFBISIi9Q0EtkD8CAAAAsBVDW28cPHhQ99xzj8rKyuTr66vp06crICBAHTt2lMlk0qVLl3TkyBFt375dP/30k5ydnbV7924NHz68MdcAAACAJojcEQAAAEaQPwIAAACwFUOFEpK0a9cuzZ8/X5cvX5bJZKpyjtlslqenp1avXq3Jkyc3SKAAAABwPOSOAAAAMIL8EQAAAIAtGC6UkKTLly/rL3/5ixITE5WZmamcnBxJkpeXlwYMGKAJEyYoLCyMvR8BAABA7ggAAABDyB8BAAAANLY6FUoAAAAAAAAAAAAAAAA4Iid7BwAAAAAAAAAAAAAAAGArFEoAAAAAAAAAAAAAAIAWg0IJAAAAAAAAAAAAAADQYlAoAQAAAAAAAAAAAAAAWgwKJQAAAAAAAAAAAAAAQItBoQQAAAAAAAAAAAAAAGgxKJQAAAAAAAAAAAAAAAAtBoUSAAAAAAAAAAAAAACgxaBQAgAAAAAAAAAAAAAAtBgUSgAAAAAAAABoUfLz8/XKK69oyJAh8vHxkb+/vyIiInTx4sUGvU9ycrLuu+8++fn5qXv37goODta2bduqnDtlyhR5enre9J/Y2FhD561fv75B1wQAAAA0B63sHQAAAAAAAAAA2Ep+fr4mTpyo9PR0+fn5afLkycrIyFBMTIz27t2rxMRE+fr61vs+mzZt0tNPPy0nJyeNGzdObdq00aeffqrHHntMx48f18KFC63mBwUFyc/Pr8prFRYWavv27TKZTBo9enSVcyZMmKBbbrml0vE+ffrUey0AAABAc2PKyckx2zsIAAAAAAAAALCFxYsXa/Xq1Ro/frw2b94sFxcXmc1mzZs3T5s3b9a9995b7y4MFy5c0NChQ3X16lVt27ZN48aNkySlp6crODhYhYWF+vzzzxUQEFCr661fv14LFizQnXfeqR07dliNTZkyRampqYqPj9fYsWPrFTcAAADQUrD1BgAAAAAAAIAWobi4WDExMZKk6Ohoubi4SJJMJpOWLVsmV1dXxcfH68yZM/W6z0cffaTCwkLNmDHDUiQhSQMHDtScOXNkNpu1bt26Wl+vonAjLCysXnEBAAAAuIZCCQAAAAAAAAAtwv79+1VQUKD+/furb9++VmOenp4KDAyU2WxWUlJSve6TmJgo6Vq3hxtNnTrVas7NHDt2TGlpafLw8NC0adPqFRcAAACAa1rZOwAAAAAAAAAAsIX09HRJ1zo7VCUgIEBJSUnKyMio132OHTtW7X0qttv46aeflJOTI09Pzxqv9dFHH0mSfvvb36pdu3bVztu1a5fi4+NVWlqqHj16aOLEifL396/jCgAAAIDmjUIJAAAAAAAAAC3C2bNnJUldunSRJMXFxWnVqlWaNWuWZs+ebTmelZVV53vk5eUpLy/Pcp+CggLNnTtXxcXFWr16tW655RZ16NBBubm5OnPmTI2FEiUlJdq6daukm2+7sXbtWqvfX3vtNT3yyCNauXKlZYuR2tq4caM2bdpUq7lRUVEaPHiwCgsL6/XvDQAAOJ5u3brVWMgJNGUUSgAAAAAAAABoEQoKCiRJbdu2lSRFR0crIyNDx48f1+zZs+Xm5mY1rz73kKR27dpp586dio+PlyRt3bpV8+fPl5ubm3Jzc296n507dyo7O1v9+vXTyJEjq5wzZswYzZkzR8OGDZOPj4+ysrK0a9cuLV++XBs2bJCrq6tWrFhhaA2nT59WampqreZWFIUAAAAAjqROhRJ79uxRcnKyfvjhBxUUFKi8vLzauSaTSTt27KhzgAAAAHBs5I4AAAAwojHzR7PZbPX7zJkztWLFCku3hopxk8lUh8irvscdd9yhfv36qaioSEFBQYbus379ekk1d5OIjIy0+r1Pnz565plnNGzYME2ZMkUffvihFixYoB49etR6DX5+fgoMDKzVXA8PD0nXikL69etX63sAAAAA9mSoUOLy5csKCQlRWlqapMpJf1Xq86UCAAAAjovcEQAAAEbYIn9s3769JKmoqEiSFBERoYiICMt4YWGhJNWrhXTFPSqu5+PjowMHDljNqc19Tp06pZSUFDk7OyskJMRwHIGBgRo+fLgOHjyozz777KZbd1wvLCzM0HwAAADA0RgqlHj55Zd14MABOTk56e6779avf/1rderUSc7Ozo0VHwAAABwUuSMAAACMsEX+2LVrV0nSuXPnqhyvON6tW7c638PDw0MeHh7Ky8vTuXPn5O7ubjVeVFSk3NxcSVL37t2rvc6GDRtkNps1YcIE+fr61imWXr166eDBgzp//nydzgcAAACaK0OFErt375bJZNKf/vQnKooBAABQI3JHAAAAGGGL/HHgwIGSpPT09CrHjx49Kkny9/ev130GDBigL7/8Uunp6ZW2o6i4h6+vrzw9Pas8v6ysTLGxsZJq3nbjZs6ePSupfh0yAAAAgObIycjkwsJCubi46MEHH2yseAAAANBMkDsCAADACFvkj6NGjZKbm5syMzN14sQJq7GcnBylpqbKZDJpwoQJ9bpPxfm7du2qNLZz505JUlBQULXnJyYmKisrSx07dtSkSZPqFMOFCxd05MgRSdKwYcPqdA0AAACguTJUKNGnTx85OzvTLhkAAAA3Re4IAAAAI2yRP7q6uio8PFyStHDhQpWUlEiSzGazIiMjVVxcrClTplS7JUZUVJQ8PT3l6empzz//vNr7hIeHq23btvr444+VkpJiOZ6enq73339fJpNJTzzxRLXnr1+/XpL0wAMPyMXFpdp5KSkpSk5OVnl5udXx8+fP64knnlB+fr6GDx+ukSNHVnsNAAAAoCUyVCjx+OOPq7CwUPHx8Y0Vj5X8/Hy98sorGjJkiHx8fOTv76+IiAhdvHixQe+TnJys++67T35+furevbuCg4O1bdu2KudOmTLF8mWopn8qWuPV9ryKLz8AAADNha1zRwAAADg2W+WPkZGR8vf3V1JSkkaMGKHHHntMo0aNUmxsrHx9fRUdHV3ve/j4+Cg6Olrl5eWaMWOG7r//foWGhmrChAkqKCjQwoULNWjQoCrPvXDhghISEiTdfNuN9PR0TZ8+XbfeeqseeOABPf7445o8ebKGDx+u5ORk9erVSx9++GG91wMAAAA0N62MTJ41a5ZOnDihp59+WidOnNDDDz+sTp06NUpg+fn5mjhxotLT0+Xn56fJkycrIyNDMTEx2rt3rxITE+Xr61vv+2zatElPP/20nJycNG7cOLVp00affvqpHnvsMR0/flwLFy60mh8UFCQ/P78qr1VYWKjt27fLZDJp9OjRVc6ZMGGCbrnllkrH+/TpU++1AAAANCW2zB0BAADg+GyVP7q7uyshIUHLly/Xjh07tHPnTnl7eys8PFyLFi2Sj49Pg9znkUceUbdu3fTWW2/pwIEDKisrU0BAgObNm6f777+/2vNiY2NVWlqqgIAADRkypMZ7BAYGKiwsTIcOHdLhw4eVm5srFxcX9e3bV1OmTNHcuXPl4eHRIOsBAAAAmhNTTk6OubaTKxLz8+fPW9rSubm5qWPHjtXfwGTS4cOHDQe2ePFirV69WuPHj9fmzZvl4uIis9msefPmafPmzbr33nvr3YXhwoULGjp0qK5evapt27Zp3Lhxkq5VYgcHB6uwsFCff/65AgICanW99evXa8GCBbrzzju1Y8cOq7EpU6YoNTVV8fHxGjt2bL3iBgAAcAS2zB2la4W20dHR2r59u86dOydvb28FBwdr8eLF6ty5c52uWZXk5GS99dZb+uqrr1ReXi5/f3/NnTtXM2bMqDS3Ige8mbVr1yo0NLTW5/3pT3/SrFmz6rYAAACAJsrW+SMAAACAlstQR4nTp09XOpafn6/8/PxqzzGZTIaDKi4uVkxMjCQpOjrasg+fyWTSsmXLFBcXp/j4eJ05c6ba/QJr46OPPlJhYaF+97vfWYokJGngwIGaM2eOVq1apXXr1ul///d/a3W9isKNm7XEAwAAaAlslTtWXJduZAAAAI7NlvkjAAAAgJbNUKGErfaX3r9/vwoKCtS/f3/17dvXaszT01OBgYFKSkpSUlKSwsPD63yfxMRESdfe2LvR1KlTtWrVKsucmzl27JjS0tLk4eGhadOm1TkmAACA5sJWuaMkRUVFKT09vdpuZC+++GKDdCN7/vnn5eTkVGU3sqioKE2ePNmqG9lzzz1X7fXWr1+v7du3a+zYserZs2eVcyIiIuhGBgAAWgxb5o8AAAAAWjZDhRJjxoxprDispKenS7rW2aEqAQEBSkpKUkZGRr3uc+zYsWrvU/GA+6efflJOTo48PT1rvNZHH30kSfrtb3+rdu3aVTtv165dio+PV2lpqXr06KGJEyfK39+/jisAAABoumyVO9KNDAAAoHmwVf4IAAAAAIYKJWzl7NmzkqQuXbpIkuLi4rRq1SrNmjVLs2fPthzPysqq8z3y8vKUl5dnuU9BQYHmzp2r4uJirV69Wrfccos6dOig3NxcnTlzpsZCiZKSEm3dulXSzR90r1271ur31157TY888ohWrlxpeahfWxs3btSmTZtqNTcqKkqDBw9WYWFhvf69AQAAx9OtW7caCzkdHd3IAAAAAAAAAABGNMlCiYKCAklS27ZtJV17MzAjI0PHjx/X7Nmz5ebmZjWvPveQpHbt2mnnzp2W9n5bt27V/Pnz5ebmptzc3JveZ+fOncrOzla/fv00cuTIKueMGTNGc+bM0bBhw+Tj46OsrCzt2rVLy5cv14YNG+Tq6qoVK1YYWsPp06eVmppaq7kVRSEAAADNDd3IAAAAAAAAAABG1KlQoqysTJ988okSExOVmZmpy5cvS5K8vLzUv39/BQUFadKkSXJ2dq5TUGaz2er3mTNnasWKFZZuDRXjJpOpTtev6h533HGH+vXrp6KiIgUFBRm6T23aJkdGRlr93qdPHz3zzDMaNmyYpkyZog8//FALFixQjx49ar0GPz8/BQYG1mquh4eHpGtFIf369av1PQAAAOqrsXNHupHVDt3IAABAbTSFbmSNnT8CAAAAgOFCifT0dM2ZM0fffvutpMoFB//617+0fv163Xbbbfrggw/q9MZb+/btJUlFRUWSpIiICEVERFjGCwsLJaleX9oq7lFxPR8fHx04cMBqTm3uc+rUKaWkpMjZ2VkhISGG4wgMDNTw4cN18OBBffbZZ4b2qA4LC2NPawAA0KTZInekG1nt0I0MAAA4AlvkjwAAAABgqFDi3Llzuvfee5WdnS0XFxfdddddGjJkiLy9vSVJly5d0tdff63k5GRlZmbq3nvv1RdffGF5i6+2unbtarlfdXFI1yrc68rDw0MeHh7Ky8vTuXPn5O7ubjVeVFSk3NxcSVL37t2rvc6GDRtkNps1YcIE+fr61imWXr166eDBgzp//nydzgcAAGiKbJU70o2sduhGBgAAmjpb5Y8AAAAAYKhQYuXKlcrOztagQYO0cePGah/Mnj59WmFhYUpPT9d///d/Kzo62lBQFfs+V+w3faOjR49KUr0rxgcMGKAvv/xS6enplR4AV9zD19e32tbJZWVlio2NlXTztsk1qWgXbe+2hgAAAA3JVrkj3chqh25kAACgqbNV/ggAAAAATkYmJyYmymQy6b333qvx7TU/Pz+9++67MpvN2rNnj+GgRo0aJTc3N2VmZurEiRNWYzk5OUpNTZXJZNKECRMMX/t6Fefv2rWr0tjOnTslyfKGYFUSExOVlZWljh07atKkSXWK4cKFCzpy5IgkadiwYXW6BgAAQFNkq9zRlt3IqruPrbuRSaIbGQAAaHZslT8CAAAAgKFCiZ9++kkeHh667bbbbjp3wIAB6tChQ7UPrGvi6uqq8PBwSdLChQtVUlIi6Vo748jISBUXF2vKlCnVPoSOioqSp6enPD099fnnn1d7n/DwcLVt21Yff/yxUlJSLMfT09P1/vvvy2Qy6Yknnqj2/Iq2yQ888IBcXFyqnZeSkqLk5GSVl5dbHT9//ryeeOIJ5efna/jw4dXuUQ0AAOCIbJU72rIbWXX3oRsZAABA/dkqfwQAAAAAQ1tvtG3bVoWFhbp69aratGlT49yrV6+qsLCwzg9wIyMjlZycrKSkJI0YMUIjRoxQRkaGMjMz5evr2yAt9Xx8fBQdHa0FCxZoxowZuuuuu+Ti4qJPP/1UxcXFevHFFzVo0KAqz71w4YISEhIk3fxBd3p6uhYtWqROnTpp6NCh8vLyUlZWlr755hvl5+erV69e+vDDD+u9HgAAgKbEVrnjjd3I+vTpYxlr6G5kX375pXbt2qXp06dbjdGNDAAAoP5s+ewRAAAAQMtmqKPEwIED9csvv+i999676dx3331Xv/zyS7WFBjfj7u6uhIQEzZ8/X9K1h8+5ubkKDw9XcnKypcVyfT3yyCP6+OOPNXr0aB04cECfffaZAgIC9MEHHygyMrLa82JjY1VaWqqAgAANGTKkxnsEBgYqLCxMnTt31uHDhxUXF6evv/5affr00aJFi/TZZ5+pZ8+eDbIeAACApsJWuSPdyAAAAJoHWz57BAAAANCymXJycsy1nfy3v/1Njz/+uJycnDR79mw9/PDDGjRokJydnSVdayd85MgRbdiwQTExMTKbzXrvvfd0//33N9oCAAAA0DTZMne8cuWKJk6cqIyMDPn5+VXqRpaUlFRtoW1UVJSWL18uSYqPj9fYsWOrvc+GDRu0YMECOTk5VdmNrLpC2wsXLsjf31+lpaVKSUmpsdB2zZo1N+1Gtn37dgptAQBAs8OzRwAAAAC2YqhQQpKeeuopxcbGymQySZKcnZ3l4eEhk8mk3NxclZWVSbr2Bl9YWJjefvvtho8aAAAADsGWueOVK1e0fPly7dixQ+fOnZO3t7eCg4O1aNEi+fj4VHuekUIJSdq3b5/eeustff311yorK9OAAQM0b968Gh/Qr1q1Sq+++qoCAgL0xRdf1Hj9r7/+Wu+++64OHTqkixcvKjc3Vy4uLurbt6+mTJmiuXPnysPDo8ZrAAAAOCqePQIAAACwBcOFEpK0ceNGrV69WseOHatyfMCAAZo/f74eeuihegcIAAAAx0buCAAAACPIHwEAAAA0tjoVSlTIysrSt99+q8uXL0uSvLy8dNttt6lbt24NFiAAAACaB3JHAAAAGEH+CAAAAKCx1KtQAgAAAAAAAAAAAAAAwJE42TsAAAAAAAAAAAAAAAAAW2nUQom4uDjFxsY25i0AAADQTJA7AgAAwAjyRwAAAAB11ahbb9x22236+eefdenSpca6BQAAAJoJckcAAAAYQf4IAAAAoK4afesNs7nR6jAAAADQzJA7AgAAwAjyRwAAAAB10eiFEgAAAAAAAAAAAAAAAE0FhRIAAAAAAAAAAAAAAKDFaFXdQMeOHSVJt956q/75z39aHasts9ksk8lUj/AAAADgCMgdAQAAYAT5IwAAAAB7qrZQomJ/v+v3+WPPPwAAAFSF3BEAAABGkD8CAAAAsKdqCyW+/vprSVLr1q2tjnfq1ElJSUk3vbDZbNaECROUnZ1dzxABAADQ1JE7AgAAwAjyRwAAAAD2VG2hhJ+fX5XHnZ2dqx2rai4AAACaP3JHAAAAGEH+CAAAAMCenOwdAAAAAAAAAAAAAAAAgK1U21GiKq+++qrc3NxqPZ99BQEAAFouckcAAAAYQf4IAAAAwFZMOTk5jfaN4u9//7uKior00EMPNdYtAAAA0EyQOwIAAMAI8kcAAAAAddWohRIAAAAAAAAAAAAAAABNiZO9AwAAAAAAAAAAW8rPz9crr7yiIUOGyMfHR/7+/oqIiNDFixcb9D7Jycm677775Ofnp+7duys4OFjbtm2rdr6np2eN/3z//fd2XQ8AAADQXNBRAgAAAAAAAECLkZ+fr4kTJyo9PV1+fn4aPny4MjIy9O2336pbt25KTEyUr69vve+zadMmPf3003JyctK4cePUpk0bffrppyouLtaiRYu0cOHCSud4enpKkkJDQ6u85h//+Ed17tzZLusBAAAAmhMKJQAAAAAAAAC0GIsXL9bq1as1fvx4bd68WS4uLjKbzZo3b542b96se++9V+vXr6/XPS5cuKChQ4fq6tWr2rZtm8aNGydJSk9PV3BwsAoLC/X5558rICDA6ryKQomcnJwmtR4AAACguTG09YaXl5cGDBhQ6/m/+c1v5O3tbTgoAAAAOD5yRwAAABhhi/yxuLhYMTExkqTo6Gi5uLhIkkwmk5YtWyZXV1fFx8frzJkzhq57o48++kiFhYWaMWOGpUhCkgYOHKg5c+bIbDZr3bp19bqHZLv1AAAAAM2NoUIJSTKbjTWgMDofAAAAzQe5IwAAAIxo7Pxx//79KigoUP/+/dW3b1+rMU9PTwUGBspsNispKcnQdW+UmJgoSZoyZUqlsalTp1rNqQ9brQcAAABoblo15sV/+eWXxrw8AAAAmhFyRwAAABhRl/wxPT1d0rXODlUJCAhQUlKSMjIy6hXbsWPHqr1PxXYbP/30k3JycizbbVzv7bff1vfffy9nZ2fddtttmjZtmnx8fCrNs9V6AAAAgOam0Qolrl69qtOnT6t9+/aNdQsAAAA0E+SOAAAAMKKu+ePZs2clSV26dJEkxcXFadWqVZo1a5Zmz55tOZ6VlVXn2PLy8pSXl2e5T0FBgebOnavi4mKtXr1at9xyizp06KDc3FydOXOmykKJl156qdLvS5Ys0Zw5c2yyno0bN2rTpk21mhsVFaXBgwersLCwXv/eAACA4+nWrZvatWtn7zCAOqmxUCIvL0+5ublWx8rKynTmzJlq29qVlZXpp59+0jvvvKMrV67ojjvuaLhoAQAA0GSROwIAAMAIe+SPBQUFkqS2bdtKkqKjo5WRkaHjx49r9uzZcnNzs5pXF9ef265dO+3cuVPx8fGSpK1bt2r+/Plyc3NTbm5upfs89NBDCgkJ0W233SZ3d3d9//33ev/997V+/Xo9//zz6ty5s+67775GX8/p06eVmppaq7kVRSEAAACAI6mxUGLNmjWKjo62Onbp0iUNHjz4pheu+DIzd+7ceoQHAAAAR0HuCAAAACPskT/eWIAxc+ZMrVixQmFhYVbjJpPJ0HVruscdd9yhfv36qaioSEFBQTXeZ82aNVa/Dxo0SKtWrVK3bt20dOlS/fGPf7QqlGis9fj5+SkwMLBWcz08PCRdKwrp16+fofsAAAAA9lJjoYTZbK6UbFdXzV3BZDLJw8NDAQEBevzxx60SdwAAADRf5I4AAAAwwh75Y8VWHUVFRZKkiIgIRUREWMYLCwslqV4tpK/fDqSwsFA+Pj46cOCA1Ryj95k3b56io6N14sQJnTp1Sj179rS6V0OvJywszFJsAQAAADRHNRZKREZGKjIy0vK7l5eXfHx8lJmZ2eiBAQAAwLGQOwIAAMAIe+SPXbt2lSSdO3euyvGK4926davzPTw8POTh4aG8vDydO3dO7u7uVuNFRUWWLUe6d+9eq2u6u7vL29tb58+f1/nz5y2FErZYDwAAANAcOdk7AAAAAAAAAACwhYEDB0qS0tPTqxw/evSoJMnf379e9xkwYEC196m4h6+vrzw9PWt1vV9++UWXLl2SZN0dwlbrAQAAAJobCiUAAAAAAAAAtAijRo2Sm5ubMjMzdeLECauxnJwcpaamymQyacKECfW6T8X5u3btqjS2c+dOSVJQUFCtr7dv3z6Vlpaqffv2uvXWWy3HbbUeAAAAoLkxVCjx4osv6umnn26sWAAAANCMkDsCAADACFvkj66urgoPD5ckLVy4UCUlJZIks9msyMhIFRcXa8qUKdVuiREVFSVPT095enrq888/r/Y+4eHhatu2rT7++GOlpKRYjqenp+v999+XyWTSE088YXVObGysjh07Vulahw8f1vPPPy9Jeuyxx+Ti4tJg6wEAAABaKlNOTo7Z3kEAAAAAAAAAgC1cuXJFEydOVEZGhvz8/DRixAhlZGQoMzNTvr6+SkpKUteuXas8NyoqSsuXL5ckxcfHa+zYsdXeZ8OGDVqwYIGcnJx01113ycXFRZ9++qmKi4v14osvKjIy0mr+Qw89pF27dql3797y9/dXmzZtdPLkSX399dcqLy9XUFCQNm3aZFUoUd/1AAAAAC0VW28AAAAAAAAAaDHc3d2VkJCg+fPnS7q2FUZubq7Cw8OVnJzcYEUFjzzyiD7++GONHj1aBw4c0GeffaaAgAB98MEHlYokJCkkJETTpk2TJKWmpmrHjh06efKkAgMDtXr1am3durVSkYQt1wMAAAA0J3SUAAAAAAAAAAAAAAAALUarupy0a9cuffzxx/r++++Vn5+vX375RWZz1fUWJpNJhw8frk+MAAAAcGDkjgAAADCC/BEAAABAYzNcKLFo0SK988471X45ka59QakYN5lMdQ4uPz9f0dHR2r59u86dOydvb28FBwdr8eLF6ty5c52ve6Pk5GS99dZb+uqrr1ReXi5/f3/NnTtXM2bMqHK+p6dnjdc7dOiQ/uM//qPScVutBwAAoKmwZe4IAAAAx0f+CAAAAMAWDBVKJCQkaO3atWrfvr0iIiI0ePBgzZw5U15eXvrzn/+sS5cuaf/+/dq8ebOcnJy0ZMkS9e7du06B5efna+LEiUpPT5efn58mT56sjIwMxcTEaO/evUpMTJSvr2+drn29TZs26emnn5aTk5PGjRunNm3a6NNPP9Vjjz2m48ePa+HChdWeGxoaWuVxd3d3u60HAACgqbBl7ggAAADHR/4IAAAAwFZMOTk51Zdn3yA0NFQJCQl6//33Ld0WvLy85OPjo8zMTMu806dPa/r06SooKFBKSoq6dOliOLDFixdr9erVGj9+vDZv3iwXFxeZzWbNmzdPmzdv1r333qv169cbvu71Lly4oKFDh+rq1avatm2bxo0bJ0lKT09XcHCwCgsL9fnnnysgIMDqvIqOEjk5OU1qPQAAAE2JLXNHAAAAOD7yRwAAAAC24mRk8ldffSVJmjZtWo3z/Pz89NZbb+nChQuKjo42HFRxcbFiYmIkSdHR0XJxcZF0rZXesmXL5Orqqvj4eJ05c8bwta/30UcfqbCwUDNmzLAUSUjSwIEDNWfOHJnNZq1bt65e95Bstx4AAICmxFa5IwAAAJoH8kcAAAAAtmKoUOLy5cvy9PRU69atLcdatWqlgoKCSnPvvPNOtW3bVnv37jUc1P79+1VQUKD+/furb9++VmOenp4KDAyU2WxWUlKS4WtfLzExUZI0ZcqUSmNTp061mlMftloPAABAU2Kr3BEAAADNA/kjAAAAAFsxVCjh5eWloqIiq2MdO3ZUQUFBpW0oTCaTnJycdOHCBcNBpaenS7rW2aEqFVthZGRkGL729Y4dO1btfSru8dNPP1W7xcbbb7+t//qv/9ILL7yg999/X+fPn69ynq3WAwAA0JTYKneskJ+fr1deeUVDhgyRj4+P/P39FRERoYsXL9b5mlVJTk7WfffdJz8/P3Xv3l3BwcHatm1btfM9PT1r/Of777+363oAAACaClvnjwAAAABarlZGJnfv3l0XLlzQDz/8oF69ekm69pf/ycnJiouL06OPPmqZ+9VXX6mgoEC33HKL4aDOnj0rSZb9BePi4rRq1SrNmjVLs2fPthzPysoyfO0KeXl5ysvLs9ynoKBAc+fOVXFxsVavXq1bbrlFHTp0UG5urs6cOSNPT89K13jppZcq/b5kyRLNmTPHJuvZuHGjNm3aVKu5UVH/H3v3Hhd1mf///zmgCCIInhBRtPWwnvWr1lZomJqmuJtpeQiV9GMe0tS2VkOztrQQzCUtM3ddU8tDftJIzDyhmLLaqmUqiKWVJoqkCMhJE+b3hz/m4wjoDIeZAR73221vt+F9Xe/39bomdny937zmusLUsWNHZWdnl+p9AwAAFY+fn59q1qxp83FtlTtKt4oK+vXrp/j4ePn7+2vAgAFKSEjQypUrtXPnTu3atUu+vr6lntPatWs1efJkOTk5KTAwUDVq1NCePXs0duxYnT59WjNmzCj23BEjRhR53MPDw27zAQAAcCS2zB8BAAAAVG1WFUp0795d3377rXbv3q2xY8dKkgYNGqQ9e/Zozpw5cnJy0gMPPKCff/5Zc+bMkcFg0KOPPmp1UAXL6bm5uUmSIiIilJCQoNOnT2vMmDFyd3c361cSt59bs2ZNbdmyRdHR0ZKkDRs2aMqUKXJ3d1d6enqhcZ555hkNGzZMf/zjH+Xh4aGffvpJy5cv1+rVq/Xyyy+rfv36euKJJ8p9PufOnVNcXJxFfQuKQgAAAGzFVrmjdKsoND4+Xr169dL69evl4uIio9GoSZMmaf369Zo5c6ZWr15dqvmkpKTo5ZdflpOTkzZt2qTAwEBJt1YP69u3r8LCwjRgwADTamF3Wrp0qUPNBwAAwNHYMn8EAAAAULVZVSjx5z//WYsWLdLKlStNNysjR47UunXrdPDgQU2fPt3U12g0ql69epo1a5bVQRmNRrOfhw4dqgULFig4ONis3WAwWH3t4sZ48MEH1bJlS+Xk5KhPnz53HeeDDz4w+7lDhw5atGiR/Pz89Pbbb+vNN980K5Qor/n4+/srICDAor6enp6SbhWFtGzZ0qpxAAAASsJWuWNubq5Wrlwp6VZBqouLi6RbudX8+fMVFRWl6OhonT9/Xo0bNy7xfFatWqXs7Gw9/fTTpiIJ6da3HMeNG6dFixZp2bJleu+990o8hi3nAwAA4GhslT8CAAAAgFWFEl27dtX58+fNjjk5Oemzzz7TO++8o88//1wXLlyQp6enHn30Uc2ePVv+/v5WB1WrVi1JMu1JOH36dLMboezsbEkq1RLSBWMUXM/Hx0eHDh0y62PtOJMmTVJERITOnDmjs2fPqmnTpmZjlfV8goODTcUWAAAAjsZWueOBAweUlZWl1q1bq0WLFmZtXl5eCggIUExMjGJiYhQSElLi+ezatUuSFBQUVKht4MCBWrRokalPadhqPgAAAI7GVvkjAAAAAFhVKCHJtE3Encdef/11vf7662USVKNGjSRJycnJRbYXHPfz8yvxGJ6envL09FRGRoaSk5ML7Q2dk5Oj9PR0SbL4m3oeHh6qW7euLl26pEuXLpkKJWwxHwAAAEdki9wxPj5e0q2VHYrSvn17xcTEKCEhoVTjnDx5sthxCrbbuHjxotLS0uTl5VWoz/vvv6+ffvpJzs7O+uMf/6g///nP8vHxKdTPVvMBAABwRLbIHwEAAADA6kIJWyh4KFzwkPhOJ06ckCS1bdu2VOO0adNG33zzjeLj4wttR1Ewhq+vb5EPuovy+++/68qVK5LMV4ew1XwAAACqogsXLkiSGjZsKEmKiorSokWLNHr0aI0ZM8Z0PCkpqcRjZGRkKCMjwzROVlaWJk6cqNzcXC1ZskQNGjRQ7dq1lZ6ervPnzxeZP7766quFfp43b57GjRtnk/msWbNGa9eutahvWFiYOnbsqOzs7FK9bwAAoOLx8/Mr1SquAAAAAFAROGShxEMPPSR3d3clJibqzJkzat68uaktLS1NcXFxMhgM6t27d6nG6d27t7755htt3bpVgwYNMmvbsmWLJKlPnz4WX2/37t26efOmatWqpVatWtl8PgAAAFVRVlaWJMnNzU2SFBERoYSEBJ0+fVpjxowxfSuxoF9pxpBuFcRu2bJF0dHRkqQNGzZoypQpcnd3V3p6eqFxnnnmGQ0bNkx//OMf5eHhoZ9++knLly/X6tWr9fLLL6t+/fp64oknyn0+586dU1xcnEV9C4pCAAAAAAAAAKAyKlGhxOXLl7V69Wrt3LlTiYmJpgepXl5eat26tfr166eRI0eqTp06JQrK1dVVISEh+uCDDzRjxgytW7dOLi4uMhqNCg0NVW5urgYOHFjslhhhYWEKDw+XJEVHR6tHjx5F9gsJCVFkZKQ2btyo4OBgBQYGSrq18sPy5ctlMBg0fvx4s3PWrVunzp07q02bNmbHjx49qpdfflmSNHbsWLm4uJTZfAAAACqy8s4djUaj2c9Dhw7VggULFBwcbNZuMBhKPIc7x3jwwQfVsmVL5eTkmAprixvngw8+MPu5Q4cOWrRokfz8/PT222/rzTffNCuUKK/5+Pv7KyAgwKK+np6ekm4Vhdy58hoAAEB5K+/8EQAAAACsLpTYvHmzXnjhBV27dq3QQ9zU1FT95z//0YEDB/SPf/xDS5YsUVBQUIkCCw0NVWxsrGJiYtStWzd169ZNCQkJSkxMlK+vryIiIkp03dv5+PgoIiJCU6dO1eDBg9WzZ0+5uLhoz549ys3N1cyZM9WhQwezc6KjozVp0iTdd999atu2rWrUqKGff/5Z33//vfLz89WnT59Cyyrbaj4AAACOxha5Y61atSRJOTk5kqTp06dr+vTppvbs7GxJKtUS0gVjFFzPx8dHhw4dMutj7TiTJk1SRESEzpw5o7Nnz6pp06ZmY5X1fIKDg03FFgAAAI7KVs8eAQAAAFRtVhVKHDx4UGPGjFF+fr78/Pw0ZMgQdezYUXXr1pXRaFRqaqqOHTumjRs3KikpSSEhIfrqq690//33Wx2Yh4eHtm/frvDwcG3evFlbtmxR3bp1FRISolmzZsnHx8fqaxZl1KhR8vPzU2RkpA4dOqS8vDy1b99ekyZN0pAhQwr1HzZsmJydnXXixAnFxcUpMzNTtWrVUkBAgIYPH64RI0bIycnJbvMBAABwFLbKHRs1aiRJSk5OLrK94Lifn1+J5+Lp6SlPT09lZGQoOTlZHh4eZu05OTlKT0+XJItXCfPw8FDdunV16dIlXbp0yVQoYYv5AAAAOCJbPnsEAAAAULUZ0tLSjPfudstTTz2lmJgYPfHEE/rnP/9ptr3E7W7cuKFx48YpOjpajz32mDZs2FBmAQMAAKBisFXuuGfPHj355JNq3bq1Dh48WKh9yJAhiomJ0aJFixQSElKiuUhSv3799M0332jlypUaNGiQWduhQ4f02GOPydfXVydPnrToer///rt8fX118+ZN7d+/X+3bt7fpfAAAABwNzx4BAAAA2ErhpQ/u4tChQ3J2dlZkZGSxNyqS5OLionfffVdOTk7673//W+ogAQAAUPHYKnd86KGH5O7ursTERJ05c8asLS0tTXFxcTIYDOrdu7fV175dwflbt24t1LZlyxZJUp8+fSy+3u7du3Xz5k3VqlVLrVq1Mh231XwAAAAcDc8eAQAAANiKVYUS+fn58vDwkLe39z371qlTR56ensrPzy9xcAAAAKi4bJU7urq6mlZWmDFjhm7cuCFJMhqNCg0NVW5uroKCgordEiMsLExeXl7y8vLSvn37ih0nJCREbm5u2rhxo/bu3Ws6Hh8fr+XLl8tgMGj8+PFm56xbt67IFSaOHj2ql19+WZI0duxYsz8ElHY+AAAAFRXPHgEAAADYSjVrOnfu3FlxcXE6f/78PR/Mnjt3Tunp6erRo0epAgQAAEDFZMvcMTQ0VLGxsYqJiVG3bt3UrVs3JSQkKDExUb6+voqIiCjRdW/n4+OjiIgITZ06VYMHD1bPnj3l4uKiPXv2KDc3VzNnzlSHDh3MzomOjtakSZN03333qW3btqpRo4Z+/vlnff/998rPz1efPn306quv2mU+AAAAjoZnjwAAAABsxaoVJWbNmiVnZ2eNHz9eV65cKbbf5cuXNWHCBFWvXl2zZ88udZAAAACoeGyZO3p4eGj79u2aMmWKpFtbYaSnpyskJESxsbFq1KhRia57p1GjRmnjxo16+OGHdejQIX399ddq3769/v3vfys0NLRQ/2HDhunPf/6zJCkuLk6bN2/Wzz//rICAAC1ZskQbNmwocllpW80HAADAkfDsEQAAAICtGNLS0oxFNaxbt67IE/7zn//ok08+kbu7u/r27auOHTuqTp06kqTU1FQdO3ZMO3bsUHZ2tkaPHq0//elPGjFiRPnNAAAAAHZH7ggAAABrkD8CAAAAsKdiCyW8vb1lMBiKPMlovHWKpe2pqamlDhQAAACOi9wRAAAA1iB/BAAAAGBP1YprePjhh4u9GQEAAABuR+4IAAAAa5A/AgAAALCnYleUAAAAAAAAAAAAAAAAqGyc7B0AAAAAAAAAAAAAAACArRS79UZRbt68qezsbBkMBnl4eJRXTAAAAKgEyB0BAABgDfJHAAAAALZi1YoSL7/8spo1a6ZZs2aVVzwAAACoJMgdAQAAYA3yRwAAAAC2YkhLSzNa2rlz5846d+6cjhw5ovvuu6884wIAAEAFR+4IAAAAa5A/AgAAALAVqwolfH195eLiorNnz5ZnTAAAAKgEyB0BAABgDfJHAAAAALZi1dYbnp6eysvLK69YAAAAUImQOwIAAMAa5I8AAAAAbMWqQon7779f2dnZOnnyZHnFAwAAgEqC3BEAAADWsGX+mJmZqddee02dOnWSj4+P2rZtq+nTp+u3334r03FiY2P1xBNPyN/fX40bN1bfvn21adOmIvumpaVp3bp1GjlypO6//375+vqqSZMmeuyxx/Svf/2r2CKSoKAgeXl5Ffu/1atXl+mcAAAAgMrAqq03vvvuO/Xv31/du3fXhg0b5ORkVZ0FAAAAqhByRwAAAFjDVvljZmam+vXrp/j4ePn7+6tr165KSEjQqVOn5Ofnp127dsnX17fU46xdu1aTJ0+Wk5OTAgMDVaNGDe3Zs0e5ubmaNWuWZsyYYdY/LCxM4eHhcnJyUseOHfWHP/xBV65c0TfffKPc3Fz16NFDGzZskJubm9l5QUFBiouLU+/evdWgQYNCcYwcOVIBAQGlng8AAABQmVhVKCFJu3bt0vTp09WkSRPNmDFDDz/8sGrUqFFe8QEAAKACI3cEAACANWyRP86ePVtLlixRr169tH79erm4uMhoNGrSpElav369/vKXv5R6FYaUlBR17txZ169f16ZNmxQYGChJio+PV9++fZWdna19+/apffv2pnMWL16stLQ0jRs3To0aNTId/+WXX/T4448rOTlZL730kubMmWM2VkGhRHR0tHr06FGquAEAAICqwqpCiU6dOkmSrl+/rpSUFEmSs7Oz6tatW+wNi8Fg0NGjR0sfKQAAACoUckcAAABYwxb5Y25urpo3b66srCwdPnxYLVq0MLWlpaWpdevWun79uo4fP67GjRuXeC4LFizQW2+9paefflr/+te/zNpef/11LVq0SKNGjdJ7771n0fWWLl2q0NBQNWnSRMePHzdro1ACAAAAsF41azqfO3eu0LGbN2/q0qVLxZ5jMBisjwoAAAAVHrkjAAAArGGL/PHAgQPKyspS69atzYokJMnLy0sBAQGKiYlRTEyMQkJCrLr27Xbt2iXpVhHDnQYOHKhFixaZ+liiINaCAhIAAAAApWNVoUR0dHR5xQEAAIBKhtwRAAAA1rBF/hgfHy9JateuXZHt7du3V0xMjBISEko1zsmTJ4sdp2C7jYsXLyotLU1eXl73vF5BEcndVrnYunWroqOjdfPmTTVp0kT9+vVT27ZtSxA9AAAAUPlZVSjRvXv38ooDAAAAlQy5IwAAAKxhi/zxwoULkqSGDRtKkqKiorRo0SKNHj1aY8aMMR1PSkoq8RgZGRnKyMgwjZOVlaWJEycqNzdXS5YsUYMGDVS7dm2lp6fr/Pnz9yyUyM/P18qVKyVJQ4YMKbbf0qVLzX5+4403NGrUKC1cuFAuLi5WzWHNmjVau3atRX3DwsLUsWNHZWdnl+p9AwAAFY+fn59q1qxp7zCAErGqUAIAAAAAAAAAKqqsrCxJkpubmyQpIiJCCQkJOn36tMaMGSN3d3ezfqUZQ5Jq1qypLVu2mFbL2LBhg6ZMmSJ3d3elp6dbNM57772n48ePq1GjRpoyZUqh9u7du2vcuHHq0qWLfHx8lJSUpK1btyo8PFwff/yxXF1dtWDBAqvmcO7cOcXFxVnUt6AoBAAAAKhIKJQAAAAAAAAAUCUYjUazn4cOHaoFCxYoODjYrN1gMJTZGA8++KBatmypnJwc9enTx6px9u3bp7lz58rFxUUrV66Up6dnoT6hoaFmPzdv3lwvvPCCunTpoqCgIK1YsUJTp05VkyZNLJ6Dv7+/AgICLOpbEFPNmjXVsmVLi8cAAAAA7IlCCQAAAAAAAABVQq1atSRJOTk5kqTp06dr+vTppvbs7GxJKtUS0gVjFFzPx8dHhw4dMutjyTjx8fEaOXKk8vLytGzZMj3wwANWxREQEKCuXbvqyJEj+vrrr03FIJYIDg62qj8AAABQ0TjZOwAAAAAAAAAAsIVGjRpJkpKTk4tsLzju5+dX4jE8PT1NqywUNU5OTo7S09MlSY0bNy7yGmfPntWQIUOUnp6uiIgIDRkypESxNGvWTJJ06dKlEp0PAAAAVFZWrShh6b50d7J0mTYAAABUHuSOAAAAsIYt8sd27dpJurVaQ1FOnDghSWrbtm2JYinQpk0bffPNN4qPjy+0HUXBGL6+vvLy8ip0bkpKip588kklJydrzpw5eu6550ocx4ULFySVboUMAAAAoDKyqlBi4MCBVu/PZzAYdOXKFavOAQAAQMVH7ggAAABr2CJ/fOihh+Tu7q7ExESdOXNGzZs3N7WlpaUpLi5OBoNBvXv3tiqOO/Xu3VvffPONtm7dqkGDBpm1bdmyRZLUp0+fQuelpaVp8ODB+umnn/Tiiy/qpZdeKnEMKSkpOn78uCSpS5cuJb4OAAAAUBlZVSjRuHHjYm9WjEajUlNTzfbXq1u3bukjBAAAQIVE7ggAAABr2CJ/dHV1VUhIiD744APNmDFD69atk4uLi4xGo0JDQ5Wbm6uBAwcWuyVGWFiYwsPDJUnR0dHq0aNHkf1CQkIUGRmpjRs3Kjg4WIGBgZJurWSxfPlyGQwGjR8/3uyc7OxsDR8+XCdOnND48eP1+uuv33M+e/fuldFo1COPPCInp//bZfnSpUuaMGGCMjMz1bVrVz3wwAMWvT8AAABAVWFVoURBBfLdJCcna9WqVXr//fc1atQo/e1vfytxcAAAAKi4yB0BAABgDVvlj6GhoYqNjVVMTIy6deumbt26KSEhQYmJifL19VVERERJwjfj4+OjiIgITZ06VYMHD1bPnj3l4uKiPXv2KDc3VzNnzlSHDh3Mzpk7d64OHjwoNzc3ZWRkaNKkSUVee968eaYikfj4eM2aNUv16tVT586d5e3traSkJB07dkyZmZlq1qyZVqxYUer5AAAAAJWNVYUSlmjYsKFmzpyppk2b6vnnn1fTpk01dOjQsh4GAAAAlQC5IwAAAKxRFvmjh4eHtm/frvDwcG3evFlbtmxR3bp1FRISolmzZsnHx6dMYh01apT8/PwUGRmpQ4cOKS8vT+3bt9ekSZM0ZMiQQv3T0tIkSTk5OVq/fn2x133llVdMhRIBAQEKDg7Wt99+q6NHjyo9PV0uLi5q0aKFgoKCNHHiRHl6epbJfAAAAIDKxJCWlmYsjwv//vvvatiwoTp16qTdu3eXxxAAAACoJMgdAQAAYA3yRwAAAACl4XTvLiVz48YNGY1GnTp1qryGAAAAQCVB7ggAAABrkD8CAAAAKI1yK5RYs2aNjEaj3NzcymsIAAAAVBLkjgAAALAG+SMAAACA0qhmTed169bdtT0vL0+XL1/WgQMHFBMTI4PBoL59+5YqQAAAAFRM5I4AAACwBvkjAAAAAFsxpKWlGS3t7O3tLYPBcM9+RuOtS3bu3FkbN25UnTp1Sh4hAAAAKiRyRwAAAFiD/BEAAACArVi1osTDDz9815sVJycn1axZU02bNlVgYKAef/xxOTmV2+4eAAAAcGDkjgAAALAG+SMAAAAAW7FqRQlby8zMVEREhL744gslJyerbt266tu3r2bPnq369euX2TixsbGKjIzUd999p/z8fLVt21YTJ07U4MGDC/VNS0vTV199pS+//FKnTp3S+fPnVa1aNbVu3VpDhw7V2LFj5ezsXOi8oKAgxcXFFRvD4sWLNXr06DKbEwAAAAAAAAAAAAAAKMyqFSVsKTMzU/369VN8fLz8/f01YMAAJSQkaOXKldq5c6d27dolX1/fUo+zdu1aTZ48WU5OTgoMDFSNGjW0Z88ejR07VqdPn9aMGTPM+i9dulTh4eFycnJSx44d1b9/f125ckXffPONDh06pM2bN2vDhg1yc3MrcrzevXurQYMGhY43b9681HMBAAAAAAAAAAAAAAB357ArSsyePVtLlixRr169tH79erm4uMhoNGrSpElav369/vKXv2j16tWlGiMlJUWdO3fW9evXtWnTJgUGBkqS4uPj1bdvX2VnZ2vfvn1q37696ZzFixcrLS1N48aNU6NGjUzHf/nlFz3++ONKTk7WSy+9pDlz5piNVbCiRHR0tHr06FGquAEAAAAAAAAAAAAAQMk45CZ+ubm5WrlypSQpIiJCLi4ukiSDwaD58+fL1dVV0dHROn/+fKnGWbVqlbKzszV48GBTkYQktWvXTuPGjZPRaNSyZcvMzpk6dapee+01syIJSWrWrJmmTZsmSdqwYUOp4gIAAAAAAAAAAAAAAOXDqkKJ8PBwvf/++xb3X716tcLDw60O6sCBA8rKylLr1q3VokULszYvLy8FBATIaDQqJibG6mvfbteuXZJurfZwp4EDB5r1sURBrCkpKaWKCwAAoDKwVe4IAACAyoH8EQAAAICtWFUoMX/+fKtuVj766KMS3azEx8dLurWyQ1EKtsJISEiw+tq3O3nyZLHjFIxx8eJFpaWlWXS9c+fOSZIaN25cbJ+tW7dqxowZ+utf/6rIyMhSzwEAAMBR2Sp3BAAAQOVA/ggAAADAVqrZO4CiXLhwQZLUsGFDSVJUVJQWLVqk0aNHa8yYMabjSUlJJR4jIyNDGRkZpnGysrI0ceJE5ebmasmSJWrQoIFq166t9PR0nT9/Xl5eXne9Xn5+vmm7kCFDhhTbb+nSpWY/v/HGGxo1apQWLlxo2mLEUmvWrNHatWst6hsWFqaOHTsqOzu7VO8bAACoePz8/FSzZk17hwEAAAAAAAAAgEMo10KJ1NRUVa9e3erzsrKyJElubm6SpIiICCUkJOj06dMaM2aM3N3dzfqVxO3n1qxZU1u2bFF0dLQkacOGDZoyZYrc3d2Vnp5u0Tjvvfeejh8/rkaNGmnKlCmF2rt3765x48apS5cu8vHxUVJSkrZu3arw8HB9/PHHcnV11YIFC6yaw7lz5xQXF2dR34KiEAAAAEdV0tyxQGZmpiIiIvTFF18oOTlZdevWVd++fTV79mzVr1+/zOKMjY1VZGSkvvvuO+Xn56tt27aaOHGiBg8eXKhvWlqavvrqK3355Zc6deqUzp8/r2rVqql169YaOnSoxo4dK2dn50LnBQUF3TXPW7x4sUaPHl1mcwIAAKiISps/AgAAAKi6yq1Q4tChQ/r111/VpEkTq881Go1mPw8dOlQLFixQcHCwWbvBYChxfHeO8eCDD6ply5bKyclRnz59rBpn3759mjt3rlxcXLRy5Up5enoW6hMaGmr2c/PmzfXCCy+oS5cuCgoK0ooVKzR16lSr3i9/f38FBARY1Lcgppo1a6ply5YWjwEAAGALpckdpVtFEv369VN8fLz8/f01YMAAJSQkaOXKldq5c6d27dolX1/fUse5du1aTZ48WU5OTgoMDFSNGjW0Z88ejR07VqdPn9aMGTPM+i9dulTh4eFycnJSx44d1b9/f125ckXffPONDh06pM2bN2vDhg2mAuE79e7dWw0aNCh0vHnz5qWeCwAAQEVW2vwRAAAAQNV210KJL7/8Ulu3bjU7lpGRocmTJxd7Tl5eni5evKgDBw5IuvVw11q1atWSJOXk5EiSpk+frunTp5vas7OzJalUS0gXjFFwPR8fHx06dMisjyXjxMfHa+TIkcrLy9OyZcv0wAMPWBVHQECAunbtqiNHjujrr782FYNYIjg42Kr+AAAA5cleuaN0a5ux+Ph49erVS+vXr5eLi4uMRqMmTZqk9evXa+bMmVq9enWJrl0gJSVFL7/8spycnLRp0yYFBgZKupUP9u3bV2FhYRowYIDat29vOsfd3V1//etfNW7cODVq1Mh0/JdfftHjjz+uffv26Z133tGcOXOKHHP69Onq0aNHqeIGAABwVPbMHwEAAABUbXctlDh+/LjWrl1rdiwnJ6fQseK0a9dOs2fPtjqogofIycnJRbYXHPfz87P62gU8PT3l6empjIwMJScny8PDw6w9JydH6enpkqTGjRsXeY2zZ89qyJAhSk9P14IFCzRkyJASxdKsWTMdOXJEly5dKtH5AAAAjsBeuWNubq5Wrlwp6daWbS4uLpJurQo2f/58RUVFKTo6WufPny82r7PEqlWrlJ2draefftpUJFEQ97hx47Ro0SItW7ZM7733nqlt6tSpRV6rWbNmmjZtmkJDQ7Vhw4ZiCyUAAAAqM3vljwAAAABw10KJ7t27m/0cHh6uWrVq3bWq28nJSZ6enmrfvr0CAgJKtD1Gu3btJN36dl5RTpw4IUlq27at1de+XZs2bfTNN98oPj6+0HYUBWP4+vrKy8ur0LkpKSl68sknlZycrDlz5ui5554rcRwXLlyQVLoVMgAAAOzNXrnjgQMHlJWVpdatW6tFixZmbV5eXgoICFBMTIxiYmIUEhJi9fUL7Nq1S5IUFBRUqG3gwIFatGiRqY8lCmJNSUkpcUwAAAAVmb3yRwAAAAC4Z6HE7Tcs4eHhcnd31yuvvFKuQT300ENyd3dXYmKizpw5Y7YHc1pamuLi4mQwGEq9tF7v3r31zTffaOvWrRo0aJBZ25YtWyRJffr0KXReWlqaBg8erJ9++kkvvviiXnrppRLHkJKSouPHj0uSunTpUuLrAAAA2Ju9cseC4tqCYts7tW/fXjExMUpISCjVOCdPnix2nILtNi5evKi0tLQiC23vdO7cOUnFr14mSVu3blV0dLRu3rypJk2aqF+/fqUuFgYAAHAU9sofAQAAAMDJ3gEUxdXV1fRtvxkzZujGjRuSJKPRqNDQUOXm5iooKKjYh8phYWHy8vKSl5eX9u3bV+w4ISEhcnNz08aNG7V3717T8fj4eC1fvlwGg0Hjx483Oyc7O1vDhw/XiRMnNH78eL3++uv3nM/evXsVGxur/Px8s+OXLl3S+PHjlZmZqa5du+qBBx6457UAAABgrmB1roYNG0qSoqKi9Oijj+qjjz4yO56UlFTiMTIyMpSRkWG6XlZWlkaNGqWnn35aKSkpcnNzU+3atSVJ58+fv+f18vPzTduF3G37tqVLl+qf//ynVqxYoTfeeEMPP/ywXnjhBVN+DAAAAAAAAACw3l1XlLCn0NBQxcbGKiYmRt26dVO3bt2UkJCgxMRE+fr6KiIiotRj+Pj4KCIiQlOnTtXgwYPVs2dPubi4aM+ePcrNzdXMmTPVoUMHs3Pmzp2rgwcPys3NTRkZGZo0aVKR1543b57q1q0r6VbhxaxZs1SvXj117txZ3t7eSkpK0rFjx5SZmalmzZppxYoVpZ4PAABAVZSVlSVJcnNzkyRFREQoISFBp0+f1pgxY+Tu7m7WrzRjSLe2S9uyZYuio6MlSRs2bNCUKVPk7u6u9PR0i8Z57733dPz4cTVq1EhTpkwp1N69e3eNGzdOXbp0kY+Pj5KSkrR161aFh4fr448/lqurqxYsWGDVHNasWWPxft9hYWHq2LGjsrOzS1VgAgAAKh4/Pz+2hwUAAABQ6VlVKHH16tXyiqMQDw8Pbd++XeHh4dq8ebO2bNmiunXrKiQkRLNmzZKPj0+ZjDNq1Cj5+fkpMjJShw4dUl5entq3b69JkyYV+e2+tLQ0SVJOTo7Wr19f7HVfeeUVU6FEQECAgoOD9e233+ro0aNKT0+Xi4uLWrRooaCgIE2cOFGenp5lMh8AAABHYavc0Wg0mv08dOhQLViwQMHBwWbtpdm/+s4xHnzwQbVs2VI5OTmmrdosHWffvn2aO3euXFxctHLlyiLzwNDQULOfmzdvrhdeeEFdunRRUFCQVqxYoalTp6pJkyYWz+HcuXOKi4uzqG/B6hkAAAC2ZMtnjwAAAACqNkNaWprx3t0AAAAAxzRr1ix98MEHmjx5st56661C7UuXLlVoaKgGDhyoTz75pERjZGRkyN/fX5L066+/ysPDo1Cfpk2bKj09Xfv371f79u2LvE58fLwGDBigjIwMLV++/K7bbhSnd+/eOnLkiJYsWWIqBrFESVaUAAAAAAAAAIDKyKoVJWJiYhQTEyM/Pz9Nnjy5vGICAABAJWCr3LFRo0aSpOTk5CLbC477+fmVeAxPT095enoqIyNDycnJhQolcnJylJ6eLklq3Lhxkdc4e/ashgwZovT0dC1YsKBERRKS1KxZMx05ckSXLl2y6rzg4GCrCisAAABsjWePAAAAAGzFyZrOCxcu1Icffliqh8wAAACoGmyVO7Zr107SrdUainLixAlJUtu2bUs1Tps2bYodp2AMX19feXl5FWpPSUnRk08+qeTkZM2ZM0fPPfdcieO4cOGCJLF3OAAAqHR49ggAAADAVqwqlEhMTFS1atU0YMCA8ooHAAAAlYStcseHHnpI7u7uSkxM1JkzZ8za0tLSFBcXJ4PBoN69e5dqnILzt27dWqhty5YtkqQ+ffoUaktLS9PgwYP1008/6cUXX9RLL71U4hhSUlJ0/PhxSVKXLl1KfB0AAABHxLNHAAAAALZiVaFEbm6uPDw85OLiUl7xAAAAoJKwVe7o6uqqkJAQSdKMGTN048YNSZLRaFRoaKhyc3MVFBRU7JYYYWFh8vLykpeXl/bt21fsOCEhIXJzc9PGjRu1d+9e0/H4+HgtX75cBoNB48ePNzsnOztbw4cP14kTJzR+/Hi9/vrr95zP3r17FRsbq/z8fLPjly5d0vjx45WZmamuXbvqgQceuOe1AAAAKhKePQIAAACwlWrWdG7atKl+/PFHZWdns9QvAAAA7sqWuWNoaKhiY2MVExOjbt26qVu3bkpISFBiYqJ8fX0VERFR6jF8fHwUERGhqVOnavDgwerZs6dcXFy0Z88e5ebmaubMmerQoYPZOXPnztXBgwfl5uamjIwMTZo0qchrz5s3T3Xr1pV0q/Bi1qxZqlevnjp37ixvb28lJSXp2LFjyszMVLNmzbRixYpSzwcAAMDR8OwRAAAAgK1YtaLEsGHDlJeXp88++6y84gEAAEAlYcvc0cPDQ9u3b9eUKVMk3doKIz09XSEhIYqNjVWjRo3KZJxRo0Zp48aNevjhh3Xo0CF9/fXXat++vf79738rNDS0UP+0tDRJUk5OjtavX69169YV+b/MzEzTOQEBAQoODlb9+vV19OhRRUVF6fvvv1fz5s01a9Ysff3112ratGmZzAcAAMCR8OwRAAAAgK0Y0tLSjJZ2vnHjhp5++ml9++23+uijj4rcgxkAAACQyB0BAABgHfJHAAAAALZiVaHEunXrdPPmTa1YsULff/+9unXrpkceeUSNGzdWjRo1ij1vxIgRZRIsAAAAKg5yRwAAAFiD/BEAAACArVhVKOHt7S2DwSBJMhpvnVbw892kpqaWMDwAAABUVOSOAAAAsAb5IwAAAABbqWZN54cfftiimxMAAACA3BEAAADWIH8EAFQFqampeuedd/S3v/1N3t7e9g4HAKosq1aUAAAAsCduJAEAgCMiRwEqnszMTEVEROiLL75QcnKy6tatq759+2r27NmqX79+mY0TGxuryMhIfffdd8rPz1fbtm01ceJEDR48uNhzfv75Z7399tuKjY1VRkaGmjZtqmHDhmnq1KmqXr26XecDACi9Dz/8UNu3b1e/fv00ceJEe4eD25DXA1WLk70DAAAAsNSGDRt08uRJffrpp/YOBQAAwIQcBahYMjMz1a9fPy1evFhGo1EDBgyQh4eHVq5cqZ49e+rixYtlMs7atWv15JNPav/+/erWrZt69OihY8eOaezYsYqIiCjynISEBAUGBup///d/1bhxY/Xv319Xr17V3LlzNWzYMOXl5dltPgCA0ktNTdXu3btlNBq1e/duXb161d4h4Tbk9UDVQqEEAACoELiRBAAAjogcBah4wsLCFB8fr169eunw4cP66KOPdPDgQQ0fPlxJSUmaOXNmqcdISUnRyy+/LCcnJ23atEmbNm3SunXrFBMTI3d3d4WFhenEiROFznv++eeVkZGhV155RXv27NHKlSt1+PBhtW3bVrt379a///1vu8wHAFA2NmzYoPz8fElSfn4+f5B3IOT1QNVDoQQAAKgQuJEEAACOiBwFqFhyc3O1cuVKSVJERIRcXFwkSQaDQfPnz5erq6uio6N1/vz5Uo2zatUqZWdna/DgwQoMDDQdb9euncaNGyej0ahly5aZnXPgwAEdPXpUjRs31t/+9jfT8dq1a+uNN96QJC1dutQu8wEAlI29e/fq5s2bkqSbN29q7969do4IBcjrgaqHQgkAAFAhcCMJAAAcETkKULEcOHBAWVlZat26tVq0aGHW5uXlpYCAABmNRsXExJRqnF27dkmSgoKCCrUNHDjQrM+d5zz++ONydnY2a+vVq5fc3d31888/68yZMzafDwCgbAQGBqpatWqSpGrVqpkV08G+yOuBqqfEhRL//e9/9Y9//EMvv/yypkyZYtaWlZWlX375Rb/88ktp4wMAAJDEjWRFR+4IAKisyFGA8lFe+WN8fLykWys7FKV9+/aSpISEBKuvfbuTJ08WO07BGBcvXlRaWppFsTk7O6t169aFYrPVfAAAZWPo0KFycrr1pzknJycNGzbMzhGhAHk9UPVUs/aEs2fPavz48Tp06JAkyWg0ymAw6P333zf1ycrKUkBAgHJzc7V792516tSp7CIGAABV0tChQ7V7925J3EhWJOSOAIDKjhwFKFvlnT9euHBBktSwYUNJUlRUlBYtWqTRo0drzJgxpuNJSUklnkNGRoYyMjJM42RlZWnixInKzc3VkiVL1KBBA9WuXVvp6ek6f/68vLy8ioxt7ty5+vrrrzVv3jz96U9/KjK28prPmjVrtHbtWov6hoWFqWPHjsrOzi7V+wYAVUXXrl118OBBde3aVZcvX9bly5ftHRIk3X///abVnQwGg+6//379+OOPdo7K8fn5+almzZr2DgMoEatWlEhNTdXAgQP13//+V82bN9ezzz4rd3f3Qv0aNGig4OBg5efnKyoqqqxiBQAAVVidOnXUq1cvGQwG9erVS97e3vYOCfdA7ggAqArIUYCyY4v8MSsrS5Lk5uYmSYqIiNB3332n1157TZJM4xX0K4nbz61Zs6Z27dql6Oho7dy5Uxs2bCh2nILXNWvWVGpqqhYuXKhDhw4pMjLynueU9XzOnTunuLg4i/5XUBQCALBMnz591KxZM/Xp08feoeA2np6euv/++2UwGNStWzd5enraOyQA5cyqFSXeffddnT9/Xk888YSWL1+uatWq6csvv1R2dnahvsOHD9e//vUvHThwoMyCBQAAVdvQoUN17tw5vqlZQZA7AgCqCnIUoGzYIn80Go1mPw8dOlQLFixQcHCwWbvBYCjhLAqP8eCDD6ply5bKyckx/VGsqHFuP8/b21v9+/dXXFycnn76aYvOKcv5+Pv7KyAgwKK+BX9Iqlmzplq2bGnVOABQVXXt2tXeIaAIzz33nNLT0zV+/HgKoIEqwKpCia+++koGg0FvvPGGaZ+e4nTu3FnVq1fX+fPnSxUgAABAgTp16ujtt9+2dxiwELkjAKCqIEcByoYt8sdatWpJknJyciRJ06dP1/Tp003tBUUZpVlCumCMguv5+PiYthK52zgF52VnZ8tgMGjdunUWn1PW8wkODjYVWwAAUFWQ1wNVi1Vbb/z6669yd3dX06ZN731hJyfVqlVLv/32W4mDAwAAQMVF7ggAAABr2CJ/bNSokSQpOTm5yPaC435+flZd93aenp6mVRaKGicnJ0fp6emSpMaNG5cqNlvMBwAAAKiMrCqUcHV1VW5urvLy8u7ZNzs7WxkZGezhAwAAUEWROwIAAMAatsgf27VrJ0mKj48vsv3EiROSpLZt21p13Tu1adOm2HEKxvD19ZWXl5dFseXl5SkxMbFQbLaaDwAAAFDZWFUo0aZNG+Xl5Vm099+mTZuUl5enDh06lDg4AAAAVFzkjgAAALCGLfLHhx56SO7u7kpMTNSZM2fM2tLS0hQXFyeDwaDevXtbdd07FZy/devWQm1btmyRJPXp06fIc7Zt21aoWGT37t3KyspSs2bN1Lx5c5vPBwAAAKhsrCqUeOqpp2Q0GhUaGqrU1NRi+33zzTeaPXu2DAaDnnrqqVIHCQAAgIqH3BEAAADWsEX+6OrqqpCQEEnSjBkzdOPGDUkyjZubm6ugoCCzLTFuFxYWJi8vL3l5eWnfvn3FjhMSEiI3Nzdt3LhRe/fuNR2Pj4/X8uXLZTAYNH78eLNzHnroIXXs2FHnz5/XggULTMfT09P1+uuvS5ImTpxYpvMBAAAAqipDWlqa0dLOeXl56tevn44cOaJGjRppyJAhWrlypTIzM7Vu3TolJSVp9+7dpqrnBx54QF999ZWcnKyqxwAAAEAlQO4IAAAAa9gqf7x27Zr69eunhIQE+fv7q1u3bkpISFBiYqJ8fX0VExOjRo0aFXluWFiYwsPDJUnR0dHq0aNHseN8/PHHmjp1qpycnNSzZ0+5uLhoz549ys3N1cyZMxUaGlronBMnTqh///66du2aunTpoqZNmyouLk4pKSkKDAzUxo0bVa1atTKbDwAAAFBVWVUoIUlXr17VmDFjtHfvXhkMhkLtRuOty/Xo0UMrV65UnTp1yiZSAAAAVDjkjgAAALCGrfLHa9euKTw8XJs3b1ZycrLq1q2rvn37atasWfLx8Sn2PGsKJaRbW2ZERkbq+++/V15entq0aaNJkyZpyJAhxZ5z5swZvf3229q7d6+uXbsmf39/DR06VNOmTZOLi0uZzgcAAACoqqwulCiwfft2ffrppzp8+LB+++03SVK9evXUtWtXPf300xowYECRNzMAAACoesgdAQAAYA3yRwAAAADlqcSFEgAAAAAAAAAAAAAAABUNG0ADAAAAAAAAAAAAAIAqg0IJAAAAAAAAAAAAAABQZVQryUmXL1/Wxx9/rJ07dyoxMVHp6emSJE9PT7Vu3VqPPfaYRo0apfr165dpsAAAAKh4yB0BAABgDfJHAAAAAOXNkJaWZrTmhC+++EJTp07VtWvXZDQWfarBYFCtWrW0ePFiDRo0qCziBAAAQAVE7ggAAABrkD8CAAAAsAWrCiUOHjyooKAg5efnq0mTJhoyZIjat2+vunXrymg0KjU1VcePH9emTZv066+/ytnZWV9++aX+9Kc/leccAAAA4IDIHQEAAGAN8kcAAAAAtmJVocRTTz2lmJgYDR48WB9++KGqV69eZL/ff/9d48ePV1RUlHr37q3PPvuszAIGYL1jx44pIyNDnp6e6tixo73DAWBjfAbAXsgdgYqJfzeAqo3PANgT+SNQ8fDvBlC18RkAoCKzqlCiadOmysrK0unTp+Xl5XXXvlevXlWLFi1Uq1YtnT17trRxAiiFoKAgxcXFKSAgQF9++aW9wwFgY3wGwF7IHYGKiX83gKqNzwDYE/kjUPHw7wZQtfEZAKAic7Kmc35+vjw8PO55oyJJ3t7e8vT0LHYvQQAAAFRu5I4AAACwBvkjAAAAAFuxqlCiS5cuSk9P16+//nrPvufOnVN6ero6d+5c0tgAAABQgZE7AgAAwBrkjwAAAABsxapCiVdffVXVqlXThAkTdOXKlWL7Xb58WRMmTFC1atU0a9asUgcJAACAiofcEQAAANYgfwQAAABgK9Ws6Xz69Gk988wzWrVqlTp16qS+ffuqY8eOqlOnjiQpNTVVx44d044dO5Sdna2RI0fq559/1s8//1zoWiNGjCibGQAAAMAhkTsCAADAGuSPAAAAAGzFqkKJ559/XgaDQZKUlZWlqKgoRUVFFepXsDfgJ598ok8++aTIa3GzAgAAULmROwIAAMAa5I8AAAAAbMWqQomHH37YdLMCAAAA3A25IwAAAKxB/ggAAADAVqwqlPjyyy/LKw4AAABUMuSOAAAAsAb5IwAAAABbcbJ3AAAAAAAAAAAAAAAAALZCoQQAAAAAAAAAAAAAAKgyrNp6A0DF9Mwzz6h79+7y9/e3dygA7IDPAACANfh3A6ja+AwAAFiDfzeAqo3PAAAVmSEtLc1o7yAAAAAAAAAAAAAAAABsga03AAAAAAAAAAAAAABAlUGhBAAAAAAAAAAAAAAAqDIolAAAAAAAAAAAAAAAAFUGhRIAAAAAAAAAAAAAAKDKoFACAAAAAAAAAAAAAABUGRRKAAAAAAAAAAAAAACAKoNCCQAAAAAAAAAAAAAAUGVQKAEAAAAAAAAAAAAAAKoMCiUAAAAAAAAAAAAAAECVQaEEAAAAAAAAAAAAAACoMiiUAAAAAAAAAAAAAAAAVQaFEgAAAAAAAAAAAAAAoMqgUAIAAAAAAAAAAAAAAFQZFEoAAAAAAAAAAAAAAIAqg0IJAAAAAAAAAAAAAABQZVAoAQAAAAAAAAAAAAAAqgwKJQAAAAAAAAAAAAAAQJVBoQQAAAAAAAAAAAAAAKgyKJQAAAAAAAAAAAAAAABVBoUSAAAAAAAAAAAAAACgyqBQAgAAAAAAAAAAAAAAVBkUSgAAAAAAAAAAAAAAgCqDQgkAAAAAAAAAAAAAAFBlUCgBAAAAAAAAAAAAAACqDAolAAAAAAAAAAAAAABAlUGhBAAAAAAAAAAAAAAAqDIolAAAAAAAAAAAAAAAAFUGhRIAAAAAAAAAAAAAAKDKoFACAAAAAAAAAAAAAABUGRRKAAAAAAAAAAAAAACAKoNCCQAAAAAAAAAAAAAAUGVQKAEAAABYISUlRatWrdKUKVP04IMPytvbW15eXlqzZk2ZjxUbG6snnnhC/v7+aty4sfr27atNmzaV+TgAAAAAAAAAUJVUs3cAAAAAQEWyc+dOTZs2zfSzwWAol3HWrl2ryZMny8nJSYGBgapRo4b27NmjsWPH6vTp05oxY0a5jAsAAICyk5KSoq+++kqHDh3S4cOHderUKRmNRi1ZskTBwcFlOlZsbKwiIyP13XffKT8/X23bttXEiRM1ePDgMh0HAAAAqAyq/IoSfCMQAAAA1mjUqJHGjx+v5cuX6+jRo+rVq1eZj5GSkqKXX35ZTk5O2rRpkzZt2qR169YpJiZG7u7uCgsL04kTJ8p8XAAAAJStgiLbTz75RImJieU2ztq1a/Xkk09q//796tatm3r06KFjx45p7NixioiIKLdxAQAAgIqqyq8owTcCAQAAYI1HH31Ujz76aLmOsWrVKmVnZ+vpp59WYGCg6Xi7du00btw4LVq0SMuWLdN7771XrnEAAACgdAqKbB944AF169ZNL730kmJiYsp0jDuLbAvyx/j4ePXt21dhYWEaMGCA2rdvX6bjAgAAABVZlV9Rgm8EAgAAwNHs2rVLkhQUFFSobeDAgWZ9AAAA4LgeffRRRURE6KmnnlKzZs3KZYyCItvBgwcXWWRrNBq1bNmychkbAAAAqKiqfKEENysAAABwNCdPnpR0K1+8U8E3AS9evKi0tDRbhgUAAAAHRJEtAAAAYL0qv/WGLdzrZmXRokXcrAAAAECSlJGRoYyMDElSw4YNlZWVpYkTJyo3N1dLlixRgwYNVLt2baWnp+v8+fPy8vKy6Lpr1qzR2rVrLeobFhamjh07Kjs7W0lJSSWdCgAAqID8/PxUs2ZNe4cBK1hTZGtp7ggAAABUdhRK2AA3KwAAALBUVlaW6XXNmjW1ZcsWRUdHS5I2bNigKVOmyN3dXenp6WZ97+XcuXOKi4uzqG9BoQYAAAAcG0W2AADAniiyRUVGoUQ5K6+bFYkbFgAAYBluWCoWo9Fo9vODDz6oli1bKicnR3369DHrYzAYLL6uv7+/AgICLOrr6ekp6VahRsuWLS0eAwAAALZFkS0AAABQMhRKlLPyulmRuGEBUHXt2LFDO3futHcYZeKxxx5T37597R0GAAdSq1Yt0+vs7Gz5+Pjo0KFDZn2ys7MlyaoCmODgYAUHB5dNkABQwaxbt06ffvqpvcMotWHDhmnEiBH2DgOAA6HIFgDKHrkjAFQNDlso4e3trYYNG5q2rbiXRx99VMeOHdOVK1fKOTLrlNfNisQNC4Cq6/Dhw/YOoczUqVOHz2WgDFSW3FG6lbd5enoqIyNDycnJ8vDwMGvPyclRenq6JKlx48b2CBEAAKBCq0y5I0W2AAAAQMk4bKGEVLjIoKz720J53axI3LAAAADcrjLkjgXatGmjb775RvHx8YWKqU6cOCFJ8vX1tWrbNgAAAPyfypI7UmQLAAAAlIxDF0pY4/fff7d3CEXiZgUAyt6IESPKfdm4QYMGmV5HRUWV61gAbM9Rc8cCvXv31jfffKOtW7eafR5J0pYtWyTJtDoZAODeyjt/JHcEKjdHzx0psgWAskXuCABVg5O9AygL169f17lz58xWb3Akbdq0kSTFx8cXauNmBQAAwLbsmTuGhYXJy8tLXl5e2rdvX7H9QkJC5Obmpo0bN2rv3r2m4/Hx8Vq+fLkMBoPGjx9vi5ABAACqNEd/7ijdKrKVpK1btxZqo8gWAAAAKJrDrCiRkZFhWlmhQF5ens6fP1/s0nZ5eXm6ePGiPvzwQ127dk0PPvigLUK1Gt8IBAAAKFv2zB2Tk5M1cuRI088//PCDJGnBggX66KOPJEmdOnXSwoULS3R9SfLx8VFERISmTp2qwYMHq2fPnnJxcdGePXuUm5urmTNnqkOHDiW+PgAAQFVSUZ87hoWFKTw8XJIUHR2tHj16FNkvJCREkZGR2rhxo4KDgxUYGCiJIlsAAADgbhymUOKDDz5QRESE2bErV66oY8eO9zy34IZm4sSJ5RJbcbhZAQAAsA975o7Xr1/X4cOHCx3/5Zdf9Msvv0iSatSoUaJr327UqFHy8/NTZGSkDh06pLy8PLVv316TJk3SkCFDSn19AACAqsKeuSNFtgAAAIBjcphCCaPRWKiCu7iK7gIGg0Genp5q3769nnvuOT3xxBNWj8vNCgAAQMVjr9xRkpo2baq0tLQSnRsaGqrQ0FCL+/fq1Uu9evUq0VgAAAC4xZ65I0W2AAAAgGMypKWl3f2uwE68vb3l4+OjxMTEch3n7Nmz6tSp0137BAQE6Msvvyx03NIVJQrs3r1bkZGR+v7775WXl6c2bdpwswIADur2rZKioqLsFgcAy9gqdwQAoCjkjkDFQu4IALAnckcAcAwOs6KEvfCNQAAAAAAAAAAAAAAAqg4newcAAAAAAAAAAAAAAABgKw67osTMmTPl7u5u7zAAAABQAZA7AgAAwFLkjgAAAAActlDilVdesXcIAAAAqCDIHQEAQFFSU1P1zjvv6G9/+5u8vb3tHQ4cBLkjAAAAALbeAAAAAAAAQKW0YcMGnTx5Up9++qm9QwEAAAAAOBAKJQAAAAAAAFDppKamavfu3TIajdq9e7euXr1q75AAAADgwFJTUzVr1izyRqCKcNitNwrs2LFDsbGx+uWXX5SVlaX8/Pxi+xoMBm3evNmG0QEAAFti6WTcC7kjAAAosGHDBlMukJ+fr08//VQTJ060c1RwJOSOAADgdrevRkbeCFR+DlsocfXqVQ0bNkyHDx+WJBmNxnueYzAYyjssOIh169ZVmmUzhw0bphEjRtg7DACoELhZQXHIHQEAwJ327t2rmzdvSpJu3rypvXv3kkNCErkjAAAo7M7VyIYNG8YXtYBKzmELJebMmaNDhw7JyclJjz32mP70pz+pXr16cnZ2tndoAADADrhZwd2QOwIAgDsFBgZq165dunnzpqpVq6bAwEB7hwQHQe4IAADuxGpkQNXjsIUS27Ztk8Fg0OLFixUcHGzvcAAAgJ1xs4K7IXcEAAB3Gjp0qHbv3i1JcnJy0rBhw+wcERwFuSMAALgTq5EBVY/DFkpkZ2fLxcVFw4cPt3cocEAjRowo9+0qBg0aZHodFRVVrmMBAO6NmxXcDbkjAAC4U506ddSrVy9t375dvXr1YjUymJA74l4qy7a/bPkLAJZjNTKg6nGydwDFad68uZydnVnyDgAASLp1s1Kt2q0aT25WcCdyRwAAUJShQ4eqTZs2rCYBM+SOAADgTkOHDpWT060/m7IaGVA1OOyKEs8995ymTZum6Oho/fnPf7Z3OAAAC9y+EktlUlnmVdFXx2HpZNwNuSMAAChKnTp19Pbbb9s7DDgYckcAAHAnViMDqh6HLZQYPXq0zpw5o8mTJ+vMmTMaOXKk6tWrZ++wAACAnXCzgrshdwQAAIClyB1xL+W97S9b/gKAYxo6dKjOnTvHF7SAKsJhCyU6deokSbpx44befPNNvfnmm3J3d1edOnWKPcdgMOjo0aM2ihAAANgaNysoDrkjAAAALEXuCAAAisJqZEDV4rCFEufOnSt0LDMzU5mZmcWeYzAYyjMkAIAVfuw7y94hQFLLHZUrsedmBcUhdwQAAIClyB0BAAAAOGyhRHR0tL1DAAAAQAVB7ggAAABLkTsCAAAAcNhCie7du9s7BAAAAFQQ5I4AAACwFLkjAFRMgwYNsncIZa6yzCkqKsreIQCA1ZzsHQAAAAAAAAAAAAAAAICtVJhCifz8fF2+fFm//vqrvUMBAACAgyN3BAAAgKXIHQEAAICqx2G33iiwe/duvf/++zp48KByc3NlMBh05coVU/vPP/+s+fPny8nJSe+8847c3d3tGC0AAADsidwRAAAAliJ3BICK68e+s+wdQpXXcsfb9g4BAErFoQsl3nrrLS1cuFBGo7HYPvfdd59+/PFHHT16VI888ohGjBhhwwgBAADgKMgdAQAAYClyRwAAAKBqc9itN3bs2KF33nlHtWvX1pIlS3Tq1Ck1aNCgyL7/8z//I6PRqO3bt9s4SgAAADgCckcAAABYitwRAAAAgMOuKLFs2TIZDAYtXLhQgwcPvmvffv36SZJOnTpli9AAAADgYMgdAQAAYClyRwAAAAAOu6LEt99+K4PBoIEDB96zb7169eTh4aGkpCQbRAYAAABHQ+4IAAAAS5E7AgAAAHDYFSWys7Pl7u4uFxcXi/rn5+ffdU9BAAAAVF7kjgAAALAUuSMAAAAAh11RwsfHR5mZmbp8+fI9+yYmJiorK0t+fn42iAwAAACOhtwRAAAAliJ3BAAAAOCwhRI9evSQdGvPwHt54403ZDAYFBgYWN5hAQAAwAGROwIAAMBS5I4AAAAAHLZQYtq0aXJ2dlZkZKQWLlyojIyMQn1OnDihoUOHatu2bapevbqef/55O0QKAAAAeyN3BAAAgKXIHQEAAAA4bKFEq1at9O6778poNOqtt95SixYtdOXKFUlSz5491apVKz3yyCPauXOnnJycFBkZqfvuu8/OUQMAAMAeyB0BAABgKXJHAAAAAA5bKCFJwcHB2rx5szp27Kjff/9deXl5MhqN+v777/Xbb7/JaDSqQ4cO+vzzz/XMM8/YO1wAAADYEbkjAAAALEXuCAAAAFRt1ewdwL0EBAQoNjZWP/zwgw4fPmy6Ualfv766du2q1q1b2ztEAAAAOAhyRwAAAFiK3BEAAACouhy+UKJAq1at1KpVK3uHAQAAgAqA3BEAAACWIncEAAAAqh6H3noDAAAAAAAAAAAAAACgLDn0ihI//PCDtm/frh9++EGXL1/W9evXdfPmTRmNxiL7GwwGbd682cZRAgAAwBGQOwIAAMBS5I4AAABA1eawhRL/+te/9Morr8hoNBZ7g3Ing8FQzlEBAADAEZE7AgAAwFLkjgAAAAActlDinXfekdFoVP/+/RUUFKT69evLxcVFzs7O9g4NAAAADobcEQAAAJYidwQAAADgsIUSOTk5cnV11SeffELFNgAAAO6K3BH3sm7dOn366af2DqPUhg0bphEjRtg7DAAAKjRyRwAAAABO9g6gOMOGDVNubq72799v71AAAADg4MgdAQAAYClyRwAAAAAOu6LE/Pnz9csvv+iJJ55Qo0aN5OPjI1dXVzk5FV/bYTAYtHnzZhtGCQAAAEdA7ggAAABLkTsCAAAAcNhCiYULF2rXrl2SpKSkJCUlJd3zHJbKAwAAqJrIHXEvI0aMKNctKwYNGmR6HRUVVW7jAACA0iN3BAAAAOCwhRJLly6VwWDQY489pr/85S+qX7++atSoIWdnZ3uHBgAAAAdD7ggAAABLkTsCAAAAcNhCiWrVqsnV1VXr1q2767J3AAAAALkjAAAALEXuCAAAAMBhCyX+9re/6ZVXXtHBgwf18MMP2zscAAAAODByRwAAAFiK3LHiun27s8qissyJ7ecAAEBF47CFEps3b1bt2rU1cOBANWrUSD4+PnJ1db1rlbfBYNDmzZttGCUAAAAcAbkjAAAALEXuCAAAAMBhCyXi4uJMr5OSkpSUlHTPcwwGQ3mGBAAAAAdF7ggAAABLkTsCAAAAcNhCiejoaHuHAAAAgAqC3BEAAACWInesHH7sO8veIVR5LXe8be8QAAAASsxhCyW6d+9u7xAAAABQQZA7AgAAwFLkjgAAAACK33jPweTn5+vy5cv69ddf7R0KAAAAHBy5IwAAACxF7ggAAABUPQ5fKLF7924NHjxYjRs3VqtWrdS5c2ez9p9//lkTJkzQpEmTlJWVZZ8gAQAA4BDIHQEAAGApckcAAACg6nLYrTck6a233tLChQtlNBqL7XPffffpxx9/1NGjR/XII49oxIgRNowQAAAAjoLcEQAAAJYidwQAAACqNoddUWLHjh165513VLt2bS1ZskSnTp1SgwYNiuz7P//zPzIajdq+fbuNowQAAIAjIHcEAACApcgdAQAAADjsihLLli2TwWDQwoULNXjw4Lv27devnyTp1KlTtggNAAAADobcEQAAAJYidwQAAADgsCtKfPvttzIYDBo4cOA9+9arV08eHh5KSkqyQWQAAABwNOSOAAAAsBS5IwAAAACHXVEiOztb7u7ucnFxsah/fn7+XfcUBAAAQOVF7ggAAABLkTsCAAAAcNgVJXx8fJSZmanLly/fs29iYqKysrLk5+dng8gAAADgaMgdAQAAYClyRwAAAAAOWyjRo0cPSbf2DLyXN954QwaDQYGBgeUdFgAAABwQuSMAAAAsRe4IAAAAwGELJaZNmyZnZ2dFRkZq4cKFysjIKNTnxIkTGjp0qLZt26bq1avr+eeft0OkAAAAsDdyRwAAAFiK3BEAAACAwxZKtGrVSu+++66MRqPeeusttWjRQleuXJEk9ezZU61atdIjjzyinTt3ysnJSZGRkbrvvvvsHDUAAADsgdwRAAAAliJ3BAAAAOCwhRKSFBwcrM2bN6tjx476/ffflZeXJ6PRqO+//16//fabjEajOnTooM8//1zPPPOMvcMFAACAHZE7AgAAwFLkjgAAAEDVVs3eAdxLQECAYmNj9cMPP+jw4cOmG5X69eura9euat26tb1DBAAAgIOwRe6YmZmpiIgIffHFF0pOTlbdunXVt29fzZ49W/Xr1y+DWUjXrl3TokWLtHnzZp09e1Y1atRQu3bt9Oyzz2rYsGFlMgYAAEBVx3NHAAAAoOpy+EKJAq1atVKrVq3sHQYAAAAqgPLKHTMzM9WvXz/Fx8fL399fAwYMUEJCglauXKmdO3dq165d8vX1LdUY165dU79+/ZSQkKC6deuqZ8+eysrK0qFDh3TgwAF9++23Cg8PL6MZAQAAgOeOAAAAQNXj0FtvAAAAAI4kLCxM8fHx6tWrlw4fPqyPPvpIBw8e1PDhw5WUlKSZM2eWeoz58+crISFBXbp00eHDh/Xpp59qy5Yt2rFjh7y9vbVs2TL95z//KYPZAAAAAAAAAEDVVGFWlAAAVCwtd7xt7xAAoEzl5uZq5cqVkqSIiAi5uLhIkgwGg+bPn6+oqChFR0fr/Pnzaty4cYnH+eyzzyRJr732mry9vU3HO3XqpBdeeEFvvvmm/v3vf+vhhx8u+WQAAAAAAAAAoAqrNCtKhIWFafbs2fYOAwAAABVASXLHAwcOKCsrS61bt1aLFi3M2ry8vBQQECCj0aiYmJgSx3X16lVdunRJkvT//t//K9ReUByxZ8+eEo8BAAAA6/DcEQAAAKh8Kk2hxMqVK7V06VJ7hwEAAIAKoCS5Y3x8vCSpXbt2Rba3b99ekpSQkFDiuHJyciRJTk5O8vDwKNResMJEamqqLl++XOJxAAAAYDmeOwIAAACVD1tvAADKxY99Z9k7BIgtUICydOHCBUlSw4YNJUlRUVFatGiRRo8erTFjxpiOJyUllXgMb29vOTk5KT8/X5cuXZKvr69Z+6+//mp6ffHiRdWrV8/ia69Zs0Zr1661qG9YWJg6duyo7OzsUs2nqvrxxx/tHQIAO+IzABWdn5+fatasae8wAAAAAKBcVYpCievXr+vq1auqUaOGvUMBAACAgytp7piVlSVJcnNzkyRFREQoISFBp0+f1pgxY+Tu7m7WryTc3NzUsWNHHT16VJs3b9aECRPM2tetW2d6nZ2dbdW1z507p7i4OIv6ZmRkWHVtAACAyornjgAAAEDlVOELJVJTU/Xaa6/p999/Ny13DAAAABSlNLmj0Wg0+3no0KFasGCBgoODzdoNBkOpYpw0aZImTJigt956S15eXurbt68yMzO1YsUKff7556pTp45SU1Pl5GTdLnr+/v4KCAiwqK+np6ckqWbNmmrZsqXVc6jqeM+Aqo3PAKDy4LkjAAAAUHk5RKFEp06dSnReTk6Orly5IqPRKIPBoL/+9a9lHBkAAAAcjb1yx1q1apmuI0nTp0/X9OnTTe0FKzyUdqnqYcOGKSEhQYsXLy60osSrr76q6OhopaamysPDw6rrBgcHm4o6AAAAqgqeOwJA5cR2swCA0nKIQolz587JYDAU+paepf7whz/otdde08CBA8s4MgAAADgae+WOjRo1kiQlJycX2V5w3M/Pr0Rx3e6NN97Q0KFD9eWXX+rChQvy9vbWwIED1bVrVy1ZskROTk7y9/cv9TgAAACVHc8dAQAAABTFIQolJMnLy0urV6+26hwXFxf5+vqqSZMm5RQVAAAAHJE9csd27dpJkuLj44tsP3HihCSpbdu2Jbp+UeMVjFkgMTFRV69eVdu2bUu9cgUA2NugQYPsHUK5qCzzioqKsncIQJnhuSMAAACAOzlMoYSLi4u6d+9u7zAAAABQAdgjd3zooYfk7u6uxMREnTlzRs2bNze1paWlKS4uTgaDQb179y63GD788ENJ0pAhQ8ptDAAAgMqG544AUPn82HeWvUOo8tj+BEBF52TvAAAAAICKwNXVVSEhIZKkGTNm6MaNG5Iko9Go0NBQ5ebmKigoSI0bNy7y/LCwMHl5ecnLy0v79u2761hHjx41+9loNGrp0qVatWqVfHx89Nxzz5V+QgAAAAAAAABQRTnEihL9+/eXt7e3vcMAAABABWDP3DE0NFSxsbGKiYlRt27d1K1bNyUkJCgxMVG+vr6KiIgok3H69eunpk2bqkWLFnJxcdF3332ns2fPqnbt2lq7dq08PT3LZBwAcBR8I9Ax8K1AVEY8dwQAAABQFIcolFi7dq1dx8/MzFRERIS++OILJScnq27duurbt69mz56t+vXrl8kYubm5WrJkiT7//HP99NNPysvLk5+fn/r27auXXnqpzMaxt8qyF+udKsu82GMWAFAZ2DN39PDw0Pbt2xUeHq7Nmzdry5Ytqlu3rkJCQjRr1iz5+PiUyTjjx49XTEyM9u/frxs3bqhRo0aaMGGCXnzxRTVs2LBMxgAAAKgK7P3cUeLZIwAAAOCIHKJQwp4yMzPVr18/xcfHy9/fXwMGDFBCQoJWrlypnTt3ateuXfL19S3VGAXLMB85ckSenp7q0aOHqlevrsOHD+vDDz/UF198oR07dqhJkyZlNCsAAACUFw8PD82bN0/z5s2z6rzQ0FCFhoZa1Hfu3LmaO3duScIDAACAA+HZIwAAAOCYnOwdgL2FhYUpPj5evXr10uHDh/XRRx/p4MGDGj58uJKSkjRz5sxSj7Fq1SodOXJEzZs319GjR/Xpp5/qk08+0XfffaeePXvq4sWLevttlrcEAAAAAAAAKhOePQIAAACOyWFXlIiLi7Oqv8FgUM2aNeXn52fxUnK5ublauXKlJCkiIkIuLi6ma82fP19RUVGKjo7W+fPn1bhxY6viuV3BXEaPHq06deqYjru5uem5555TbGysvv322xJf31Gxx6xjYI9ZAEBVYIvcEQAAAJWDrXJHnj0CAAAAjsthCyUGDhwog8FQonPvu+8+jRs3ThMmTJCTU/GLZhw4cEBZWVlq3bq1WrRoYdbm5eWlgIAAxcTEKCYmRiEhISWKRZJcXV0lqchYCo7dfhMDAAAA69gidwQAAEDlYKvckWeP5YsvBwEAAKA0HPZJcOPGjU2V1EajUUajUTVq1FDDhg3l4+MjFxcX03EXFxc1btxYvr6+cnFx0U8//aTZs2drxIgRys/PL3aM+Ph4SVK7du2KbG/fvr0kKSEhoVRzeeyxxyRJa9asUXp6uun49evXtXz5ckkq1c0QAABAVWeL3BEAAACVg61yR549AgAAAI7LYVeU+PbbbzVmzBhdvHhRkydP1jPPPKNWrVqZ2o1Go06dOqU1a9Zo2bJleuSRR7R48WIZjUbFxMRo+vTp2rlzp1atWqUxY8YUOcaFCxckSQ0bNpQkRUVFadGiRRo9erTGjBljOp6UlFSquTz11FP6+uuv9fHHH6tTp0568MEHVb16dR0+fFg3btxQRESEhg8fbvV116xZo7Vr11rUNywsTB07dtT+/fs1cOBAPffccxo/frxZn8jISNP1pk2bppEjR5q1v/XWW4qKipIkhYaGavDgwWbtr776qmJjYyVJbdq0KRTDldVzlJv4jSSpzqg35NbmIbP23/71sm78fEySVG/cAtX4Qyez9pT3n9fvF05LkupPfl8ufq3M2pMXjlHelVv/rRr8dYWq1zNfsvBi2HDlX0uVJDV8ZZ2cPeuatV/4+xMy3siRJPm+HiWnGjXN2pNm9TW99nt7h1lb/vVsXXxjkCTJ4OKmRn//wqw9L+OKkuePkCQ5edSRb+h6s/bfL59Xyj/GSpKc6/qp4UsfmbXfSPpBvy2ZIkmq3qiFGkz5wKz9+k/f6/Lyv0mSXO7rqPrPvWPWfvnyZZ04cUJeXl7q3r27IiMjzdq3bdumOXPmSJL69eunefPmmbVv2rRJYWFhkqRBgwZp9uzZZu2ffPKJFi1aJEl65pln9OKLL5q1//Of/9S//vUvSSq3373t27dLkubOnavHH3/crP3FF1/U/v37JUkLFy7UI488YtY+YcIE0xKUH374obp27WrWPmrUKCUmJkqSVq9eXej3e8iQITp37pwk6bPPPlPTpk3N2vv376/Lly9LkrZu3Vpomc7AwEBlZ2dLkmJjY+Xu7m7Wfv/995teHzp0yKwtKytLPXv2lCTVrFlTe/fuNWv/7bffNGDAAElSvXr19NVXX5m1nz17Vk899ZQkyd/fXxs3bjRrP3nypEaPHi1Jat26tT7++GOz9iNHjmjixImSpC5dusjT09OsPefkAaV+/LokybX1n1R39Fyz9uyju3V1w3xJklvHR1VneKj5/P77pdKibv1u1by/v7yfNP/durbvM2V89U9JUq3uQ1R7wASz9oxdq3Vt9yeSJI9eI+XZZ7RZe/rWZcrcf2vOnv3Hy6PHU2btVz+PVPahW++Z16Bpcn8gyKw9dX2Yco7tkSR5D31FNTv3Mmt3hM+9pP//c++hhx7Sjz/+aNZemX73li1bZtb+9ddf66WXXpIkPvcWLtSIESNUs6b5v2uVjS1yRwAAAFQOtsodK/KzR0d87lhwD9StWzfVqlXLqvmg/GRnZ+u///0vzx3Fc0dbP/vhuSPPHSWeOzrC515VeO6IysthCyXmz5+vrVu36sMPP9TQoUMLtRsMBrVu3Vpz585Vu3bt9Pzzz8vPz0+hoaHq27evIiMjNXz4cK1fv77YG5asrCxJt/brk27tFZiQkKDTp09rzJgxpg/ugn4lZTAYtHjxYrVs2VJvvvmmtm3bZmoLCgpSt27dSnTdc+fOWbynYkZGRonGAAAAqAhskTsCAACgcrBV7liRnz068nPHrKws1apVSz/2nWU65gh/MKyKX9BqueNt0x9CAQAAKhqHLZT43//9X9WsWbPIm5U7DRs2TC+99JLWr1+v0NBbVYG9evWSs7OzTp48Wex5RqPR7OehQ4dqwYIFCg4ONmsv6Z6FBdLT0zVmzBgdPnxY//jHP/T444+revXq2rt3r2bMmKH+/fvrk08+MS2TZyl/f38FBARY1PfOb3nXqVNHLVu2NDvm7e1tel2vXr1C7bVr1za99vHxKdTu4eFhUSywL3d390L/7Y4ePWp67eHhUajdx8fH9Lp27dqF2uvVq2d67e3tXaj99n0wy/t3r2HDhoXab69WbdSoUaH2ggcWkuTn51eovUaNGqbX/v7+hdqrV69uet2sWbNC+45Wq/Z/H7X33XeffH19zdpv30O0efPmd/3/0p1jX7t2zew6d7bf/g2LatWqFWq//fOtevXqhdpvf1hTo0aNQu3Jycmm17e/j3BMd/73q0y/e3e2nz592vSaz71GVaKq2xa5IwAAACoHW+WOFfnZI88dURLcf/Pc8Xbl/ewHjoXnjv+nqn3uVYXnjqi8DGlpacZ7d7O9hg0bytnZWefPn7/nzUJ+fr78/PxkNBrNPsCaNGmimzdv6uLFi0WeN2vWLH3wwQeaPHmy3nrrrULtS5cuVWhoqAYOHKhPPvmkxHOZPn26Vq5cqXfffVfPPvusWdvOnTv19NNP67777tORI0fM/vGoiAYNGmR6fXtVN+yn5Y63Ta8LllMCygufAY6HzwBUFbbIHYG7uf3fQD5vAcuQOzoeckdUFbbKHXn2WPb4t8Ox8O8GbI3PAMfCZwCAis5hM2M/Pz/l5OTo888/v2ffDRs2KDc3V35+fqZjqampyszMVIMGDYo9r1GjRpLMq8NuV3D89utay2g06tNPP5WkQvv4SFLv3r3l6uqqn3/+2bTXGAAAAKxji9wRAAAAlYOtckeePQIAAACOy2ELJYYNGyaj0ajJkyfrvffeU2pqaqE+ly9f1jvvvKPp06fLYDBo2LBhpra9e/dKktq2bVvsGO3atZMkxcfHF9l+4sSJe17jXlJSUpSTc2v/uduXoyng5ORkWn4rJSWlxOMAAABUZbbIHQEAAFA52Cp35NkjAAAA4Liq3buLfbz44ouKi4vT119/rddff11///vf5efnp3r16sloNOry5cu6cOGCjEajjEajevTooRdffNF0fkEl9aOPPlrsGA899JDc3d2VmJioM2fOqHnz5qa2tLQ0xcXFyWAwqHfv3iWeh6enp5ydnZWXl6fvv/9e3bt3N2s/f/68rl69KkmF9g8DAACAZWyROwIAAKBysFXuyLNHAAAAwHE5bKFE9erVtXHjRi1evFhLly7V5cuX9euvv+rXX38161evXj1NnDhRU6dOVfXq1U3HV69eLaPRKBcXl2LHcHV1VUhIiD744APNmDFD69atk4uLi4xGo0JDQ5Wbm6uBAweqcePGRZ4fFham8PBwSVJ0dLR69OhRqI+bm5seffRR7dq1S3PmzNGGDRtUv359SVJWVpZefvllSVKXLl3UpEkT694kAAAASLJN7ggAKD+3728MAOXNVrkjzx4BAAAAx+WwhRKSVK1aNf31r3/VtGnTdOTIEZ08edK0FF6dOnXUpk0bde3aVc7OzoXOtfQhd2hoqGJjYxUTE6Nu3bqpW7duSkhIUGJionx9fRUREVHqeURERKh///767rvv1K1bN91///2qXr26jhw5opSUFHl5eWnx4sWlHgcAAKAqs0XuCAAAgMrBVrkjzx4BAAAAx+TQhRIFnJ2d9cADD+iBBx4o82t7eHho+/btCg8P1+bNm7VlyxbVrVtXISEhmjVrlnx8fEo9xh/+8Aft379fixcv1vbt27Vv3z5Jkp+fn5544glNnz5dfn5+pR4HAAAA5Zs7AgAAoHIp79yRZ48AAACAY6oQhRLlzcPDQ/PmzdO8efOsOi80NFShoaEW9a1fv77mzp2ruXPnliREAAAAAAAqrR/7zrJ3CBBboADlhWePAAAAgONxsncAAAAAAAAAAAAAAAAAtuLwK0rs2LFDsbGx+uWXX5SVlaX8/Pxi+xoMBm3evNmG0QEAAMCRkDsCAADAUuSOAAAAQNXlsIUSV69e1bBhw3T48GFJktFovOc5BoOhvMMCAACAAyJ3BAAAgKXIHQEAAAA4bKHEnDlzdOjQITk5Oemxxx7Tn/70J9WrV0/Ozs72Dg0AAAAOhtwRAAAAliJ3BAAAAOCwhRLbtm2TwWDQ4sWLFRwcbO9wAAAA4MDIHQEAAGApckcAAAAATvYOoDjZ2dlycXHR8OHD7R0KAAAAHBy5IwAAACxF7ggAAADAYQslmjdvLmdnZ5a8AwAAwD2ROwIAAMBS5I4AAAAAHHbrjeeee07Tpk1TdHS0/vznP9s7HAAAADgwcseKa9CgQfYOocxVljlFRUXZOwQAAMoFuSMAAAAAhy2UGD16tM6cOaPJkyfrzJkzGjlypOrVq2fvsGCFljvetncIAACgiiB3BAAAgKXIHQEAAAA4bKFEp06dJEk3btzQm2++qTfffFPu7u6qU6dOsecYDAYdPXrURhECAADAUZA7AgAAwFLkjgAAAAActlDi3LlzhY5lZmYqMzOz2HMMBkN5hgQAAAAHRe5YOfzYd5a9Q6jyWBUOAFAVkDsCAAAAcNhCiejoaHuHgFLiQbdj4GE3AKAqIHcEAACApcgdAQAAADhsoUT37t3tHQIAAAAqCHJHAAAAWIrcEQAAAICTvQMAAAAAAAAAAAAAAACwFYddUQIAAAAAAAAAgKKw3SwAAABKo0IUSvz444/66aeflJmZqd9//11Go7HYviNGjLBhZAAAAHA05I4AAACwFLkjAAAAUDU5dKHE6dOnNXbsWJ04ccLic7hhAQAAqJrIHQEAAGApckcAAACganPYQomrV68qKChIKSkp8vDwUKtWrXTkyBG5uLioS5cuunLlis6cOaP8/Hx5enqqQ4cO9g4ZAAAAdkLuCAAAAEuRO1ZcUVFR9g6hTAwaNMj0urLMCQAAoKJxsncAxVm8eLFSUlI0cOBAnTp1Srt27ZIkeXt766uvvtJ///tfJSYmaty4ccrIyFDnzp21ZcsWO0cNAAAAeyB3BAAAgKXIHQEAAAA47IoS27dvl8Fg0Ny5c+Xm5lZkn/r162vBggVycXHRBx98oE6dOunpp5+2caQAAACwN3JHAAAAWIrcEQAAAIDDrihx/vx5ubq6qlmzZmbH8/LyCvX961//KklasWKFLUIDAACAgyF3BAAAgKXIHQEAAAA4bKFEfn6+atSoYXbM3d1dV69eldFoNDtet25d1a5dWwkJCbYMEQAAAA6C3BEAAACWIncEAAAA4LCFEr6+vsrIyFB2drbpWJMmTZSfn69jx46Z9c3OzlZ6erpu3Lhh6zABAADgAMgdAQAAYClyRwAAAAAOWyjRunVrGY1GHT582HQsICBARqNRb7/9tn7//XfT8YULF8poNOqPf/yjPUIFAACAnZE7AgAAwFLkjgAAAAActlDi8ccfl9FoVFRUlOnYhAkT5OLiop07d+r+++/Xs88+q8DAQEVGRspgMGjs2LH2CxgAAAB2Q+4IAAAAS5E7AgAAAKhm7wCKExQUpMTERLm5uZmOtWzZUh9++KGmTp2qs2fP6uzZs5Ikg8Gg559/XqNHj7ZXuAAAALAjckcAAABYitwRAAAAgMMWSnh5eWnu3LmFjj/55JMKDAzUjh07dOHCBXl6eqpnz55q0aKFHaIEAACAIyB3BAAAgKXIHQEAAAA4bKHE3dSpU0fDhw+3dxgAAACoAMgdAQAAYClyRwAAAKBqcLJ3AAAAAAAAAAAAAAAAALZSIVeUAAAAAAAAAAAAAAA4vvz8fGVmZio7O1u///67vcNBJWcwGOTq6ipPT0+5uLgU289hV5QIDw/X+++/b3H/1atXKzw8vBwjAgAAgKMidwQAAIClyB0BAABsJz8/X5cvX1Z6ejpFErAJo9GonJwcXb58Wfn5+cX2c9gVJebPny8fHx9NmTLFov4fffSRvv/+e82cObOcIwMAAICjIXcEAACApcgdAQAAbCczM1PXr1+Xs7OzvL29VaNGDTk5Oex3+VEJ3Lx5U1euXNGNGzeUkZEhLy+vIvvxWwgAAAAAAAAAAAAAKHPZ2dmSJG9vb7m5uVEkgXJXrVo11a5dW5KUk5NTbL9K85uYmpqq6tWr2zsMAAAAVADkjgAAALAUuSMAAEDJFWy3UaNGDTtHgqrExcVFkpSXl1dsn0pRKHHo0CH9+uuvatiwob1DAQAAgIMjdwQAAIClyB0BAADKBitJwJYMBoMkyWg0Ftunmq2CuZcvv/xSW7duNTuWkZGhyZMnF3tOXl6eLl68qAMHDkiSevfuXa4xAgAAwDGQOwIAAMBS5I4AAABA1VJQKHE3DlMocfz4ca1du9bsWE5OTqFjxWnXrp1mz55dHqEBAADAwZA7AgAAwFLkjgAAAADu5DCFEt27dzf7OTw8XLVq1bprZbeTk5M8PT3Vvn17BQQEWFQZAgAAgIqP3BEAAACWIncEAAAAcCeHKpS4/aYlPDxc7u7ueuWVV+wYFUqj5Y637R0CAACopMgdAQAAYClyRwCofPj7AwCUzKRJk7Ru3TrNnDlToaGh9g7HKmvWrNHkyZMVEBCgL7/8stTXc5hCCQAAAAAAAAAAAABA1RMUFKS4uDizY87Ozqpdu7batGmjv/zlL3r22WdVo0YNO0VY2L59+7R//3516NBBAwcOtHc4sJKTvQMAAAAAAAAAAAAAAMDV1VUNGjRQgwYNVKtWLaWmpiouLk4zZ85Ur169dOXKFXuHaLJ//36Fh4eXyeoGttKwYUO1bNlSdevWtXcoduewK0pcvXrV3iGgBKKiouwdQpkZNGiQ6XVlmhcAAJURuSMAAAAsRe4IABVTZXlOz98egLt78skntXTpUtPPKSkpevfdd/XBBx8oPj5e06dP18cff2zHCCu2119/Xa+//rq9w3AIDlsoAQAAKp5169bp008/tXcYZWLYsGEaMWKEvcMAAAAAAAAAgCqrQYMGevvtt3X58mVt2LBB0dHRunTpknx8fOwdGio4tt4AAAAAAAAAAAAAADis4cOHm14fPXrUrG3fvn3y8vJShw4dJEnfffedRo4cqVatWqlhw4bq1KmTpk2bphs3bhS67qlTpzR58mR16NBBDRo0ULNmzTR48GBt3769yDi8vLxM/wsPD5d06wuEtx/38vJSWFhYsXMJCgqSl5eX1qxZo+vXr+vdd9/VQw89JF9fX913333q37+/du7caXbO4cOH9fe//129e/fWH//4RzVo0EB//OMfNXz4cG3btu2u752Pj49V8RX1nq5evVo9evSQr6+vmjdvrsmTJys1NfWu17D2vS1w5MgRDR06VE2bNlXjxo01cOBA/ec//7nrOSVRIVaUSE9P19mzZ5WVlaX8/Py79g0ICLBRVAAAAHBE5I4AAACwFLkjAABAxdCoUSPT64yMjGL77dy5UyNHjtT169dVs2ZNubi46OzZs1q1apXeeOMNubi4mPquWbNG06ZN082bNyVJHh4eSk9P1+7du7V79269/PLLevXVV82u36BBA9PrrKwsZWVlydXVVZ6enmb9atWqdc855eXlaejQodq7d6+cnJxUu3ZtXbt2TQcOHFBMTIwee+wxSVJmZqb69OljOq9GjRqqWbOmLl26pG3btmnbtm2aOHGi5s+fX+Q4DRo00PXr103vXW5u7j1ju91rr72mxYsXy83NTXl5ebpy5YrWrFmjU6dOaceOHXJyKrw2Q0neW0naunWrRo8erZs3b8rJyUkeHh7av3+//vKXv5T5CtAOXSixY8cOzZ8/v1BVUHEMBoOuXLlSvkEBAIBijRgxoly3q2APR9wNuSMAAAAsRe4IAABQsfz666+m115eXkX2uX79uqZPn66HH35Yc+fOVfv27SVJZ86c0T/+8Q8ZDAZT37i4OL3wwguSpJdeekkTJkxQgwYNlJubqy1btujll1/WO++8owcffNCsSOGHH34wvQ4LC1N4eLiefPJJLV261Oo5rVixQj/++KMiIyP19NNPq1atWsrNzdXWrVuVlJRk1rd9+/YKCQlRnz59dN9995nmGx0drenTp+vDDz9U9+7dNXDgwELjHD9+3PR60qRJWrduncUxpqSkaMWKFVq1apX+/Oc/Ky8vT+vXr9e0adN0+PBh7dixQ48//rjZOSV9b1NTUzV58mTdvHlTQUFBWrRokerVq6ezZ89qwoQJ+vjjjy2O2xIOWyjxxRdfaOzYsTIajTIajapRo4bq1atXZEUKAAAAqjZyRwAAAFiK3BEAAKDiWbFihSTJyclJ/+///b8i+6SkpOiBBx7Q//7v/6patf/7M3jz5s21ZMkSs76zZ89Wfn6+Zs2apRkzZpiOu7q66qmnntL169c1efJkvf/++2Z/zC9LR48e1aeffqp+/fqZjT948GCzfrVq1dL+/fsLnV+jRg099dRT+uWXXzRv3jxt3LixyEKJ0rh+/bpmzJihJ554QtKt93/UqFHasmWLtm/frtjY2EKFEiV9b9esWaOrV6/K19dX//73v+Xq6ipJatq0qVavXq3OnTsrOzu7zObmsIUSCxcuVH5+vu6//35FRESoc+fO9g4JAAAADsqWuWNmZqYiIiL0xRdfKDk5WXXr1lXfvn01e/Zs1a9fv0zGyM3N1ZIlS/T555/rp59+Ul5envz8/NS3b1+99NJLZTYOAABAVcRzRwAAgIrh+vXr+vHHH7V48WJ99dVXkqSnnnpK9erVK/acGTNmmBVJFOXUqVM6evSoqlWrpvHjxxfZp+AP+AcPHtTNmzfvec2S6Natm1mRREl16tRJkvTTTz+V+lpFGTVqVKFjf/rTn7R9+3b98ssvZsdL897u3LlT0q2VpQuKJAo0aNBAjz32mL744ovSTsfEYQslfvjhBxkMBq1cudJszxkAAADgTrbKHTMzM9WvXz/Fx8fL399fAwYMUEJCglauXKmdO3dq165d8vX1LdUYubm5CgoK0pEjR+Tp6akePXqoevXqOnz4sD788EN98cUX2rFjh5o0aVJGswIAAKhaeO4IAADguNatW1fs1hAPPvig3nnnnWLPdXZ2VkBAwD3HOHz4sCQpPz9fDzzwwF375ubmKjU1VQ0aNLjnda0VGBhocd+8vDytWbNGn3/+ueLj45WamqqbN2+a9cnMzCzrEOXu7l7k3AuKVbKyssyOl+a9TUxMlCTTlil36tixY9UolKhdu7Zyc3O5WQEAAMA92Sp3DAsLU3x8vHr16qX169fLxcVFRqNRkyZN0vr16zVz5kytXr26VGOsWrVKR44cUfPmzbVz507VqVNHkpSTk6MRI0YoNjZWb7/9don2PQQAAADPHQEAAByZq6urPD09Jd0qfKhdu7Zat26tgQMH6sknn5Szs3Ox59atW1dubm73HOO3336TdOuP+SkpKffsn5OTY2H01vHz87OoX2Zmpp5++mkdOHDAdMzd3d303PDGjRtKS0vT77//XuYxFoxxp4L/Dvn5+WbHS/PepqWl3XXMunXr3vN61nDYQonAwEBt3LhRv/32G0sLAwAA4K5skTvm5uZq5cqVkqSIiAi5uLhIkgwGg+bPn6+oqChFR0fr/Pnzaty4cYnHiYuLkySNHj3a7KbAzc1Nzz33nGJjY/Xtt9+WfCIAAABVHM8dAQAAHNeTTz5Z4i8I1ahRw6J+RqNR0q0VCr7++usSjVUWLI134cKFOnDggNzd3fXmm29q8ODB8vb2NrXv3btXTzzxhGle9lQW763BYCjLkIrlZJNRSuDVV1+Vt7e3pk+fXm5VOgAAAKgcbJE7HjhwQFlZWWrdurVatGhh1ubl5aWAgAAZjUbFxMSUapyC/fecnAqn6gXHiquqBgAAwL3x3BEAAKBqKyiWvXDhgp0jscymTZskSW+99Zb+53/+x6xIQpIuX75sj7CKVJr3tmBeV65cKbK9uOMl5bArSsTFxem5557TokWL1K5dOw0ePFjNmjW755IaI0aMsFGEAAAAcBS2yB3j4+MlSe3atSuyvX379oqJiVFCQoLlgRfhscce04YNG7RmzRqNHj1atWvXliRdv35dy5cvlySFhISUagwAAICqjOeOAAAAVVvXrl0l3SowOHbsmDp27Fii6xR8qSkvL6/MYitKQdHBAw88UGT77Vty2Ftp3ts2bdro0qVLOn78eJHtx44dK5MYCzhsocTzzz8vg8Ego9GonJwcrVixwqLzuGEBAKBogwYNsncIZaoyzScqKsreIVR4tsgdC25IGjZsKOnWf7dFixZp9OjRGjNmjOl4UlKSldGbe+qpp/T111/r448/VqdOnfTggw+qevXqOnz4sG7cuKGIiAgNHz7c6uuuWbNGa9eutahvWFiYOnbsqP3792vgwIF67rnnNH78eLM+kZGRputNmzZNI0eONGt/6623TL/boaGhGjx4sFn7q6++qu3bt0u6dRPk4+Nj1n5l9RzlJn4jSaoz6g25tXnIrP23f72sGz/fujmqN26Bavyhk1l7yvvP6/cLpyVJ9Se/Lxe/VmbtyQvHKO/Krf9WDf66QtXrmW+XcjFsuPKvpUqSGr6yTs6e5n84ufD3J2S8cesbqL6vR8mpRk2z9qRZfU2v/d7eYdaWfz1bF98YJEkyuLip0d+/MGvPy7ii5Pm3fjedPOrIN3S9Wfvvl88r5R9jJUnOdf3U8KWPzNpvJP2g35ZMkSRVb9RCDaZ8YNZ+/afvdXn53yRJLvd1VP3n3jFrv3z5sk6cOCEvLy91795dkZGRZu3btm3TnDlzJEn9+vXTvHnzzNo3bdqksLAwSbc+q2fPnm3W/sknn2jRokWSpGeeeUYvvviiWfs///lP/etf/5Kkcv/dmzt3rh5//HGz9hdffFH79++XdGtpy0ceecSsfcKECabtbz788EPTA4ACo0aNUmJioiRp9erVatOmjVn7kCFDdO7cOUnSZ599pqZNm5q19+/f3/RNkK1btxZaEj4wMFDZ2dmSpNjYWLm7u5u133///abXhw4dMmvLyspSz549JUk1a9bU3r17zdp/++03DRgwQJJUr149ffXVV2btZ8+e1VNPPSVJ8vf318aNG83aT548qdGjR0uSWrdurY8//tis/ciRI5o4caIkqUuXLqY9ZwvknDyg1I9flyS5tv6T6o6ea9aefXS3rm6YL0ly6/io6gwPNZ/ff79UWtSt362a9/eX95Pmv1vX9n2mjK/+KUmq1X2Iag+YYNaesWu1ru3+RJLk0WukPPuMNmtP37pMmftvzdmz/3h59HjKrP3q55HKPnTrPfMaNE3uDwSZtaeuD1POsT2SJO+hr6hm515m7Y7wuZf0/3/uPfTQQ/rxxx/N2ivT796yZcvM2r/++mu99NJLksTn3sKFGjFihGrWNP93rbLhuSMAAEDV1qZNG3Xo0EHHjx/Xm2++qQ0bNhS5uqsk/fTTT/rDH/5QZFvBfe3FixfLLdaCca5cuaKff/5Zbdu2NWs7d+6c1q9fX8yZtlea97Z3796KjY3VF198ob///e+mlXclKSUlRTt37izTWB22UOLhhx+22f4jAAAAqNhskTtmZWVJktzc3CRJERERSkhI0OnTpzVmzBjTH4wK+pWUwWDQ4sWL1bJlS7355pvatm2bqS0oKEjdunUr0XXPnTunuLg4i/pmZGSUaAwAAICKgOeOAABUTOvWrdOnn35q7zBKbdiwYRRgOoB58+bpySef1K5du/TMM8/o9ddfN33Z4bffftOOHTu0fPlytWzZUv/85z+LvEb79u0l3VrR4b///W+xKz6U1qOPPqrPPvtMc+bMka+vr7p06aL8/Hzt27dP06dPL7YQwV5K+t4GBwdr4cKFunjxosaNG6d3331X9erV09mzZzVhwgRT8X5ZcdhCiS+//NLeIQAAAKCCsEXuaDQazX4eOnSoFixYoODgYLP20j50T09P15gxY3T48GH94x//0OOPP67q1atr7969mjFjhvr3769PPvlEjz32mFXX9ff3V0BAgEV97/yWd506ddSyZUuzY7fvhVivXr1C7QVbhkiSj49PoXYPDw+LYoF9ubu7F/pvd/ToUdNrDw+PQu23rw5Su3btQu316tUzvfb29i7UXqdOHbPX5fm717Bhw0Ltt39LvlGjRoXaC4qlJMnPz69Qe40aNUyv/f39C7VXr17d9LpZs2Zq0aKFWXu1av93m37ffffJ19fXrP32hx/Nmze/6/+X7hz72rVrZte5s71WrVpmcdzZfvvnW/Xq1Qu1314oVqNGjULtycnJpte3v49wTHf+96tMv3t3tp8+fdr0ms+9RpV+NQmJ544AAAC4tWre4sWL9eKLL2rbtm3atm2b3N3d5ezsbPYlojvz59sFBASoXbt2io+PV79+/dSkSRNTfv/ss8/q2WefLZNYX331Ve3Zs0c//fSTevXqJXd3d+Xn5ysnJ0f16tXTvHnzNHXq1CLPffTRR81WwC2Y2/vvv6+PPvq/VUr9/Py0Z8+eMom3pO9tnTp1tGTJEo0ePVpbtmzR1q1b5enpqfT0dFWrVk2jR4/W6tWryyRGSTKkpaUZ793t/2PvzsOqrPP/j78OmyCCoCIgiJprrpVoGWmak5baaFkq+TWyxTHLiZoxB52yRTO1pmwxm6nJsdxbKM1CxTRFbdLKBcIUFwQ1UTwgICpw//7wxxlJ1MN27iPn+bgurwvu+3Puz/t2Obzu2/e5P4DrufCR7jwSHbDPhf9u9vSbZF4hsGm96uWLtn3Ugv+YcAaj9p+2fc3PmavDpEmTNGfOHD3++OOaNm3aRfvfffddxcXFadCgQfr4448rPU9sbKzmzZunN95446KLqdWrV+u+++5TixYttG3bNqfrFq8MfnY4lwt/bvDehJrGv3/nw3sAADgG9x0B58ZTCyqmNi2PWxs5w8+ZQ4cOSZKaNm162XEDBw5UUlKSoqOj9e6771Zojg0bNuiuu+5S06ZNtXPnzgq9Ni0tTe+++67WrVunzMxMeXh4qEmTJmrbtq369eunwYMHX7ZRPCsrS9OmTVNiYqKOHj2qc+fOSZImTpyouLi4cl9Teq7vvPOO7UNYV3LgwAG9/PLL+vbbb2W1WhUcHKy+fftq4sSJSktLu+T5d+rUyfZncDm/f+2Vfk8XLFigxx9/XFFRUZdsRK7s7+0PP/ygmTNn6vvvv1dxcbGuv/56/f3vf1daWtoV57zQlf7uOe0TJQAAV7fy/oMeAK5mTZo0kVT2U6kXKt0eFhZW6TkMw7DdjPn9+uHS+XX6vL29tX//fqWnp6t58+aVngsAAAAAAABwFlV56lfPnj1ltVor9dqWLVvq1VdfrfTcQUFBeuONNyr0msqca/PmzS+5BEiTJk0uef4VbRwpdaXf05EjR16xyaOyv7fdunXTsmXLLtp+00032d1YYo+rolHiv//9rzZu3KjDhw+rsLBQb7/9tm1ffn6+srKyJIkbxQAA2OHCJxkAtVFNZccOHTpIkpKTk8vdv2vXLklS+/btK1H1eceOHdPp0+f/jV74GOxSbm5u8vHxUWFhoY4dO1br8i9NdgAAwNG47wgAAAC4JqdulDh48KDGjBmjH374QdL5T9hZLJaLLliioqJUWFiotWvXqkuXLmaVCwAAABPVdHbs0aOHfH19lZqaqrS0NLVs2dK2z2q1KikpSRaLRX379q30Ofj7+8vd3V3FxcXavn27brnlljL7MzIydPLkSUlSaGhopecBAABwddx3BABcSnR0tEOWrKiNWPLXOfBBOcA+TtsokZ2drUGDBikjI0OtWrVSz549tXTpUhUUFJQZ17hxY40cOVL/+te/FB8fzwULAJjIGdY7qy61bb1Q1gpEbeeI7Ojt7a2YmBjNmTNHzzzzjBYtWiQvLy8ZhqG4uDgVFhZq0KBBCg8PL/f106dP14wZMyRJy5cvV8+ePS8a4+Pjoz59+mjNmjV69tlntXTpUgUFBUk6f6P+r3/9qyTphhtuuOK6jgAAACgf9x0BAAAAOG2jxBtvvKGMjAwNHjxY77//vjw8PPTVV19ddMEiSSNGjNC//vUvbd682YRKAQC4utDZ7Rzo7K5ejsqOcXFxWrdunRITExUZGanIyEilpKQoNTVVoaGhmjlzZpXPZebMmbrzzjv1008/KTIyUt26dZOnp6e2bdumY8eOKSAgQG+++WaV53FGe/pNMrsEl8fyJwAAV8B9RwAAAABuZhdwKV9//bUsFoteeOEFeXhcvp/juuuuk6enpzIyMhxUHQAAAJyJo7Kjn5+fEhIS9MQTT0iSVqxYoZycHMXExGjdunVq0qRJpeq/0DXXXKONGzdq/PjxCg4O1oYNG7R27VrVq1dPjz76qJKSktSxY8cqzwMAAOCquO8IAAAAwGmfKHHo0CH5+vqqWbNmVxzr5uamevXqKSsrywGVAQAAwNk4Mjv6+flp6tSpmjp1aoVeFxcXp7i4OLvGBgUF6aWXXtJLL71UmRIBAABwGdx3BAAAAOC0T5Tw9vZWYWGhiouLrzi2oKBAubm58vf3d0BlAAAAcDZkRwAAANiL7AgAAADAaRslrr32WhUXF9u1/t9nn32m4uJiderUyQGVAQAAwNmQHQEAAGAvsiMAAAAAp22UuPfee2UYhuLi4pSdnX3Jcd9//70mT54si8Wie++914EVAgAAwFmQHQEAAGAvsiMAAAAAD7MLuJQHH3xQixYt0rZt29SzZ08NHTpUp0+fliQlJCQoMzNTa9eu1TfffKPi4mJ1795dI0aMMLlqAAAAmIHsCAAAAHuRHQEAAAA4baOEu7u7li1bptGjR2v9+vV6++23bfuio6MlSYZhSJJ69uypefPmyc3NaR+QAQAAgBpEdgQAAIC9yI4AAAAAnLZRQpICAwMVHx+vhIQELVmyRFu3blVWVpYkqVGjRuratavuu+8+DRgwQBaLxeRqAQAAYCayIwAAAOxFdgQAAABcm1M3SpTq37+/+vfvb3YZAAAAuAqQHQEAAGAvsiMAAADgmq6KRgkAAAAAAAAAAAAAAC7l/fff1/79+80uo4wWLVrokUceMbuMi3Tr1k179uyxff/OO+9o5MiRJlbkeDRKAAAAAAAAAAAAAACuavv379eO3Xt1xi/Y7FIkSXVO/VYtxwkICLjkvnvuuUf//ve/K3zMF198Ubm5ufr111/12muvVaG6qxeNEpLy8vI0c+ZMffHFFzp69KgaNmyofv36afLkyQoKCqq2eXJycvTWW2/pq6++Unp6utzc3BQWFqaoqCi98MILqlevXrXNBQAAAAAAAACouEWLFmnJkiUOmWvIkCE1duzhw4crOjq6xo4PAIAzOuMXrMxu/2d2GZKksB8+rrZjdejQQX/+858v2h4REVGp4915552SpA0bNtAo4Wyys7O1fv16eXt72/6gSv3888+aMmWKfv75Z3l4eKhv3756/vnn1aRJkwrPk5eXp/79+ys5OVkREREaMGCAUlJSNG/ePK1evVpr1qxRaGholc9n//79uuuuu5SRkaHGjRurT58+kqR9+/bpgw8+0NNPP02jBAAAQCU5KjsCAADg6kd2BACgZozaf9rsEoBaKyQkRMOHDze7jFrFzewCLmXhwoV6+OGHtW7dujLbDxw4oD/+8Y/asGGDcnNzlZ2drU8++UR33nmncnJyKjzP9OnTlZycrNtuu01bt27Vhx9+qC1btmjEiBHKzMzUxIkTq3wuxcXF+r//+z9lZGTo8ccfV3Jysj7++GN9/PHH2rRpk7Zs2aLAwMAqzwMAAOCqHJUdAQAAcPUjOwIAAKA2OnLkiCZPnqyoqChFREQoNDRUPXv21AcffFDlYyclJWnw4MFq2bKlQkJCdN1112n8+PHKzc29aOzOnTs1cuRItWjRQsHBwerVq5e++OKLKtdQ3Zz2iRKrV6+WJI0YMaLM9n/+8586deqUWrdurbfeeksFBQV65plnlJaWpnfeeUeTJk2ye47CwkLNmzdPkjRz5kx5eXlJkiwWi1555RXFx8dr+fLlysjIUHh4eKXP5bPPPlNycrL69OmjadOmXbS/Xbt2lT42AAAAHJMdAQAAUDs4Ojuy7O/VJzo6miUrAACAUzl37pxOnDhx0fbAwEC5uZ1/NkLph/UHDx6s+++/X15eXlq7dq3+8pe/KCsrS3/7298qNfeePXt07733qlmzZnrqqafk5+enAwcOKD4+XidPnpS/v79t7KZNmzR06FA1atRI48ePl7+/v1atWqWYmBi99957TvVUDKdtlNi3b588PT3VpUuXMttXrVoli8Wif/zjH7rxxhslSXPmzFG/fv20cuXKCl2wbN68Wfn5+WrXrp1atWpVZl9AQICioqKUmJioxMRExcTEVPpcPv30U0nS2LFjK30MAAAAXJojsiMAAABqB0dmR5b9BQC4ko9a+JhdAsQSKLXVd999p5YtW160PTk5WWFhYZKkrl27KiUlRb6+vrb9jz76qAYMGKB3331XzzzzjK2poiISExN1+vRpzZ07V9ddd51t+3PPPaeSkhLb94Zh6Mknn1SDBg20YcMGBQQESJIeeeQR3XPPPXrhhRc0bNgwWSyWCtdQE5y2UeLYsWOqV69emT+snJwc7du3T0FBQbrlllts27t16yYvLy8dOHCgQnMkJydLkjp06FDu/o4dOyoxMVEpKSkVP4EL/Pjjj5Kkm2++WXv37tUnn3yio0ePKigoSP369VO3bt2qdHwAACqCoIzayBHZEQAAALWDI7Pjhcv+Ll68WF5eXjIMQ4899pgWL16siRMnav78+VU6n98v+/v888/L09PTtj81NZVlfwEAAK5y119/vaZMmXLR9kaNGtm+vjDznTlzRvn5+TIMQx07A+IbYgAAdKBJREFUdtSmTZt0/PhxNW7cuMJz+/n5SZLWr1+vzp0723K0xWKRu7u7bdz27du1Z88ejR07VsXFxWWegNGjRw+tXbtWe/fuVevWrStcQ01w2kYJb29v5eTkqKioSB4e58v873//K8MwbB3dF/Lx8dHZs2crNMfhw4clSSEhIZKk+Ph4zZ49Ww888IBGjx5t256ZmVnp88jPz9exY8fUoEEDrVy5Uk888YTOnTtn2z9r1ixFR0fr7bffLvMXCQAAAPZzRHYEAABA7eCo7MiyvwAAAKguDRo0UO/evS87pqioSK+//roWLFhQbqNvYWFhpeYeOnSoFi1apClTpmj27NmKjIzUjTfeqBEjRtieZiGdf5qZJM2dO1dz584t91hZWVk0SlxJ+/bt9f333+vTTz+1rVWyePFiWSwW3XTTTWXG5uTkKDc3V82bN6/QHPn5+ZLOX+xI5y9YUlJStHfvXo0ePdr2WJLScZVx6tQpSdLZs2cVGxuroUOH6q9//auCgoK0adMmxcbGatGiRWrTpo2eeuqpCh17wYIFWrhwoV1jp0+frs6dO6ugoKBKjR+uas+ePWaXAMBEvAegptX037GwsDDVrVu3RucwmyOyIwAAAGoHR2VHlv0FAACAI02ePFnvvfee/vjHP2rSpElq1KiR3NzctGDBAi1btkyGYVTquN7e3lq+fLn++9//asOGDdqwYYOmTZum2bNnKzEx8aLGh8cff1y33357ucdq3759pWqoCU7bKDF8+HBt2bJFf/7znxUfH6+TJ0/q+++/l5eXl+6+++4yYzdu3CjDMCrcffL7vwzDhg3TrFmzNHLkyDL7q7JOSum6LHl5eerWrVuZ7pk777xTJSUlGjlypObMmaPY2NgKzZWenq6kpCS7xubm5lascABArTJr1iyzS6gWEyZMsH1dW84J1cMR2REAAAC1g6OyI8v+AgAAwJEWL16sHj16XLS02+U+eF/61LPi4uLLHttisejGG2/UjTfeqL/+9a9at26dhgwZoo8++kgvvviiJOmaa66RJHl6el7x6RfOwGkbJWJiYvTdd9/p888/1zfffCNJcnd314svvqjQ0NAyY5cuXSpJ6tOnT4XmqFevniTp9Onza7XHxsYqNjbWtr+goECSqvQJzAtfGx0dfdH+AQMGyMvLS1lZWdq3b59atmxp97EjIiIUFRVl11h/f39bPfynQMXxewa4Nt4DnBN/LriQI7IjAAAAagdHZceredlfnmQLAEDtwJNsXYu7u7ttablSBw8e1IoVKy75mtIl4C73d+XEiRNq2LBhmW2lTREXLlHXuXNntWzZUv/5z380duxYW94ttW/fPtvrnIHTNkpYLBb9+9//1qOPPqqtW7fKx8dHPXv2VNu2bcuMO3funCIiIjR27FgNGjSoQnM0adJEknT06NFy95duv3BtlYqqX7++6tatq4KCAjVt2vSi/RaLRcHBwTp06JCOHz9eoUaJkSNH2p5+AQAA4MockR0BAABQOzgqO17Ny/7yJFsAAHC1qnPqN4X98LHZZUg6X4vk57D5Bg8erA8//FBjx45Vjx49dOjQIf373/9W8+bNL/kUs7CwMPXo0UP//ve/1aBBAzVp0kSBgYHq16+fbcysWbP07bff6o477lCLFi106tQpzZ8/Xx4eHrrvvvts49zc3PTWW29p6NChioqKUkxMjJo1a6bMzExt2LBBmZmZ2rFjR43/PtjLaRslSvXo0UM9evS45H5PT0+99NJLlTp26WPvSh+D93u7du2SVLW1UiwWi1q1aqUdO3bIarWWOyYnJ0fS+fVdAAAAUHk1mR0BAABQu9R0dryal/3lSbYAANQOrvazuUWLFmaX8Dt+Dq1p2rRp8vX1VXx8vD7//HO1bNlS06ZNU0ZGxmWXe3v//ff19NNP6/XXX1dubq46duxYplFiwIABOnz4sD755BNlZWUpICBA1113nd566y117dq1zLFuvvlmrVmzRq+++qo++ugj5eTkqHHjxurcubMeffTRGjv3ynD6Roma1KNHD/n6+io1NVVpaWllnuZgtVqVlJQki8Wivn37Vmme3r17a8eOHUpKSirTVSNJaWlpys3NlYeHh8u9WQEAAAAAAAC11dW87C9PsgUAAFejRx55xOwSasSlPoz/e3Xr1tXUqVM1derUi/ZNmDDhkq8LCwvTkiVLLrm/V69e6tWrl101SOcfVvDhhx/aPd4sLt0o4e3trZiYGM2ZM0fPPPOMFi1aJC8vLxmGobi4OBUWFmrQoEG2tVl+b/r06ZoxY4Ykafny5erZs2e540rnWLhwoYYMGaLevXtLOn+RNGnSJEnSXXfdxRo+FbBo0aLL/oOtbkOGDKmxYw8fPrzcC1kAAAAAAABcva72ZX8BAACA2qzWNErEx8fr9OnTFf4P57i4OK1bt06JiYmKjIxUZGSkUlJSlJqaqtDQUM2cObPKtbVs2VJTpkzRs88+q3vuuUfdunVTUFCQfvrpJ2VmZio8PFwvv/xylecBAACAfSqbHQEAAOB6KpsdWfYXAAAAcF5uZhdQXSZOnKgnnniiwq/z8/NTQkKC7bUrVqxQTk6OYmJitG7dOlvnd1WNHz9eS5YsUc+ePbV7924lJCTIw8NDY8aM0bfffqvQ0NBqmQcAAABXVtnsCAAAANdT2ez4+2V/L1Tdy/5KUlJS0kX7WPYXAAAAKF+teaKEJBmGUanX+fn5XXK9lsuJi4tTXFyc3eP79++v/v37V7Q8lCM6OppPgAIAgCqpbHYEAACA66lMdmTZXwAAAMB51apGCQAAAAAAAABwFiz7CwAAADgnGiUAAEC1WbRokZYsWeKQuYYMGVKjxx8+fDhPLwIAAABQJaXL/s6YMUNffvmlVqxYoYYNGyomJkaTJk1ScHBwtcwzfvx4tWnTRnPmzNH27dv1448/qkmTJhozZowmTJigoKCgapkHAAAAqC2colGiQYMGkqQ2bdpoy5YtZbbZyzAMWSyWaq8NAAAAzoXsCAAAAHs5Q3Zk2V8AAADA+ThFo0TpGn8XrvXHmtEAAAAoD9kRAAAA9iI7AgAAACiPUzRKbN++XZLk6elZZnujRo2UmJh4xdcbhqG+ffsqOzu7RuoDAAD2iY6OZrkK1DiyIwAAAOxFdgQAAABQHqdolIiIiCh3u7u7+yX3lTcWAAAAtR/ZEQAAAPYiOwIAAAAoj5vZBQAAAAAAAAAAAAAAADiKUzxRojxTpkyRr6+v3eNZWxAAAMB1kR0BAABgL7IjAAAAAKdtlIiNja3Q+BkzZuj06dM1UwwAAACcGtkRAAAA9iI7AgAA1E7vv/++9u/fb3YZZbRo0UKPPPKI2WWgHE7bKFFRd999t9klAAAA4CpBdgQAAIC9yI4AAABXh/3792v/L8mK8HIzuxRJUvrZkiq9/rHHHtOiRYuuOO6dd97RyJEjqzSXK6o1jRIAAAAAAAAAAAAAANcV4eWmyaF1zC5DkjTtyJkqvX706NHq3bu37fuEhAR99tln+stf/qI2bdrYtt94441VmsdV0SgBALjqLFq0SEuWLHHYfEOGDKmxYw8fPlzR0dE1dnwAAAAAAAAAcIRR+1mqCqhO3bt3V/fu3W3fHz58WJ999pl69+6tnj17mlhZ7eAUjRJJSUnVdqyoqKhqOxYAAACcD9kRAAAA9iI7AgAAwJUEBAQoOjpajz32mJ577jlt3bpV7u7u6tKli7788ktJ0vTp0zVjxgxt375dzZo1s722dKkPq9Va5pgHDhzQyy+/rG+//VY5OTlq0aKFxowZo4cfftiRp1btnKJRYtCgQbJYLFU+jsVi0YkTJ6qhIgAAADgrsiMAAADsRXYEAACAqzly5IjuuusuDRgwQM8//7xycnK0ePHiSh1r7969uv322+Xm5qaHHnpITZo00aZNm/SXv/xF2dnZmjBhQjVX7zhO0SgRHh5+yQuWQ4cO2b729vZWQECAJMlqtaqwsFDS+QuV8PDwGq8TAOAcoqOjWa4CcGFkx9qr9aqXzS4BAADUMmRHAABqVnx8vNklVJsLl2CuTecF17Nu3TrNnTtXI0aMsG178sknK3WsCRMmqKioSBs2bFDz5s0lSaNHj5avr6/+8Y9/6NFHH7Xl6KuNUzRK7Ny586JtZ86c0ahRo3T48GE99thjGjlypNq2bWu7sDEMQ7t379bHH3+suXPn6tprr9XHH3/s6NIBAADgYGRHAAAA2IvsCAAAAFfTokULDR8+vMw2D4+KtwVkZ2dr3bp1GjhwoPz8/Mo8Ye3GG2/UvHnztG3bNvXt27fKNZvBKRolyvPKK69ozZo1mj17tkaNGnXRfovFonbt2mnq1Klq06aNYmNjNWPGDP397383oVoAAACYiewIAAAAe5EdAQAAUJtd2ARcFfv27ZNhGFqxYoVWrFhR7pisrKwqz2MWp22UWLZsmby9vTVy5Mgrjh05cqT+9re/acmSJVywAAAAuCCy49WrtjzKksdzAgBw9SA7AgAAoDYLDAys1OuKi4vL3T5s2DDdf//95e5r165dpeZyBk7bKHH8+HF5enrKzc3timPd3d3l5uam48ePO6AyAAAAOBuyIwAAAOxFdgQAAIAr8/LykiQVFBSU2X7kyJEy37do0UIWi0VFRUXq3bu3o8pzmCtfDZgkPDxc+fn5+uabb6449uuvv1Z+fr7Cw8MdUBkAAACcDdkRAAAA9iI7AgAAwJWFhYVJkrZt22bblp6eri1btpQZ17BhQ/Xq1UvLly9XcnLyRcfZv39/zRZaw5z2iRL33XefXnnlFT366KN67rnndN999ykgIKDMGKvVqqVLl2rq1KmyWCy67777zCkWAAAApiI7AgAAwF5kRwAAgNor/WyJph05Y3YZks7X0sLsIsrRt29f1a1bV5MnT1ZmZqbc3d01f/58tWzZUqmpqWXGvvrqq+rfv7/69eunBx54QG3btlVWVpa+//57JSYm6uTJkyadRdU5baPEU089pfXr12vz5s2aOHGi4uLiFBYWpgYNGshisejEiRPKzMxUSUmJDMNQjx49FBsba3bZAAAAMAHZEQAAAPYiOwIAANROLVo4V1tCCzlfTZIUFBSkxYsXa9KkSXrjjTfUvHlzTZs2TStXrryoUaJ169Zat26dZs6cqS+++EJZWVlq2LCh2rdvr1dffdWkM6geFqvVaphdxKWcOXNGr732mt5///1LdqMEBgbq0Ucf1dNPP606deo4uEIAAAA4C7IjzDRkyBDb1/Hx8abVAVxNLvx3s6ffJPMKgU3rVS/bvua9DLUd2REAAPwe1/Y149ChQ5Kkpk2bmlwJXM2V/u457RMlJKlOnTqaNGmSJkyYoK1btyo1NVVWq1XS+QuVa6+9Vl27dpWHh1OfBgAAAByA7AgAAAB7kR0BAAAA13ZVJH1PT0/16NFDPXr0MLsUAAAAODmyIwAAAOxFdgQAAABck5vZBQAAAAAAAAAAAAAAADgKjRIAAAAAAAAAAAAAAMBl0CgBAAAAAAAAAAAAAABcBo0SAAAAAAAAAAAAAACgVjAM44pjaJQAAAAAAAAAAAAAANSYkpISs0uACyltlLBYLJcc4+GoYgAAAAAAAIBSixYt0pIlS8wuo1oMHz5c0dHRZpcBAAAAOB1PT0+dO3dOZ86ckY+Pj9nlwEWcPXtWkuTu7n7JMTxRAgAAAAAAAAAAAABQ7erWrStJOnnypAoKClRSUmLXsghAZRiGoaKiIuXk5EjSZZtzeKIEAAAAAAAAAAAAAKDa1atXT4WFhTpz5oxOnDhhdjlwIe7u7vL397/kfholAAAAAAAA4HDR0dE1vlzFkCFDbF/Hx8fX6FwAAAAALubm5qZGjRopLy9PBQUFKioq4okSqFEWi0Xe3t7y9/eXm9ulF9igUQIAAAAAAAAAAAfJzs7Wq6++qgkTJigwMNDscgAAqHFubm7y9/e/7Kf7AUe7dAsFAAAAgIvk5eXpueeeU5cuXRQcHKz27dsrNjZWWVlZ1XL8gIAAu34dOnSoWuYDAAAA4FhLly7VL7/8oiVLlphdCgAAgMviiRIAAACAnfLy8tS/f38lJycrIiJCAwYMUEpKiubNm6fVq1drzZo1Cg0NrdIcl3sE+YEDB7R582Y1b95c4eHhVZoHAAAAgONlZ2dr7dq1MgxDa9eu1fDhw3mqBAAAgAlolAAAAADsNH36dCUnJ+u2227T4sWL5eXlJcMw9Nhjj2nx4sWaOHGi5s+fX6U53n333UvuGzNmjDZv3qz7779fFoulSvMAAAAAcLylS5eqpKREklRSUqIlS5Zo7NixJlcFAADgemiUAAAAAOxQWFioefPmSZJmzpwpLy8vSZLFYtErr7yi+Ph4LV++XBkZGTXytAer1arly5fLzc3tsk+dAACgOgwZMsTsEqpdbTmn+Ph4s0sAUAXr169XUVGRJKmoqEjr16+nUQIAAMAEbmYXAAAAAFwNNm/erPz8fLVr106tWrUqsy8gIEBRUVEyDEOJiYk1Mv/SpUt1+vRp9erVS02bNq2ROQAAAADUrFtvvVUeHuc/v+jh4aFbb73V5IoAAABc01XzRImSkhJlZ2fr9OnT3BgGAADAZdVEdkxOTpYkdejQodz9HTt2VGJiolJSUqplvt/76KOPJEkjR46skeMDAAC4Ku47wpGGDRumtWvXSpLc3Nw0fPhwkysCgKvHokWLtGTJEofMVZNPIxs+fDhPCwWcgNM3Sqxdu1Zvv/22tmzZosLCQlksFp04ccK2f//+/XrllVfk5uamV199Vb6+viZWCwAAADPVZHY8fPiwJCkkJETS+cdez549Ww888IBGjx5t256ZmVmNZ3Tezz//rJ07d8rf31+DBg2q1DEWLFighQsX2jV2+vTp6ty5swoKCmrkfGq7PXv2mF0CAFSbj1r4mF0CJI3af9r2dU3/nAkLC1PdunVrdA5nwX1HmKFBgwa67bbblJCQoNtuu02BgYFmlwQAAOCSnLpRYtq0aXrttddkGMYlx7Ro0UJ79uzRzz//rF69etGBBQAA4KJqOjvm5+dLknx8zv+H0cyZM5WSkqK9e/dq9OjRthvnpeOq0/z58yVJQ4cOtc1fUenp6UpKSrJrbG5ubqXmAAAAuFpw3xFmGjZsmNLT03maBAAAgImctlFi1apVevXVVxUQEKBp06bpD3/4g3r27KmsrKyLxj788MN64oknlJCQwAULAACAC3JEdvz9TfRhw4Zp1qxZtqUwSvdbLJYqnMnFCgoK9Mknn0iq2rIbERERioqKsmusv7+/JKlu3bpq3bp1ped0VfyeAQBqEj9nqo77jjBbgwYN9PLLL5tdBgBcdaKjo/l5DKDaOG2jxHvvvSeLxaLXXntN99xzz2XH9u/fX5K0e/duR5QGAAAAJ+OI7FivXj1J0unT5x99HRsbq9jYWNv+goICSar2R1XHx8crNzdXbdu2VWRkZKWPM3LkyCo1WgAAANQW3HcEAAAA4GZ2AZfy448/ymKx2LUGc6NGjeTn58f6yQAAAC7KEdmxSZMmkqSjR4+Wu790e1hYWIWOeyUfffSRpKo9TQIAAAD/w31HAAAAAE77RImCggL5+vrKy8vLrvElJSWXXVMQAAAAtZcjsmOHDh0kScnJyeXu37VrlySpffv2FTru5ezZs0ebN2+Wu7s76xcDAABUE+47AgAAAHDaJ0oEBwcrLy9Px48fv+LY1NRU5efnV/un9wAAAHB1cER27NGjh3x9fZWamqq0tLQy+6xWq5KSkmSxWNS3b98KHfdy5s+fL0n6wx/+oODg4Go7LgAAgCvjviMAAAAAp22U6Nmzp6TzawZeyQsvvCCLxaJbb721pssCAACAE3JEdvT29lZMTIwk6ZlnntHZs2clSYZhKC4uToWFhRo4cKDCw8PLff306dMVEBCggIAAbdiw4YrznTt3TosXL5bEshsAAADVifuOAAAAAJy2UeLJJ5+Uu7u7Xn/9db322mvKzc29aMyuXbs0bNgwffPNN/L09NS4ceNMqBQAAABmc1R2jIuLU/v27ZWYmKjIyEg99NBD6tGjhxYtWqTQ0FDNnDmzOk5HkrRy5UplZWWpYcOGuvPOO6vtuAAAAK6O+44AAAAAnLZRok2bNnrjjTdkGIamTZumVq1a6cSJE5Kk3r17q02bNurVq5dWr14tNzc3vf7662rRooXJVQMAAMAMjsqOfn5+SkhI0BNPPCFJWrFihXJychQTE6N169apSZMm1XZOH3/8sSTpvvvuk6enZ7UdFwAAwNVx3xEAAACAxWq1GmYXcTlJSUmaPHmytm/fXu7+Tp06aerUqerVq5eDKwMAAICzITvCLEOGDLF9HR8fb1odwNXkwn83e/pNMq8Q2LRe9fJF2z5q4WNCJfi9UftP277m50z1ITsCAAAArsvD7AKuJCoqSuvWrdOvv/6qrVu3KisrS4ZhKCgoSF27dlW7du3MLhEAAABOguwIAAAAe5EdAQAAANfl9I0Spdq0aaM2bdqYXQYAAACuAmRHAAAA2IvsCAAAALgeN7MLAAAAAAAAAAAAAAAAcBQaJQAAAAAAAAAAAAAAgMtw2kaJGTNm6O2337Z7/Pz58zVjxowarAgAAADOiuwIAAAAe5EdAQAAAFisVqthdhHlCQwMVHBwsFJTU+0a36dPH23fvl3Z2dk1XBkAAACcDdkRZhsyZIjt6/j4eNPqAK4mF/672dNvknmFwKb1qpcv2vZRCx8TKsHvjdp/2vY1P2eqjuwIAAAAwGmfKAEAAAAAAAAAAAAAAFDdak2jRHZ2tjw9Pc0uAwAAAFcBsiMAAADsRXYEAAAAah8PswuoDj/88IMOHTqkpk2bml0KAAAAnBzZEQCcT3lLPgCAMyA7AgAAALWT0zRKfPXVV1q5cmWZbbm5uXr88ccv+Zri4mIdOXJEmzdvliT17du3RmsEAACAcyA7AgAAwF5kRwAAAAC/5zSNEjt37tTChQvLbDt9+vRF2y6lQ4cOmjx5ck2UBgAAACdDdgQAAIC9yI4AAAAAfs9pGiVuueWWMt/PmDFD9erVu2xnt5ubm/z9/dWxY0dFRUXJYrHUdJkAAABwAmRHALj6xcfHm11CtRkyZIjt69pwXheeD1AbkB0BAAAA/J7FarUaZhdRnsDAQAUHBys1NdXsUgAAAODkyI4wW237T1IAFVPb3gMuPJ+PWviYVwhsRu0/bfu6NvwdMxvZEQAAAICb2QUAAAAAAAAAAAAAAAA4Co0SAAAAAAAAAAAAAADAZXiYXcClnDx50uwSAAAAcJUgOwIAAMBeZEcAAAAAPFECAAAAAAAAAAAAAAC4DBolAAAAAAAAAAAAAACAy3DapTcutGfPHu3bt095eXk6d+6cDMO45Njo6GgHVgYAAABnQ3YEAACAvciOAAAAgGty6kaJvXv36qGHHtKuXbvsfg0XLAAAAK6J7AgAAAB7kR0BAAAA1+a0jRInT57UwIEDdezYMfn5+alNmzbatm2bvLy8dMMNN+jEiRNKS0tTSUmJ/P391alTJ7NLBgAAgEnIjgAAALAX2REAAACAm9kFXMqbb76pY8eOadCgQdq9e7fWrFkjSQoMDNTXX3+t//73v0pNTdUjjzyi3NxcXXfddVqxYoXJVQMAAMAMZEcAAADYi+wIAAAAwGkbJRISEmSxWPTSSy/Jx8en3DFBQUGaNWuWxo0bpzlz5mjZsmWVmisvL0/PPfecunTpouDgYLVv316xsbHKysqqyilc1sqVKxUQEKCAgAC9/vrrNTYPAACAK3BkdgQAAMDVjewIAAAAwGkbJTIyMuTt7a3mzZuX2V5cXHzR2KefflqS9O9//7vC8+Tl5al///568803ZRiGBgwYID8/P82bN0+9e/fWkSNHKlX/5eTk5Ogvf/lLtR8XAADAVTkqOwIAAODqR3YEAAAA4LSNEiUlJapTp06Zbb6+vjp58qQMwyizvWHDhqpfv75SUlIqPM/06dOVnJys2267TVu3btWHH36oLVu2aMSIEcrMzNTEiROrdB7lmTJlivLz89W3b99qPzYAAIArclR2BAAAwNWP7AgAAADAaRslQkNDlZubq4KCAtu2pk2bqqSkRDt27CgztqCgQDk5OTp79myF5igsLNS8efMkSTNnzpSXl5ckyWKx6JVXXpG3t7eWL1+ujIyMqp3MBTZu3Kj//Oc/+vvf/67GjRtX23EBAABcmSOyIwAAAGoHsiMAAAAAp22UaNeunQzD0NatW23boqKiZBiGXn75ZZ07d862/bXXXpNhGGrbtm2F5ti8ebPy8/PVrl07tWrVqsy+gIAA23yJiYlVO5n/r7CwUE8++aQ6deqkhx9+uFqOCQAAAMdkRwAAANQOjs6OeXl5eu6559SlSxcFBwerffv2io2NVVZWVpXO43JWrlypgIAABQQE6PXXX6+xeQAAAICrldM2Stxxxx0yDEPx8fG2bX/605/k5eWl1atXq1u3bnrwwQd166236vXXX5fFYtFDDz1UoTmSk5MlSR06dCh3f8eOHSWp2h6tN336dO3bt0+vvfaa3N3dq+WYAAAAcEx2BAAAQO3gyOyYl5en/v37680335RhGBowYID8/Pw0b9489e7dW0eOHKmms/qfnJwc/eUvf6n24wIAAAC1iYfZBVzKwIEDlZqaKh8fH9u21q1ba+7cufrzn/+sgwcP6uDBg5LOL5Uxbtw4PfDAAxWa4/Dhw5KkkJAQSVJ8fLxmz56tBx54QKNHj7Ztz8zMrPL5bN++Xe+8844eeOABdevWrcrHk6QFCxZo4cKFdo2dPn26OnfurIKCgmo5HwAAcPUICwtT3bp1zS6jRjkiOwIAAKB2cGR2nD59upKTk3Xbbbdp8eLF8vLykmEYeuyxx7R48WJNnDhR8+fPr5bzKjVlyhTl5+erb9++1fakXAAAAKC2cdpGiYCAAL300ksXbb/77rt16623atWqVTp8+LD8/f3Vu3fvi5bOsEd+fr4k2S6KZs6cqZSUFO3du1ejR4+Wr69vmXGVVVRUpPHjx8vf319Tpkyp0rEulJ6erqSkJLvG5ubmVtu8AAAAzsYR2REAAFc0av9ps0sAqp2jsmNhYaHmzZsn6fx9Ry8vL0nnmy9eeeUVxcfHa/ny5crIyFB4eHilz+dCGzdu1H/+8x/NmDFDP/30U7UcEwAAAKiNnLZR4nIaNGigESNGVPk4hmGU+X7YsGGaNWuWRo4cWWa/xWKp0jxvvfWWduzYoTfffFMNGjSo0rEuFBERoaioKLvG+vv7S5Lq1q2r1q1bV1sNAAAAzq66siMAAABqv+rMjps3b1Z+fr7atWt3UbNFQECAoqKilJiYqMTERMXExFR5vsLCQj355JPq1KmTHn74YT3xxBNVPiYAAABQW12VjRLVpV69epKk06fPfzoiNjZWsbGxtv0FBQWSVKVHVaelpWnGjBnq1q2bRo0aVfliyzFy5EhbUwcAAAAAAAAA55GcnCxJ6tChQ7n7O3bsqMTERKWkpFTLfNOnT9e+ffu0atUqubu7V8sxAQAAgNqq1jRKxMfH6/Tp04qOjrb7NU2aNJEkHT16tNz9pdvDwsIqXVdCQoIKCwuVl5ene++9t8y+0ougBQsWaOPGjerevbsmTpxY6bkAAABgn8pkRwAAXNFHLXzMLgFiCRSzVTY7Hj58WJIUEhJiO87s2bP1wAMPaPTo0bbtmZmZVa5x+/bteuedd/TAAw+oW7duVT7eggULtHDhQrvGTp8+XZ07d1ZBQUG1nAsAALh6hIWFVekD54CZak2jxMSJE3X8+PEKXbCUdnOXdnf/3q5duyRJ7du3r3J9v/zyi3755Zdy9+3du1d79+5VnTp1qjwPAAAArqwy2REAAACuqbLZMT8/X5Lk43O+4WjmzJlKSUnR3r17NXr0aPn6+pYZV1lFRUUaP368/P39NWXKlCodq1R6erqSkpLsGpubm1stcwIAAACOVGsaJSTJMIwKje/Ro4d8fX2VmpqqtLQ0tWzZ0rbParUqKSlJFotFffv2rXRN48aN07hx48rd99hjj2nRokWaMmWKnnrqqUrPAQAAgIqraHYEAACA66pMdvz9a4YNG6ZZs2bZltIt3W+xWKpU21tvvaUdO3bozTffVIMGDap0rFIRERGKioqya6y/v7+k88sXt27dulrmBwAAAGparWqUqChvb2/FxMRozpw5euaZZ7Ro0SJ5eXnJMAzFxcWpsLBQgwYNUnh4eLmvnz59umbMmCFJWr58uXr27OnI8gEAAAAAAAA4qXr16kmSTp8+v3RKbGysYmNjbfsLCgokqUqPq05LS9OMGTPUrVs3jRo1qvLF/s7IkSNtDR0AAABAbeTSjRKSFBcXp3Xr1ikxMVGRkZGKjIxUSkqKUlNTFRoaqpkzZ5pdIgAAAAAAAICrTJMmTSRJR48eLXd/6fawsLBKz5GQkKDCwkLl5eXp3nvvLbMvJSVFkrRgwQJt3LhR3bt318SJEys9FwAAAFCbOEWjROkj4dq0aaMtW7aU2WYvwzAq9Zg6Pz8/JSQkaMaMGfryyy+1YsUKNWzYUDExMZo0aZKCg4MrfEwAAADUHDOzIwAAAK4uZmbHDh06SJKSk5PL3b9r1y5JUvv27St87N/75Zdf9Msvv5S7b+/evdq7d6/q1KlT5XkAAACA2sLN7AKk8xcbpb/K22bPr6rw8/PT1KlTtWPHDh07dky//PKLZs+efcUmibi4OFmtVlmt1kotu/Huu+/KarXqqaeeqmzpAAAALsfs7AgAAICrh5nZsUePHvL19VVqaqrS0tLK7LNarUpKSpLFYlHfvn0rPce4ceNs9yd//ys6OlqSNGXKFFmtVi1cuLDS8wAAAAC1jVM8UWL79u2SJE9PzzLbGzVqpMTExCu+3jAM9e3bV9nZ2TVSHwAAAJwH2REAAAD2MjM7ent7KyYmRnPmzNEzzzyjRYsWycvLS4ZhKC4uToWFhRo0aJDCw8PLff306dM1Y8YMSdLy5csr9UEtAAAAAOVzikaJiIiIcre7u7tfcl95YwEAAFD7kR0BAABgL7OzY1xcnNatW6fExERFRkYqMjJSKSkpSk1NVWhoqGbOnFnpYwMAAACoPKdYegMAAAAAAAAAahs/Pz8lJCToiSeekCStWLFCOTk5iomJ0bp169SkSROTKwQAAABck1M8UaI8U6ZMka+vr93jWWsaAADAdZEdAQAAYC9HZ0c/Pz9NnTpVU6dOrdDr4uLiFBcXV+l53333Xb377ruVfj0AAABQmzlto0RsbGyFxs+YMUOnT5+umWIAAADg1MiOAAAAsBfZEQAAAIDTNkpU1N133212CQAAALhKkB0BAABgL7IjAAAAUPu4mV0AAAAAAAAAAAAAAACAozjtEyUSExOVmJiosLAwPf7442aXAwAAACdGdgQAAIC9yI4AAAAAnPaJEq+99prmzp2rsLAws0sBAACAkyM7AgAAwF5kRwAAAABO2yiRmpoqDw8PDRgwwOxSAAAA4OTIjgAAALAX2REAAACA0zZKFBYWys/PT15eXmaXAgAAACdHdgQAAIC9yI4AAAAAnLZRolmzZsrJyVFBQYHZpQAAAMDJkR0BAABgL7IjAAAAAKdtlBg+fLiKi4v1ySefmF0KAAAAnBzZEQAAAPYiOwIAAABw2kaJcePGqVevXpo8ebLWrFljdjkAAABwYmRHAAAA2IvsCAAAAMDD7AIu5dNPP9W9996r3NxcDRs2TJGRkerVq5fCw8NVp06dS74uOjragVUCAADAGZAdAQAAYC+yIwAAAACL1Wo1zC6iPIGBgbJYLJIkwzhfYun3l5OdnV2jdQEAAMD5kB1htiFDhti+jo+PN60OAOaobe8BF57PRy18zCsENqP2n7Z9XRv+jpmN7AgAAADAaZ8ocfPNN9t1gQIAAACQHQEAAGAvsiMAAAAAp22U+Oqrr8wuAQAAAFcJsiMAAADsRXYEAAAA4GZ2AQAAAAAAAAAAAAAAAI5CowQAAAAAAAAAAAAAAHAZNEoAAAAAAAAAAAAAAACXQaMEAAAAAAAAAAAAAABwGTRKAAAAAAAAAAAAAAAAl+FhdgFXsnLlSn366afat2+f8vLydO7cORmGUe5Yi8Win3/+2bEFAgAAwGk4Ijvm5eVp5syZ+uKLL3T06FE1bNhQ/fr10+TJkxUUFFTFM/ifnJwcvfXWW/rqq6+Unp4uNzc3hYWFKSoqSi+88ILq1atXbXMBAAC4Iu47AgAAAK7LqRslJk2apLlz517yAkU6f5FSut9isTiqNAAAADgZR2THvLw89e/fX8nJyYqIiNCAAQOUkpKiefPmafXq1VqzZo1CQ0MrfQ6l9u/fr7vuuksZGRlq3Lix+vTpI0nat2+fPvjgAz399NM0SgAAAFQB9x0BAAAA1+a0jRIJCQl69913Va9ePcXGxqpz584aNmyYAgMD9eGHH+rEiRPavHmzFi9eLDc3N02dOlUtWrQwu2wAAACYwFHZcfr06UpOTtZtt92mxYsXy8vLS4Zh6LHHHtPixYs1ceJEzZ8/v0rnUlxcrP/7v/9TRkaGHn/8cT3//PPy9PS07U9NTVVgYGCV5gAAAHBl3HcEAAAAYLFarZdumzZRdHS0EhIS9P777+uee+6RJAUGBio4OFipqam2cenp6RoyZIjy8/O1fv16hYSEmFUyAAAATOKI7FhYWKiWLVsqPz9fW7duVatWrWz7rFar2rVrpzNnzmjnzp0KDw+v9LksW7ZMjz76qPr06aPPP/+80seBYw0ZMsT2dXx8vGl1ADBHbXsPuPB8PmrhY14hsBm1/7Tt69rwd8xs3HcEAAAA4GZ2AZfy008/SZLuuuuuy46LiIjQ66+/rmPHjmnmzJmOKA0AAABOxhHZcfPmzcrPz1e7du3KNElIUkBAgKKiomQYhhITEytW/O98+umnkqSxY8dW6TgAAAAoH/cdAQAAADjt0hsnT55UQEBAmccMe3h4KD8//6KxvXr1ko+Pj1avXu3IEgEAAOAkHJEdk5OTJUkdOnQod3/Hjh2VmJiolJSUCh3393788UdJ0s0336y9e/fqk08+0dGjRxUUFKR+/fqpW7duVTo+AACAq+O+IwAAAACnbZQIDAxUTk5OmW0NGjRQVlaWrFarAgICbNstFovc3Nx07NgxB1cJAAAAZ+CI7Hj48GFJsj1yOT4+XrNnz9YDDzyg0aNH27ZnZmZW+jzy8/N17NgxNWjQQCtXrtQTTzyhc+fO2fbPmjVL0dHRevvtt+Xu7l6hYy9YsEALFy60a+z06dPVuXNnFRQUVOl8XNWePXvMLgGAiXgPQE2r6b9jYWFhqlu3bo3OYTbuOwIAAABw2kaJ8PBwHTt2TAcOHFDz5s0lnf/03rp16xQfH68HH3zQNvann35Sfn6+GjdubE6xAAAAMJUjsmPpJwx9fM6v1T5z5kylpKRo7969Gj16tHx9fcuMq4xTp05Jks6ePavY2FgNHTpUf/3rXxUUFKRNmzYpNjZWixYtUps2bfTUU09V6Njp6elKSkqya2xubm6FawcA1E6j9p82uwSg2nHfEQAAAIDTNkrccsst+vHHH7V27Vo99NBDkqQhQ4bo22+/1bPPPis3Nzd1795d+/fv17PPPiuLxaI+ffqYXDUAAADM4IjsaBhGme+HDRumWbNmaeTIkWX2WyyWSp9HSUmJJCkvL0/dunXT3LlzbfvuvPNOlZSUaOTIkZozZ45iY2MrNFdERISioqLsGuvv7y9Jqlu3rlq3bl2BM4Akfs8AF8d7AGoaf8eqjvuOAAAAACxWq9W48jDH27Ztm/7whz+oU6dO+u677ySdv3E8cOBAbdmypcxNYcMw1KhRIyUmJioiIsKskgEAAGASR2THSZMmac6cOXr88cc1bdq0i/a/++67iouL06BBg/Txxx9X6jysVqvtU43/+Mc/bDfuL6w9ODhYZ8+e1bZt29SyZctKzYPqN2TIENvX8fHxptUBwBy17T3gwvOB86kNf8fMxn1HAAAAAE77RImuXbsqIyOjzDY3Nzd98sknevXVV/X555/r8OHD8vf3V58+fTR58mQuVgAAAFyUI7JjkyZNJElHjx4td3/p9rCwsEqcwXn169dX3bp1VVBQoKZNm16032KxKDg4WIcOHdLx48dplAAA1Ija9B/xta2JBdWD+44AAAAAnLZRQpJtneffb5syZYqmTJliQkUAAABwVjWdHTt06CBJSk5OLnf/rl27JEnt27ev9BwWi0WtWrXSjh07ZLVayx2Tk5MjSfL29q70PAAAAK6O+44AAACAa3MzuwAAAADgatCjRw/5+voqNTVVaWlpZfZZrVYlJSXJYrGob9++VZqnd+/ekqSkpKSL9qWlpSk3N1ceHh6sTw4AAAAAAAAAleS0jRKHDx82uwQAAABcJRyRHb29vRUTEyNJeuaZZ3T27FlJ59etjouLU2FhoQYOHKjw8PByXz99+nQFBAQoICBAGzZsuOQ8MTEx8vDw0MKFC7Vu3Trb9tOnT2vSpEmSpLvuukt169atpjMDAABwLdx3BAAAAOC0S2906tRJ3bp10+DBgzV48GDbmtAAAADA7zkqO8bFxWndunVKTExUZGSkIiMjlZKSotTUVIWGhmrmzJlVnqNly5aaMmWKnn32Wd1zzz3q1q2bgoKC9NNPPykzM1Ph4eF6+eWXq+FsAAAAXBP3HQEAAAA47RMlSkpK9P3332vy5Mnq1KmT+vfvr7lz59LxDQAAgIs4Kjv6+fkpISFBTzzxhCRpxYoVysnJUUxMjNatW1dtN9nHjx+vJUuWqGfPntq9e7cSEhLk4eGhMWPG6Ntvv1VoaGi1zAMAAOCKuO8IAAAAwGK1Wg2ziyhPRkaGvvzyS3355Zf673//K8MwZLFYZLFY1K1bNw0ZMkR//OMf6fgGAAAA2RGmGzJkiO3r+Ph40+oAYA7eA5wXfzYoD9kRAAAAgNM2Slzot99+05dffqkvvvhCW7ZsUXFxse3ipXv37ho8eDAXLwAAAJBEdoQ5+I84wLXxHuC8+LPBlZAdAQAAANd0VTRKXOjEiRNasWKFvvjiC23cuFHnzp0rc/Hy9ddfm10iAAAAnATZEY7Cf8QBro33AOfFnw0qguwIAAAAuI6rrlHiQlarVStXrtScOXOUnJwsi8Wi7Oxss8sCAACAEyI7oibxH3GAa+M9wHnxZ4PKIjsCAAAAtZuH2QVU1p49e2xrCaakpJhdDgAAAJwY2REAAAD2IjsCAAAAtd9V1Sixa9cuffnll1q+fLl2794tSTIMQ76+vurfv78GDx5scoUAAABwFmRHAAAA2IvsCAAAALgWp2+U+PHHH20d3AcOHJD0v4uUfv36aciQIerXr5+8vb3NLRQAAACmIzsCAADAXmRHAAAAwHU5baNEXFycli9frsOHD0sqe5EyePBg9e/fn4sUAAAASCI7AgAAwH5kRwAAAABO2ygxd+5cSeIiBQAAAFdEdgQAAIC9yI4AAAAAnLZRYsiQIbbH2/n4+JhdDgAAAJwY2REAAAD2IjsCAAAAcNpGiQ8//NDsEgAAAHCVIDsCAADAXmRHAAAAAG5mFwAAAAAAAAAAAAAAAOAoTvtEid87evSoUlNTdfLkSUlSYGCg2rVrp5CQEJMrAwAAgLMhOwIAAMBeZEcAAADA9Th9o8SyZcv05ptvKjk5udz9HTp00JNPPql7773XwZUBAADA2ZAdAQAAYC+yIwAAAOC6nHrpjdjYWP3pT3/Srl27ZBiG3NzcVL9+fdWvX19ubm4yDEO7du3SmDFjFBsba3a5AAAAMBHZEQAAAPYiOwIAAACuzWkbJT799FP95z//kSSNHj1a3377rY4cOaL9+/dr//79OnLkiNauXauYmBhJ0vz58/X555+bWTIAAABMQnYEAACAvciOAAAAAJx26Y158+bJYrHoxRdf1BNPPHHRfk9PT11//fW6/vrr1bJlSz333HP68MMPdffdd5tQLQAAAMxEdgQAAIC9yI4AAAAAnPaJErt27ZKnp6fGjBlzxbFjxoyRp6enduzY4YDKAAAA4GzIjgAAALAX2REAAACA0zZKnD59Wj4+PvLy8rri2Dp16qhu3boqLCx0QGUAAABwNmRHAAAA2IvsCAAAAMBpGyVCQ0OVm5ur3bt3X3FsamqqcnJyFBIS4oDKAAAA4GzIjgAAALAX2REAAACA0zZK9O3bV4ZhaMyYMcrMzLzkuIyMDI0ZM0YWi0W33367AysEAACAsyA7AgAAwF5kRwAAAAAWq9VqmF1EeY4cOaKoqChZrVZ5eXmpd+/euu6669SwYUNZLBYdP35cP//8s9atW6czZ84oMDBQSUlJCg0NNbt0AAAAOBjZEWYbMmSI7ev4+HjT6gBgDt4DnBd/NigP2REAAACA0zZKSNL27dv18MMPKy0tTZJksVjK7DeM86W3atVK77//vrp06eLwGgEAAOAcyI64nEWLFmnJkiVml1Flw4cPV3R0tNllAPgd/jPeefFng0shOwIAAACuzcPsAi6nS5cu2rx5s1auXKk1a9Zo9+7dOnnypCQpMDBQbdu21R/+8AcNGDBAnp6eJlcLAAAAM5EdAQAAYC+yIwAAAODanLpRQpI8PT01ePBgDR482OxSAAAA4OTIjgAAALAX2REAAABwXU7fKAEAAAAAVRUdHc2SFQAAAAAAAAAkSW5mFwAAAAAAAAAAAAAAAOAoTvtEiaKiIn3yyScyDEN33HGHAgMDyx2Xk5OjlStXymKx6L777pO7u7uDKwUAAIDZyI4AAACwF9kRAAAAgNM+UWLJkiUaN26c4uPjL3mxIkn169dXQkKCxo0bpwULFjiwQgAA4GjZ2dmaNGmSTp48aXYpcDJkRwAAANiL7AgAMBP3twDAOThto8Qnn3wiSZo4ceIVxz711FMyDEOffvppTZcFAABMtHTpUv3yyy9asmSJ2aXAyZAdAQAAYC+yIwDATNzfAgDn4LSNEj/99JPq1KmjG2644Ypju3TpIm9vb+3Zs8cBlQEAADNkZ2dr7dq1MgxDa9eupeseZZAdAQAAYC+yIwDALNzfAgDn4WF2AZdy+vRp+fr62j3e29tb2dnZNVgRAAAw09KlS1VSUiJJKikp0ZIlSzR27FiTq4KzIDsCAC5n0aJFDvvE3pAhQ2rs2MOHD1d0dHSNHd/RHPnnIvFng/8hOwIAzML9LQBwHk77RIlGjRopJyfHrm667Oxs5eTkqGHDhg6oDAAAmGH9+vUqKiqSJBUVFWn9+vUmVwRnQnYEAACAvciOAACzcH8LAJyH0zZKREZGyjAMvf/++1cc+95778kwDHXr1s0BlQEAADPceuut8vA4/zAsDw8P3XrrrSZXBGdCdgQAAIC9yI4AALNwfwsAnIfFarUaZhdRnnXr1unuu++Wu7u7XnrpJf3pT3+Sm1vZvo7i4mLNmTNHzz//vAzD0GeffabevXubUzAAAKhR2dnZGjt2rM6ePSsvLy+99957CgwMNLssOAmyIwAAAOxFdgQAmIX7WwDgPJy2UUKSxo8fr48//lgWi0VBQUGKiopSaGioLBaLMjMzlZSUpOPHj8swDI0aNUpvvvlmpebJy8vTzJkz9cUXX+jo0aNq2LCh+vXrp8mTJysoKKjK53Hw4EF9+eWXWr16tfbv36/ffvtNfn5+uuGGGzRmzBjdfvvtVZ4DAABXMHfuXCUkJKh///6s34iLOCo7AgAA4OpHdgQAmIX7WwDgHJy6UaKkpEQvv/yy3nrrLZ09e1aSZLFYJEmGcb5sLy8vjR8/XpMmTbqo89seeXl56t+/v5KTkxUREaGuXbsqJSVFu3fvVlhYmNasWaPQ0NAqncfAgQOVlJQkHx8fde3aVcHBwTp48KC2bt0qSYqNjdXzzz9fpTkAAHAF2dnZevXVVzVhwgS67XERR2RHAAAA1A5kRwCAWbi/BQDOwakbJUodO3ZMX3zxhX788UdbJ3dQUJBuuOEGDR48WI0bN670sSdPnqx33nlHt912mxYvXiwvLy8ZhqHHHntMixcv1h//+EfNnz+/SvWPGTNGN910k4YPHy5fX1/b9oSEBEVHR6ukpESff/65+vTpU6V5AAAAULPZEQAAALUL2REAAABwTVdFo0RNKSwsVMuWLZWfn6+tW7eqVatWtn1Wq1Xt2rXTmTNntHPnToWHh9dIDSNHjtRXX32l6OhovfvuuzUyBwAAAAAAAAAAAAAAOM+lnxm3efNm5efnq127dmWaJCQpICBAUVFRMgxDiYmJNVZD6bzHjh2rsTkAAAAAAAAAAAAAAMB5Lt0okZycLEnq0KFDufs7duwoSUpJSamxGtLT0yWpxp5YAQAAAAAAAMA8eXl5eu6559SlSxcFBwerffv2io2NVVZWVrUc/+DBg3rrrbf0xz/+UZ06dVLjxo3VsmVL3XfffVq9enW1zAEAAADUNh5mF2Cmw4cPS5JCQkIkSfHx8Zo9e7YeeOABjR492rY9MzOzRubPzMxUQkKCJGno0KEVfv2CBQu0cOFCu8ZOnz5dnTt3VkFBQY2dDwAAcE5hYWGqW7eu2WUAAAAALicvL0/9+/dXcnKyIiIiNGDAAKWkpGjevHlavXq11qxZo9DQ0CrNMW7cOCUlJcnHx0ddu3ZV9+7ddfDgQa1evVqrV69WbGysnn/++eo5IQAAAKCWcOlGifz8fEmSj4+PJGnmzJlKSUnR3r17NXr0aPn6+pYZV50Mw9DTTz+tgoIC3XHHHerVq1eFj5Genq6kpCS7xubm5lb4+AAAAAAAAAAqb/r06UpOTtZtt92mxYsXy8vLS4Zh6LHHHtPixYs1ceJEzZ8/v0pzhIWF6R//+IeGDx9uu58pSQkJCYqOjtYbb7yhW2+9VX369Knq6QAAAAC1hks3ShiGUeb7YcOGadasWRo5cmSZ/RaLpdrnfvXVV5WQkKCIiAjNmTOnUseIiIhQVFSUXWP9/f0lSXXr1lXr1q0rNR8AAAAAAAAA+xQWFmrevHmSzn9Ay8vLS9L5e42vvPKK4uPjtXz5cmVkZFRpWd5//vOf5W7v37+/7rzzTn311VdaunQpjRIAAADABVy6UaJevXqSpNOnT0uSYmNjFRsba9tfUFAgSdX+qOpFixbp5ZdfVmBgoJYtW6YGDRpU6jgjR460NXUAAAAAAAAAcB6bN29Wfn6+2rVrp1atWpXZFxAQoKioKCUmJioxMVExMTE1UkPpvMeOHauR4wMAAABXKzezCzBTkyZNJElHjx4td3/p9rCwsGqbMyEhQePHj1fdunW1bNkytW3bttqODQAAAAAAAMA5JCcnS5I6dOhQ7v6OHTtKklJSUmqshvT0dEmq0hMrAAAAgNrIpZ8oUXqRUnrR8nu7du2SJLVv375a5tu8ebMefPBBubu7a+HChYqMjKyW4wIAAAAAAABwLocPH5YkhYSESJLi4+M1e/ZsPfDAAxo9erRte2ZmZo3Mn5mZqYSEBEnS0KFDK/TaBQsWaOHChXaNnT59ujp37qyCgoIaOxcAAOCcwsLCqv3J/ICjuHSjRI8ePeTr66vU1FSlpaWpZcuWtn1Wq1VJSUmyWCzq27dvlefasWOHhg8frqKiIs2fP1+33nprlY8JAAAAAAAAwDnl5+dLknx8fCRJM2fOVEpKivbu3avRo0fL19e3zLjqZBiGnn76aRUUFOiOO+5Qr169KvT69PR0JSUl2TU2Nze3MiUCAAAApnLpRglvb2/FxMRozpw5euaZZ7Ro0SJ5eXnJMAzFxcWpsLBQgwYNuuSj6aZPn64ZM2ZIkpYvX66ePXuWOy4tLU1Dhw5Vfn6+3n//fd155501dk4AAAAAAAAAzGcYRpnvhw0bplmzZmnkyJFl9lsslmqf+9VXX1VCQoIiIiI0Z86cCr8+IiJCUVFRdo319/eXJNWtW1etW7eu8FwAAACAGVy6UUKS4uLitG7dOiUmJioyMlKRkZFKSUlRamqqQkNDNXPmzCrP8eCDDyorK0sRERFatWqVVq1addGYhg0baurUqVWeCwAAAAAAAID56tWrJ0k6ffq0JCk2NlaxsbG2/QUFBZJU7Y+rXrRokV5++WUFBgZq2bJlatCgQYWPMXLkSFtDBwAAAFAbuXyjhJ+fnxISEjRjxgx9+eWXWrFihRo2bKiYmBhNmjRJwcHBVZ7DarVKOv/IuvT09HLHNG3alEYJAAAAAAAAoJZo0qSJJOno0aPl7i/dHhYWVm1zJiQkaPz48apbt66WLVumtm3bVtuxAQAAgNrEYrVajSsPA3A127Fjh3Jzc+Xv76/OnTubXQ4AB+M9AABQEfzcAFwb7wFA9fn222919913q127dtqyZctF+4cOHarExETNnj1bMTExVZ5v8+bNuueee1RSUqKlS5fq1ltvrfIxgSvh5wbg2ngPAHA1o1ECcAEDBw5UUlKSoqKi9NVXX5ldDgAH4z0AAFAR/NwAXBvvAUD1KSwsVMuWLZWfn69t27apZcuWtn1Wq1Xt2rXTmTNntHPnToWHh1dprh07dmjQoEE6ffq05s+frzvvvLOq5QN24ecG4Np4DwBwNXMzuwAAAAAAAAAAqG28vb1tT4p45plndPbsWUmSYRiKi4tTYWGhBg4ceMkmienTpysgIEABAQHasGHDJedJS0vT0KFDlZ+fr3/+8580SQAAAAB28DC7AAAAAAAAAACojeLi4rRu3TolJiYqMjJSkZGRSklJUWpqqkJDQzVz5swqz/Hggw8qKytLERERWrVqlVatWnXRmIYNG2rq1KlVngsAAACoLWiUAAAAAAAAAIAa4Ofnp4SEBM2YMUNffvmlVqxYoYYNGyomJkaTJk1ScHBwleewWq2SpPT0dKWnp5c7pmnTpjRKAAAAABegUQIAAAAAAAAAaoifn5+mTp1a4UaFuLg4xcXFXXHczp07K1saAAAA4LLczC4AAAAAAAAAAAAAAADAUWiUAAAAAAAAAAAAAAAALoNGCQAAAAAAAAAAAAAA4DJolAAAAAAAAAAAAAAAAC6DRgkAAAAAAAAAAAAAAOAyPMwuAEDNu//++3XLLbcoIiLC7FIAmID3AABARfBzA3BtvAcAACqCnxuAa+M9AMDVzGK1Wg2ziwAAAAAAAAAAAAAAAHAElt4AAAAAAAAAAAAAAAAug0YJAAAAAAAAAAAAAADgMmiUAAAAAAAAAAAAAAAALoNGCQAAAAAAAAAAAAAA4DJolAAAAAAAAAAAAAAAAC6DRgkAAAAAAAAAAAAAAOAyaJQAAAAAAAAAAAAAAAAug0YJAAAAAAAAAAAAAADgMmiUAAAAAAAAAAAAAAAALoNGCQAAAAAAAAAAAAAA4DJolAAAAAAAAAAAAAAAAC6DRgkAAAAAAAAAAAAAAOAyaJQAAAAAAAAAAAAAAAAug0YJ4CpjGMYlvzcM46L9AAAAcG3kRwAAANiL7AgAAFwFjRKAEyvvwsNisVzye4vFctF+AFe/39+IKCkpsX1vGIaKi4tt+4qLi7lpAQAujPwIgOwIALAX2RGARH4E4LosVquVdzTAyZw6dUp+fn6SpCNHjqhu3bqqX7++Dh8+rJycHIWEhKiwsFD79++Xp6enGjZsqEOHDslqtcrLy0sRERHq0KGDyWcBAAAARyE/AgAAwF5kRwAAAMnD7AIAlHXq1Ck98sgjyszMVEBAgIqLi3X48GGVlJSoQYMGOnHihDIzMxUSEqI6dero0KFDtn05OTkqLi7Ws88+y8UKcBU7duyY8vPz1bhxYx05ckRZWVlq0KCB3NzclJaWppKSEjVq1EhHjhzR0aNH5evrK09PTx06dEgFBQWqU6eOnnzySXl7e5t9KgAAByA/Aq6N7AgAqAiyIwDyIwCcR6ME4GS++uorrVq1Sp6enqpfv74CAwN18uRJnTp1SkVFRfLx8VHdunWVn5+vEydOSJICAwMVHBysLl266ODBg+rfv7/JZwGgKl577TUtWrRIJSUl8vf3V25urvLz8+Xl5SVvb2/l5uZKknx8fFRSUqIzZ85Iktzd3W2Pwps4caJp9QMAHIv8CLg2siMAoCLIjgDIjwBwHo0SgJNJS0uTdH7NvzZt2ujBBx/ULbfcojNnzujIkSNq2LCh2rRpo/Xr1+uhhx5SWFiYvvvuOx08eFB169ZVUFCQyWcAoKr++c9/SpKCg4PVvn17ubu768CBA3J3d1dYWJiKi4tVUFCgI0eOKD09Xddff70aNGig8PBw1alTR61atTL5DAAAjkR+BFwb2REAUBFkRwDkRwA4j0YJwMkMHz5cubm5+te//qVNmzapTp06ql+/vvr166fmzZvbxhUUFCg7O1vR0dGSpGbNmkmSDMOQxWIxo3QA1eDo0aNq27atDhw4oIKCArVo0UIxMTHq2LGjrFarCgoK1KRJE0nS448/roULF2rhwoUKCQkps8YoAMB1kB8B10V2BABUFNkRcG3kRwD4HzezCwBQVqtWrTRjxgytWrVKAwcO1IYNG3T//fdr1KhRWr9+vfLz8yVJGzdulCQNGDBAklRUVCRJXKgAV7lGjRrp1VdfVZ8+fXTq1Cl9/PHHevPNN/Xzzz8rICDAdqFy8uRJpaamys/PTyEhIZIkPz8/GYZhZvkAABOQHwHXRXYEAFQU2RFwbeRHAPgfi9Vq5V0NcCIXdmUfOnRIH330kd555x0VFBSodevWGjdunIYNG6ZRo0bpu+++07Fjx7hAAWqpxMREvf7660pKSpIkjRw5UqNGjdKNN96oLVu26J577lHv3r21cOFCFRUVycODB0UBgCsiPwKQyI4AAPuQHQGUIj8CcHU0SgBXgfT0dL399ttavHixTp06pYiICB0+fFjdu3fXV199pbNnz8rT05OLFqCWKCkpkZvb+Yc+7dy5U/PmzdOCBQt05swZ3XjjjYqLi1NycrImT56sN998U6NGjVJxcbHc3d1NrhwA4CzIj4DrIDsCAKqK7Ai4FvIjAJxHowTgpAzDUElJiSwWi9zc3JSVlaXPP/9cc+bM0cGDByVJAwcO1AcffKA6deqYXC2AmvbTTz/pH//4h1asWCFJ8vf3V25urlJTUxUcHFzmAgcA4JrIjwBKkR0BAFdCdgRwIfIjAFdEowRwlcnPz9fbb7+thQsXKj09XYGBgRo3bpxGjBih8PBws8sDUI1KSkps3dpubm5KT0/XZ599pg8++EAZGRny9PTU1KlTNXToUDVs2NDscgEATor8CLgGsiMAoDqQHQHXQX4E4OpolACcTEFBgQoKCnT06FE1atRIwcHBslgsOnfunNzc3OTu7q7c3Fx9++23mjt3rrZs2aJ69eqpX79+eu+991gnDHABe/bs0ezZs7VgwQJJUtu2bTV+/Hj98Y9/lJ+fn8nVAQAcjfwI4HLIjgCAC5EdAVwJ+RGAq6BRAnAiH330kd555x3l5OQoLCxMzZs3V9++fTVixIhy1wAsLi7WBx98oJdeekmenp7at2+fCVUDqE5Hjx7V0aNHdezYMdWpU0ctWrRQ06ZNJanMIzFzcnK0du1a/fOf/9SOHTtUUFCghQsX6s477zT5DAAAjkR+BFwb2REAUBFkRwDkRwD4HxolACdQXFys9957T5MnTy53/5133ql3331X9evXL/Mad3d3FRcXa9OmTcrLyyOkAFe5lStXasaMGdqxY4f8/f0VFBSkzp076/7779cf/vCHcl+zf/9+vf/++5ozZ47Wr1+vzp07O7hqAIAZyI8AyI4AAHuRHQFI5EcA+D0aJQAnsHXrVg0dOlR16tRRTEyMBgwYoF27dunrr7/W119/LXd3d82aNUujR482u1QANSQ+Pl7PPfecDh06pEaNGik/P1+nT5+27Z82bZrGjRtX5jWGYdg+8bFz50516tTJoTUDAMxDfgRcG9kRAFARZEcA5EcAuJib2QUAkD799FPl5ubq73//uyZPnqzrr79eo0aN0sKFC/Xiiy+quLhY8fHxks4//ur3ytsG4Ory3nvv6dChQxo/frw2btyoH3/8UfPmzVO/fv0kSfPmzdOBAwfKvMZiscgwzvc7durUyfY1AKD2Iz8Cro3sCACoCLIjAPIjAFyMRgnACXz11Vfq0qWL+vTpI0kqKirSuXPnJEkDBgxQkyZN5OnpqZMnT8rN7eJ/tuVtA3D12Lt3r7Zs2aI777xTL774ooKDgxUSEqLBgwfr/fff17XXXqs9e/YoOzv7otdeuIZoeeuJAgBqJ/Ij4LrIjgCAiiI7Aq6N/AgA5SPhACb77bffdOjQId10001q2rSpJMnd3V2enp4qKSnRNddcY9sGoHb6+uuvJUmDBw+WdP6TGoZhqKSkRH5+fhoxYoQ8PDx05MgRM8sEADgJ8iPg2siOAICKIDsCID8CQPlolABMtnbtWklSWFiYbVtpZ6abm5uOHTumw4cPKyIiQoGBgabUCKBmff3112rRooVuvPHGMtuLiookSQUFBXJzc7PdtOAxdwDg2siPgGsjOwIAKoLsCID8CADl8zC7AMDVffPNN5LOh5X8/Hy1aNFCbdq0UUhIiEJDQ7Vp0yZJUpcuXSSdDy/u7u485gqoRbZt26brrrtOeXl5KiwslLe3tyTJy8tLkrRp0yYFBwcrIiLCzDIBAE6C/Ai4NrIjAKAiyI4AyI8AUD4aJQAn0LRpU/3000/avHmz/Pz81LRpU7Vt21Y333yzPvnkEwUGBtoejefhwT9boDb58ccfdfbsWf3yyy+Ki4tTu3bt1L59e7Vu3VrNmjVTaGiofvjhB91+++1q27atpP91dXPTAgBcF/kRcE1kRwBAZZAdAddFfgSASyP1ACabMWOG9uzZo19++UU7d+5UamqqDhw4oNTUVMXHx8swDNWtW1cLFy7Unj17dM0116hFixYKCQmRj4+P2eUDqKJTp07plltukdVq1Y8//qiNGzeqTp06CgkJUfv27eXn56fCwkI1atRI+fn5qlu3LjctAMDFkR8B10V2BABUFNkRcG3kRwC4NIvVamWxIcCJHDp0SLt379bOnTu1a9cuHThwQOnp6Tp+/Lg8PDwUHBysVq1aqUOHDmrVqpVGjRpFcAGucnl5eTpw4ICSk5O1Y8cOpaSkKC0tTUePHlVRUZEMw1BYWJhuvvlmtWrVStdee61atmyp0NBQ1g8FAJAfARdDdgQAVAXZEXA95EcAKB+NEoCJrFar7ZF3kZGRtrXBSp05c0b79u1Tamqqdu3apV27dmnv3r367bfflJ+fr7Zt22rLli0mVQ+gpmRnZ2vPnj3atWuXduzYoT179mjfvn3KysqSYRgKDAxU69atFRQUpPHjx6t79+5mlwwAcBDyI4DfIzsCAC6F7AigPORHADiPRgnARC+99JL+85//aOzYsXriiSfk7e0twzBkGIYsFstFa4Dl5uZq7969Sk5O1qZNm9SpUyeNGzfOpOoBVIfSf++SVFJSIjc3t4vGHDp0SL/++qvtpsUvv/yiI0eOKDs7W2vWrFHXrl0dXTYAwCTkR8C1kR0BABVBdgRAfgSAS6NRAjDJzp07NXDgQDVt2lRff/21/P39yx1XevFSXoA5e/asvLy8arpUADXk6NGjWr58uYqKijR48GA1adLEtq+kpKTcmxbnzp3TgQMHlJKSol9++UV/+9vfHF02AMAk5EfAtZEdAQAVQXYEQH4EgMu7OP0AcIgvvvhChYWFio2Nlb+/v4qKisodZ7FYbBcqRUVFSkpKUmZmpiRxoQJc5ebOnatnnnlGJ06ckK+vb5l9bm5utgsVwzBUUlIiwzDk6emp1q1ba/DgwVyoAICLIT8Cro3sCACoCLIjAPIjAFwejRKASb777ju1bNnS9tgqd3f3K77m9OnT+uyzzzRt2jSdOHGipksEUIOOHTum+fPnq127dvrLX/6i+vXrX3Js6U2L33d4AwBcC/kRcF1kRwBARZEdAddGfgSAK6NRAjDBmTNnlJubq6KiIl1zzTWSdMUQUlxcLD8/P+Xl5Wn58uXav3+/I0oFUEPWrFmjkydP6sEHH5SPj4+Ki4vtet0XX3yh1atX68yZMzVcIQDAmZAfAddGdgQAVATZEQD5EQCujEYJwASFhYWKiIjQ6dOndfz4cbteU/oIPE9PTxUXF19yXUEAV4eNGzeqfv36uuGGGySp3LVAy5Oenq6///3vSk5OrsnyAABOhvwIuDayIwCgIsiOAMiPAHBlNEoADmYYhurXr6927dopMzNTc+fOVVFRkUpKSlRcXKySkpJyX2exWHTq1CmdOHFC3t7eatOmjYMrB1Cd8vPzVVhYaPtkh2EYlx1f2vXt4+OjX3/9Vbt3767xGgEAzoH8CIDsCACwF9kRgER+BAB70CgBOFjpY+4eeugh1atXT//4xz/01ltvSTq/VuCFnZ2lFzGlfvnlFyUlJalbt26OLRpAtevUqZPOnDmjTZs2SbpyV3fp/vz8fElSgwYNarZAAIDTID8CIDsCAOxFdgQgkR8BwB40SgAmad68uV5//XU1bNhQL774ojp37qwXXnhBGzZsUE5OjiTJw8PDFlB27dqll156SYWFhbr//vvNLB1ANSh97N3s2bP1888/27aXlJSU++mO0hsd+/btk8ViUdeuXR1SJwDAeZAfAddFdgQAVBTZEXBt5EcAuDKL1Wq9/PN2ANSYkpISvf/++3rzzTeVmZkpSfL19VXTpk3VrFkztWrVSo0bN9b333+vn376SUeOHNGECRM0fvx4+fn5mVw9gKq6//779fXXX6t37956+umn1bNnz4vGFBUVycPDQ5K0e/du9e/fX9dcc43Wrl3r6HIBAE6A/Ai4LrIjAKCiyI6AayM/AsDl0SgBOAGr1aqFCxdq7dq1Sk1N1W+//aaioqIyY7y9vfXUU0/pmWeeMalKANXt5MmTGjNmjNasWSNJ6tChg/r166cePXqoU6dOCgkJkST99ttv2rFjh2bNmqVdu3Zp+vTpiomJMbN0AIDJyI+A6yE7AgAqi+wIuCbyIwBcHo0SgJMwDEM5OTnau3evtm/frhMnTshqter48ePq06ePbrrpJrVo0cLsMgFUs19//VUffPCBvvrqK9unO+rUqaP69evLz89PrVq10pEjR7Rz504ZhqHnn39eDz30EJ/sAACQHwEXRHYEAFQW2RFwTeRHALg0GiUAJ2UYhm1dMAC135YtW5SYmKiff/5Z+/bt02+//ab8/HxJUv369RUQEKBnn31WQ4cONblSAICzIj8CroPsCACoKrIj4FrIjwBwMRolAAAw0blz5+Tp6SlJys/P1+HDh3X48GHl5+fLw8NDJ06cUFhYmG6++WbbeoEAAABwTWRHAAAAVAT5EQAujUYJAABMdvLkSfn6+srLy8vsUgAAAODkyI4AAACoCPIjAJSP9jAAABys9PGWJ0+e1NKlS7Vx40bl5+crODhY1113nXr06KHOnTtf9Lri4mK5u7ubUDEAAADMQnYEAABARZAfAcA+PFECAAAHKyoqkoeHh95//31NmDBBPj4+Kikp0ZkzZyRJFotF11xzjbp3765evXqpR48eatasmclVAwAAwAxkRwAAAFQE+REA7EOjBAAADlZSUiI3Nzfdfffd2rp1qz7//HNFRkZqy5Yt2rRpk5KSkrR9+3adOHFCklSvXj0FBQXpySefVExMjMnVAwAAwJHIjgAAAKgI8iMA2IelNwAAcDA3NzdJ0u23364TJ04oPDxcknTTTTfppptu0tNPP62cnBz98MMPWr9+vbZu3aotW7bYur4BAADgOsiOAAAAqAjyIwDYhydKAABgguLiYi1fvlyPPvqoHnnkEQ0aNEitWrWSv7+/6tSpY7ugKXXo0CE1aNBAvr6+JlUMAAAAs5AdAQAAUBHkRwC4MholAABwoNI1Aj/44AO98cYbysjIkHT+EXft2rVTjx491L17d7Vt21ZBQUHy8fFRnTp1TK4aAAAAZiA7AgAAoCLIjwBgPxolAABwIMMwZLFYdPPNN2vv3r2KiYmRr6+vMjMzlZKSogMHDqigoECNGjXSddddp6ioKHXs2FHXX3+9GjZsaHb5AAAAcCCyIwAAACqC/AgA9qNRAgAABztz5owefPBBnTt3Tp988okkyWq1KjMzU/v379fu3bv1888/a9euXfrtt990+vRpLV26VLfffrvJlQMAAMDRyI4AAACoCPIjANjHw+wCAABwFcXFxXJ3d9fu3buVm5ur3Nxc7d27V82bN1dAQIACAgLUoUMHDRo0SMeOHVNGRob27t2rHTt26Oabbza7fAAAADgQ2REAAAAVQX4EgIrhiRIAADhISUmJ3NzcNH78eH388ceSJD8/P91xxx3q2rWrOnTooDZt2qhx48ZlXle6tiAAAABcB9kRAAAAFUF+BICKoVECAAAHy8jI0ObNm/X999/r22+/1b59+yRJDRo0UNu2bdWlSxd17NhRHTp0sHV8l64vCAAAANdCdgQAAEBFkB8BwD40SgAAYKKzZ8/q119/1YYNG7R+/Xpt3bpVJ06ckCQ1a9ZMwcHBeu+999S8eXNzCwUAAIDpyI4AAACoCPIjAFwajRIAAJjo993aubm52rVrlzZs2KB169Zpx44dSk9Pl7u7u4lVAgAAwBmQHQEAAFAR5EcAuDQaJQAAcJDSC5OioiIlJibq8OHDcnd3l6enp1q1aqWOHTvKx8enzGtOnjypwMBAkyoGAACAWciOAAAAqAjyIwBUjIfZBQAA4CosFosOHDigsWPH6vvvv7dt9/Hx0aBBg/TCCy9cdLHChQoAAIBrIjsCAACgIsiPAFAxNEoAAFDDSru509PT9cgjj2jbtm2Kjo5Wq1atlJ2drXfeeUfFxcUKCgqSJC1btky7d+/WY489poYNG5pcPQAAAByJ7AgAAICKID8CQOW4mV0AAAC1XXFxsSTpiy++0LZt2zRhwgTNmTNHTz/9tG6++WZJUmRkpDw8zvcvGoah1157TT/++KNpNQMAAMAcZEcAAABUBPkRACqHRgkAAGqYm9v5H7crV65URESE7r33Xtu+b775Rr6+vurUqZNtW506deTm5qbffvvN4bUCAADAXGRHAAAAVAT5EQAqh0YJAABqmJubm4qKinT06FHVq1dPrVq1su1bu3at2rdvrzZt2ti2ZWRkyN3dXQEBASZUCwAAADORHQEAAFAR5EcAqBwaJQAAcIBTp04pNDRUp06dUn5+viTp6NGjyszMVJcuXdS4cWPb2LS0NJ07d0433HCDWeUCAADARGRHAAAAVAT5EQAqjkYJAABqmGEYCgwMVLdu3XTo0CHNmjVLkpSYmChJ6tixo21sRkaGVq9erWuuuUZNmjQxpV4AAACYh+wIAACAiiA/AkDl0CgBAEANs1gskqQhQ4aoXr16mjt3rubMmaPFixcrNDRUt956qyTpyJEjeuONN5SRkaH777/fzJIBAABgErIjAAAAKoL8CACVY7FarYbZRQAA4Cq+/PJL/fWvf1VWVpYkKSAgQPfee6/Cw8O1ZMkS/fLLL7rvvvv03HPPKTw83ORqAQAAYCayIwAAACqC/AgA9qNRAgAABzp37pxWrVqlefPmaf369Tp37pxtn7u7u0aPHq24uDg1aNDAxCoBAADgDMiOAAAAqAjyIwDYj0YJAABMcuTIEe3evVvJycny9fVVz549FRERIU9PT7NLAwAAgJMhOwIAAKAiyI8AcHk0SgAAAAAAAAAAAAAAAJfhYXYBAADUdvn5+dqzZ48OHTqk4uJiNW3aVNdcc40CAwPLjDMMQyUlJXJ3dzepUgAAAJiN7AgAAICKID8CQOXQKAEAQA0oKSmRm5ubUlJSNHv2bC1dulReXl7y8vJSgwYNdM0116hjx47q3Lmz2rdvrxYtWqhu3bpcqAAAALggsiMAAAAqgvwIAFXH0hsAANSA4uJiubu7a+zYsVqyZInCwsLUunVr+fr6Ki0tTQcPHtTp06fl4+Oj8PBwXXvttWrZsqX69++vG2+80ezyAQAA4EBkRwAAAFQE+REAqo4nSgAAUI0M43z/YWl39tdff61mzZpp9erV8vf318mTJ3X8+HHt379fycnJ2r59u5KTk7Vq1SoVFhYqNDSUixUAAAAXQXYEAABARZAfAaD60CgBAEA1slgstq9TU1NlGIaGDBmioKAgSVJISIhCQkLUsWNH9evXT9nZ2Tp8+LDS0tL0/fff64477jCrdAAAADgY2REAAAAVQX4EgOpDowQAANVkx44d8vT0VGhoqAICAhQaGqqWLVuqpKREknTmzBl5enrKYrHIYrGoTp06Cg0NVWhoqLp27aqBAwfK19fX5LMAAACAI5AdAQAAUBHkRwCoXjRKAABQTUaNGiU/Pz9169ZNHTt2VIcOHdSmTRvt27dPBQUFqlu3bpnxpRcxpRcvXKgAAAC4DrIjAAAAKoL8CADVy2K1Wg2ziwAA4Gp37Ngx3X333crOztZvv/0mwzAUEhKi4OBgbd++XX379tVDDz2k6667Tg0bNlSdOnXMLhkAAAAmITsCAACgIsiPAFD9aJQAAKCaZGZmat++fdqxY4d27typlJQUHT16VIWFhTp16pRCQkJ03XXX6brrrlOHDh3UokULhYSEqH79+vLw4CFPAAAAroTsCAAAgIogPwJA9aJRAgCAGlBcXKwDBw4oOTlZycnJSklJ0e7du3Xo0CEVFhbKx8dHzZs3V6dOndS+fXt169ZNN998s9llAwAAwARkRwAAAFQE+REAqo5GCQAAqolhGDIMw7bu34UKCgq0b98+paSkaOfOndq1a5f27NmjEydOqLCwUI8//rimTp1qUuUAAABwNLIjAAAAKoL8CADVi0YJAABqQHZ2tn799VeFh4crPDz8ov0nT57Ur7/+qpSUFG3YsEFjx45V9+7dTagUAAAAZiM7AgAAoCLIjwBQdTRKAABQTUpKSuTm5qYDBw5oypQpOnHihF544QV17dpVhnH+x61hGHJzczO5UgAAAJiN7AgAAICKID8CQPXi3RIAgGpSekHy0Ucf6auvvtJtt92mrl27SpLtkXilFypWq1W7du1SXl6eafUCAADAPGRHAAAAVAT5EQCqF40SAABUE3d3d0nS0qVLFRkZqUceeUTS/y5iLnTu3Dm98847+vLLLx1aIwAAAJwD2REAAAAVQX4EgOpFowQAANWg9IIkLS1NGRkZioyMlL+/v6TzHd2/HxsUFKSNGzfq008/VW5ursPrBQAAgHnIjgAAAKgI8iMAVD8aJQAAqAalFyupqamSpICAAElSUVHRRWMtFosKCwsVGhqqrKws20UNAAAAXAPZEQAAABVBfgSA6kejBAAA1aB0/b969erJz89PGRkZkiQPD48y44qLiyVJe/bsUVZWlkJCQhxbKAAAAExHdgQAAEBFkB8BoPrRKAEAQDXq3r27PD09tXLlSi1fvtx2cVKqdC3BxMREHThwQLfffrsZZQIAAMAJkB0BAABQEeRHAKg+NEoAAFCNfHx8NGHCBGVlZWncuHGaM2eOdu7cqePHjys7O1tFRUVatmyZ3n77bTVv3lwDBw40u2QAAACYhOwIAACAiiA/AkD1sVitVsPsIgAAqE3y8/M1ffp0LViwQFarVWFhYerQoYPc3d21Y8cOHTt2TB4eHnrzzTd17733ml0uAAAATER2BAAAQEWQHwGgetAoAQBADSgsLNTq1as1Z84cff/99zIMQ97e3iosLFSXLl301FNPafDgwWaXCQAAACdAdgQAAEBFkB8BoOpolAAAoIbl5eUpLS1Nhw4d0jXXXKPQ0FAFBgaaXRYAAACcENkRAAAAFUF+BIDKoVECAAAAAAAAAAAAAAC4DDezCwAAAAAAAAAAAAAAAHAUGiUAAAAAAAAAAAAAAIDLoFECAAAAAAAAAAAAAAC4DBolAAAAAAAAAAAAAACAy6BRAgAAAAAAAAAAAAAAuAwaJQDASSxdulQBAQEKCAjQrbfeeslxBw8etI271K877rjD7nkzMzMVFhamgIAAtWnT5rJj169frxEjRqhVq1Zq3Lixrr32Wj300EP68ccf7Z4PAAAAFbdgwQJb1ruUPXv2qFWrVgoICFB0dLSKioqqJTvm5+frtddeU+/evRUREaEmTZro+uuv15/+9Cdt3br1ovFnz55VfHy8xowZo65duyokJEQhISGKjIzUhAkTdODAgSr+bgAAAOByLsx6q1atumh/SUmJ2rRpYxszffr0co+Tk5OjWbNmqU+fPmrWrJmaNGmiyMhIPfroo1q/fv1F4zds2HDF7Fn6y2q12l7XqVMnu1+Xnp5ebb9PAADX5mF2AQCA8xISEiRJXl5e2r59uw4fPqwmTZpc9jWNGzcud3tgYKDd88bFxSk/P/+K49544w09//zzkiR3d3f5+fnp6NGj+uyzz/TFF1/onXfe0YgRI+yeFwAAANUnIyNDd999t44fP66oqCh9+OGH8vAoe8lfmey4f/9+DR482HZD2svLS15eXtq/f7/279+v0NBQRUZGlnnNxIkT9eGHH9q+9/b2lpubm/bu3au9e/dq4cKF+ve//63+/ftX9nQBAABgp/j4ePXr16/Mtg0bNujYsWOXfd2PP/6o6Oho/fbbb5LO50Bvb29bplu2bJkOHDhwyUbehg0byt3d/ZLHd3P73+d4GzVqpDNnzlxybH5+vvLz8xUUFHTF+6UAANiLRgkAcAJFRUVKTEyUt7e3RowYoXnz5mnVqlV68MEHL/u6X3/9tUrzrl27Vl9++aVat26tPXv2XHLcDz/8oBdeeEGSNHbsWMXFxal+/fo6duyY/va3v+mzzz7Tn//8Z/Xo0UPNmjWrUk0AAAComBMnTuiee+5RRkaGunTpokWLFsnb2/uicRXNjoWFhRo6dKjS09N13XXX6eWXX1aPHj1ksVh04sQJrVmzpswN7lJFRUVq2rSpHn74YQ0aNEitWrWSYRjauXOnnnrqKW3btk2jR4/Wf//7X4WHh1f6vAEAAHB5zZs318qVK3Xu3Dl5enratsfHx8tisSgiIkIHDx686HUHDhzQ3XffrZycHHXs2FGvvPKKoqKiZLFYlJWVpc8//1yvv/76Zedeu3at3fcJv/3228vuv/vuu/Xtt99q6NChFzUDAwBQWSy9AQBOYMuWLbJarbrppptsjz7+5ptvanTOs2fPasKECQoPD9fYsWMvO/Zf//qXDMNQp06d9Morr6h+/fqSzn8q8b333lOzZs109uxZvfPOOzVaMwAAAMrKy8vTfffdp19//VWtWrXSp59+Kn9//2o59rvvvqt9+/apXbt2WrFihW6++WZZLBZJ5z8hOHz4cN13330Xve6hhx7Stm3bFBsbq1atWkmSLBaLOnfurIULF8rf318FBQX6z3/+Uy11AgAAoHxDhgyR1WrVunXrbNuKi4u1fPlyRUZGXrJp9ZlnnlFOTo5atGihFStW6JZbbrHlwKCgII0ZM0abNm2Sr69vjZ9DZmambZkPnmYLAKhONEoAgBMoXXajT58+uuWWW+Tp6anvvvtOhYWFNTbn7NmzlZaWpilTppT7icMLbd68WZI0bNiwi/Z5enpq1KhRkvT/2rv7mCrrN47jH1BO8qQQhIpkwxJnSwWEVpSmSZsrSKeoU6dlA6OhyzZbOEUtl08UmcvlXMsC8QEhKM0nMhNNc5UtLdZickgQA9EQUJCHc35/sHPSOAfOEZDfxvu13dvxvu/v93tx/uHrzXVflw4cOND1gQIAAMCmW7duac6cOTp79qyGDBmi3Nxc+fv7d9n8O3bskCStWrVKXl5eDo8LCwuTwWCweW3gwIEaO3asJOncuXOdDxIAAAB2xcbGqk+fPsrLy7OeO3HihKqqqjRlyhSbY4qLi3XkyBFJUnJyst3WGr6+vndUqeguu3btkslk0siRIxUaGtrt6wEAeg8SJQDg/4ClesQzzzwjLy8vRURE6ObNm9Zs6a72119/KS0tTREREYqLi+vwfkvPwqFDh9q8PmzYMEmtvbE76m8IAACAzmtpaVF8fLwKCgrk5+en3NxcPfjgg102v9Fo1IULF+Tt7a3o6Ogum1eSteKF5a1EAAAAdA9/f39FRUXp66+/VlNTkyQpNzdXkuwmSuzbt0+SZDAY9MILL9ybQNuxc+dOSVSTAAB0PRIlAKCHGY1GFRUVyc/PT2PGjJEkTZgwQdK/lSbsmTRpkgIDAzV48GBFRkYqOTlZZWVlHa6ZnJys+vp6rVu3zqEH1JZ7WlpabF6//fyFCxc6nA8AAACds2TJEu3bt0/e3t7Kzs5WSEhIh2Oc2Tv+9ttvkqRHH31UkrRx40aFhYUpICBAI0aM0CuvvKLz5887HbfZbNbPP/8sSRo1apTT4wEAAOCc29tvNDc3a//+/YqIiLCbZPvLL79IkoYPH+5UVbHucOrUKRUXF8vV1dVmyzcAADqDRAkA6GEHDx6U1FpNwpKQMHHiREmylrmz5+zZszIYDGpsbFRRUZG2bt2qqKioditRHD58WAcPHlRcXJwiIyMdinHw4MGSWitR2FJUVGT9fO3aNYfmBAAAwN1ZuXKlMjIyJEnz589XWFiYQ+Oc2TtevnxZUmurjLlz52rt2rUqLS2Vh4eHKioq9MUXX2jSpElOt17Lzs5WWVmZ+vbtq9mzZzs1FgAAAM67vf1GQUGBrl69areahPTv8z97lWUd9eyzzyokJMTm8c033zg0R2ZmpqTW56aBgYGdigcAgP8iUQIAepilaoSlioQkjR07Vv3791dZWVmbN/X69eunxMREfffdd7p8+bJKSkp06dIlpaena8iQIaqpqdG8efN06dKlNms1NDTorbfekru7u1atWuVwjE899ZSk1p6AZrP5jms3b97U559/fse/AQAA0H02b95s/fzpp5+2W9HrbveOdXV1kqSCggLl5+drxYoVunjxokpKSnTu3DlNmDBBjY2Neu2111RdXe1Q3FeuXNGKFSskSYmJidb2bQAAAOg+AQEB1vYbWVlZklqrTNhTW1srSZ2uJnH16lVVVlbaPBoaGjocf+PGDX355ZeSaLsBAOgeJEoAQA+qqanRqVOnJN2ZKNGnTx89/fTTktq23xg4cKDWr1+v0NBQ9evXT1LrA/AXX3xR+/fvl6enp2pqarRly5Y266WlpamkpERJSUlO9bBeuHCh+vTpoz///FOJiYkqKSlRU1OTCgsLNXv2bNXW1lr/8+Tqyq8WAACA7uTq6qqPP/5YI0aMUH19vRYtWtQmmdXibveOJpNJklRdXa1p06Zp6dKl8vDwkNT6duEnn3wid3d3Xb9+XXv37u0w5ubmZsXHx6uiokJhYWFauXJlZ74CAAAAOMHSfiMrK6vdthu3c6Rdb3t+/fVXVVdX2zxiYmI6HJ+Xl6e6ujp5eXkpNja2U7EAAGALf80CgB707bffqqmpScOGDWtTzs6SOHHo0CGH5wsODtb06dMlqU0JO6PRqM2bN2vQoEF64403nIpz9OjRWr9+vVxcXLRnzx6FhobqgQceUFRUlAoKCvTuu+/Kzc1NUuezzQEAANC+jRs3avbs2dq0aZNcXFx0+vRpbdu2zel52ts7uru7Wz+//PLLbcb6+/tr0qRJkqQzZ850uNbixYt1/PhxBQUFaefOnTIYDE7HCwAAgLsTGxsrV1dXmUymdttuSJK3t7ekfytL9BRL243Y2Fhrwi4AAF2JRAkA6EGWJAij0Sg/P787juTkZEmtvaSvXLni8JyjR4+WJJWWlt5xfuXKlWpoaFBKSoo8PT2djjUhIUH5+fmaOXOmQkJCNHToUEVHR2vv3r2aNWuWteQy/QIBAAC6V3x8vCTpySef1EsvvSRJeuedd1RSUuL0XPb2jn5+ftbP9lpkWN5E/Pvvv9tdY9WqVdq1a5d8fX2Vk5OjwYMHOx0nAAAA7l5AQIBSUlKUkJCgadOmtXvvQw89JEm6ePHivQjNJqPRqNOnT0ui7QYAoPv07ekAAKC3MplM1jf3zGazWlpa7N535MgRzZ0716F5LWXx/lsez2g0SpKSkpKUlJRkc2xlZaV8fHwkSTt27GhTBi8iIkIRERFtxp05c0Zms1lubm4aMWKEQ3ECAACg81avXq2DBw+qoqJCixcv1ldffeVUmWR7e8fg4OA293Q0hy0fffSRPvzwQ3l4eGjPnj3sFQEAAHqIoxVmQ0NDlZeXp6KiImvri3stMzNTZrNZQUFBGjdu3D1fHwDQO1BRAgB6yE8//aSqqir17dtXZWVlNvv1LViwQJJ0+PBhh+f9/fffJalNK4/ulJOTI0kaP348ZZQBAADuIR8fH23YsEGSdOLECW3fvt2p8fb2jo899ph1X1dcXGxzrKUKxaBBg2xe3717t1JSUuTm5qb09HQ9/vjjTsUGAACAe8/y4lRjY6MOHDhwz9c3mUzavXu3JGnmzJlydeXPWACA7sFvGADoIZa2G+Hh4XYzs8ePHy9JOnbsmBobGyXJbuUJSSovL1d2drYk6bnnnrvj2smTJ20mY1RXV2vLli2SWsvwWc79t5qEPYWFhUpPT5ckzZ8/36ExAAAA6DpTp07V5MmTJbW2ubi9jcbd7h09PT2tb+999tlnbcZWVVXp6NGjkqQnnniizfVDhw5p0aJFcnFx0datWxUdHe3cDwUAAIAe8cgjj1j3buvWrdP169dt3lddXa2mpqYuX//48eMqKyuTRNsNAED3IlECAHqIJVGivfJx48aNk4uLi2pra/X9999Lkp5//nm9//77+uOPP2QymSRJTU1Nys/PV0xMjGpqauTr62u3vcbd2rRpk44fP66bN29Kkm7duqXs7GxNnTpVDQ0NGjdunKZMmdKlawIAAMAx7733nry8vFRbW6slS5ZYz3dm7/j6669Laq0e9sEHH6i+vl5Sa7/qhIQE1dfX6/7771dcXNwd406fPq0FCxaoublZqampmj59ejf91AAAAOgOqamp6t+/v4xGo2JiYnTy5EmZzWZJ0rVr17R9+3ZFRUXpxo0bXb52ZmampNaXy0JCQrp8fgAALPr2dAAA0BuVlpaqsLBQUvuJEv7+/ho5cqQKCwt16NAhTZw4UeXl5VqzZo3WrFkjg8FgfSBuyeD28/NTZmam3RLIdys/P1+rV6+WJA0YMEB1dXXWNxTDw8OVkZHRpesBAADAcUFBQVq+fLmWLVumo0ePKiMjQ/PmzevU3nH8+PF68803lZqaqrfffltr166Vl5eX/vnnH0mSu7u7tm3bpgEDBtwxbu3ataqvr5erq6s2bNhgbQ3yX0OGDNGxY8e6+JsAAABAZwUHBysnJ0dz5szR+fPnFRMTI4PBIHd3d7sVJrrC9evXtX//fklUkwAAdD8qSgBADzh8+LAkyWAwdNir2ZJIYRmzevVqzZgxQ8OHD5e3t7dqamp03333adSoUVq6dKl++OEHm+WPO2vhwoWaPHmygoKCVF9frwEDBigqKkppaWnKz8+Xj49Pl68JAAAAx7366qsKDw+XJC1fvlzl5eWd3jsuX75cWVlZio6Olre3t+rq6hQYGKhZs2bp2LFjNltqWCpXmEwmVVZW2j2qqqq654sAAABAp0VGRurHH3/UsmXLNGbMGPXr10+NjY16+OGHNWPGDOXl5XX588CcnBw1NDTIzc2NqmQAgG7nUl1dbe7pIAAAAAAAAAAAAAAAAO4FKkoAAAAAAAAAAAAAAIBeg0QJAAAAAAAAAAAAAADQa5AoAQAAAAAAAAAAAAAAeg0SJQAAAAAAAAAAAAAAQK9BogQAAAAAAAAAAAAAAOg1SJQAAAAAAAAAAAAAAAC9BokSAAAAAAAAAAAAAACg1yBRAgAAAAAAAAAAAAAA9BokSgAAAAAAAAAAAAAAgF6DRAkAAAAAAAAAAAAAANBr/A+6T4t3zM/NxQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows = 2\n", "cols = 3\n", "fig, ax = plt.subplots(rows, cols, figsize=(10 * cols, 7 * rows), sharex=True)\n", "\n", "max_entangle = [0.1, 0.8]\n", "for i, y in enumerate(\n", " [\"result.perturbation disentanglement\", \"result.covariate disentanglement\"]\n", " ):\n", " for j, (ct, df) in enumerate(results_clean.groupby(\"config.dataset.data_params.split_key\")):\n", " sns.boxplot(\n", " data=df,\n", " x=\"config.model.embedding.model\",\n", " y=y,\n", " # inner=\"point\",\n", " # kind='violin',\n", " ax=ax[i,j],\n", " hue=\"config.model.load_pretrained\",\n", " )\n", " axis = ax[i,j]\n", " # ax[i].set_ylim([0,1])\n", " axis.set_xticklabels(['CPA', 'chemCPA'])\n", " axis.set_xticklabels(axis.get_xticklabels(), rotation=75, ha=\"right\")\n", " axis.axhline(max_entangle[i], ls=\":\", color=\"black\")\n", " if i == 1:\n", " axis.set_xlabel(ct.split('_')[-1])\n", " else: \n", " axis.set_xlabel(\"\")\n", "\n", " axis.set_ylabel(y.split(\".\")[-1])\n", " axis.get_legend().remove()\n", "ax[i,j].legend(\n", " title=\"Pretrained\",\n", " fontsize=18,\n", " title_fontsize=24,\n", " loc=\"center left\",\n", " bbox_to_anchor=(1, 0.5),\n", ")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Combination vanilla pretrained did not meet disentanglement condition.\n", "vanilla True 0\n", "vanilla False 2\n", "rdkit True 9\n", "rdkit False 3\n", "Combination vanilla pretrained did not meet disentanglement condition.\n", "vanilla True 0\n", "vanilla False 2\n", "rdkit True 7\n", "rdkit False 3\n", "Combination vanilla pretrained did not meet disentanglement condition.\n", "vanilla True 0\n", "vanilla False 1\n", "rdkit True 9\n", "rdkit False 3\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/icb/leon.hetzel/miniconda3/envs/chemical_CPA/lib/python3.7/site-packages/ipykernel_launcher.py:16: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " app.launch_new_instance()\n", "/home/icb/leon.hetzel/miniconda3/envs/chemical_CPA/lib/python3.7/site-packages/ipykernel_launcher.py:19: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n" ] } ], "source": [ "n_top = 1\n", "\n", "\n", "def performance_condition(emb, pretrained, max_entangle, max_entangle_cov):\n", " cond = results_clean[\"config.model.embedding.model\"] == emb\n", " cond = cond & (results_clean[\"result.perturbation disentanglement\"] < max_entangle)\n", " cond = cond & (results_clean[\"result.covariate disentanglement\"] < max_entangle_cov)\n", " cond = cond & (results_clean[\"config.model.load_pretrained\"] == pretrained)\n", " return cond\n", "\n", "\n", "best = []\n", "for ct, df_ct in results_clean.groupby(\"config.dataset.data_params.split_key\"):\n", " for embedding in list(results_clean[\"config.model.embedding.model\"].unique()):\n", " for pretrained in [True, False]:\n", " df = df_ct[performance_condition(embedding, pretrained, 0.13, 0.69)]\n", " if len(df) == 0: \n", " print(f\"Combination {embedding} {'pretrained' if pretrained else ''} did not meet disentanglement condition.\")\n", " df = df_ct[performance_condition(embedding, pretrained, 0.13, 1)]\n", " df = df.sort_values(by=\"result.covariate disentanglement\", ascending=True).head(1)\n", " print(embedding, pretrained, len(df))\n", " best.append(\n", " df.sort_values(by=\"result.val_mean_de\", ascending=False).head(n_top)\n", " )\n", "\n", "best = pd.concat(best)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
config.model.embedding.modelrdkitvanilla
config.dataset.data_params.split_key
split_baseline_A54921
split_baseline_K56221
split_baseline_MCF721
\n", "
" ], "text/plain": [ "config.model.embedding.model rdkit vanilla\n", "config.dataset.data_params.split_key \n", "split_baseline_A549 2 1\n", "split_baseline_K562 2 1\n", "split_baseline_MCF7 2 1" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(best['config.dataset.data_params.split_key'], best['config.model.embedding.model'])" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACEoAAAPKCAYAAACJSy1xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1zUdd7//+eAEsohjBA5iBoeCEy7DNs1tFJbCcnc1VVSWrnom/5kOyy2ZqKVW5korrWWade11uVSClu5mZirqxhps+xeqWnCLO4KlInhqR2QQTwxvz9c5mqWgzCMA8Ljfrt1u+28D5/X6+NfL2Zf834bzGazVQAAAAAAAAAAAAAAAJ2AW1snAAAAAAAAAAAAAAAA4Co0SgAAAAAAAAAAAAAAgE6DRgkAAAAAAAAAAAAAANBp0CgBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAABAp0GjBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAAAAJ0GjRIAAAAAAAAAAAAAAKDToFECAAAAAAAAAAAAAAB0GjRKAAAAAAAAAAAAAACAToNGCQAAAAAAAAAAAAAA0GnQKAEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAECnQaMEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAAAnQaNEgAAAAAAAAAAAAAAoNOgUQIAAAAAAAAAAAAAAHQaNEoAAAAAAAAAAAAAAIBOg0YJAAAAAAAAAAAAAADQadAoAQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAQKdBowQAAAAAAAAAAAAAAOg0urR1AgAAoPUWLlyowsLCtk4D3xMVFaWXX365rdMAAAC4KmrJ9ol6EgAAXA+oJdsnakng6jhRAgAAAAAAAAAAAAAAdBo0SgAAAAAAAAAAAAAAgE7DYDabrW2dBAAAAAAAAAAAAAAAgCtwogQAAAAAAAAAAAAAAOg0urR1AgAAAAAAAADQ3lRVVSkjI0MfffSRysvL5e/vr3HjxmnhwoUKCAho9fP9/Pyate7QoUPq3bt3s/ft379ft9xySysyAwAAADo+GiUAAAAAAAAA4HuqqqoUGxurwsJChYWFafz48TKZTFq3bp127NihnTt3KigoqFUxpk2b1ujcV199pfz8fPXt21ehoaEt2u/j49OqvAAAAIDOgEYJAAAAAAAAAPie9PR0FRYWasyYMcrOzpaHh4esVqtSUlKUnZ2tZ555RpmZma2KsWbNmkbnZs2apfz8fE2fPl0Gg6HF+wEAAAA0zWA2m61tnQQAAAAAAAAAtAc1NTUKDw+XxWLR3r171b9/f9uc2WxWRESEzp8/r0OHDjV62kNrmM1m3XrrrTp//rwOHjxod+2G9H9Xb5jNZqfHBgAAADoLt7ZOAAAAAAAAAADai/z8fFksFkVERNg1SUhXmhRiYmJktVqVm5t7TeK/9957OnfunO6+++56TRIAAAAAnIOrNwAAAAAAAADgXwoLCyVJUVFRDc4PHjxYubm5MplM1yT+O++8I0lKTExsct2qVatUUlIid3d3DRo0SBMmTFBgYOA1yQkAAADoaGiUAAAAAAAAAIB/OX78uCSpV69ekqRNmzZp5cqVmjFjhpKTk23jZWVlTo994MABHTp0SL6+vnrggQeaXPvss8/W+7x48WI9+uijLY67fv16bdiwoVlr09PTNWTIEFVXV1+TfwMAAHD9CAkJUffu3ds6DcAhNEoAAAAAAAAAwL9YLBZJUrdu3SRJGRkZMplMOnLkiJKTk+Xl5WW3zpkyMzMlSZMnT7bF/3fTp09XQkKCBg0aJB8fH5WUlGjt2rXKzMzU3LlzFRAQoIkTJ7Yo7tGjR2U0Gpu1trKyskXPBgAAANojGiUAAAAAAAAA4F+sVqvd56lTp2r58uW2qzDq5g0Gg1PjVldX64MPPpDU9LUbq1evtvt82223aeXKlQoJCdGSJUv04osvtrhRIiwsTDExMc1a6+vrK0nq3r27BgwY0KI4AAAAQHtBowQAAAAAAAAA/Iu3t7ck6dy5c5Kk1NRUpaam2uarq6slyenHTG/atEmVlZUaNGiQoqOjW7w/JSVFGRkZKi4u1tdff60+ffo0e29iYmKTzRkAAABAR+PW1gkAAAAAAAAAQHsRHBwsSSovL29wvm48JCTEqXHfeecdSU2fJtEUHx8f+fv7S5JOnDjhtLwAAACAjohGCQAAAAAAAAD4l6ioKElSYWFhg/MFBQWSpMjISKfF/Mc//qH8/Hy5u7srISHBoWdcvHhRZ86ckeT80y4AAACAjoZGCQAAAAAAAAD4lxEjRsjLy0tFRUUqLi62mzObzTIajTIYDBo7dqzTYmZmZkqS7rvvPgUGBjr0jF27dunSpUvy9vbWwIEDnZYbAAAA0BHRKAEAAAAAAAAA/+Lp6amkpCRJ0rx583ThwgVJktVqVVpammpqahQfH6/Q0NAG96enp8vPz09+fn7as2fPVeNdvHhR2dnZkq5+7UZWVpb+9re/1Rs/cOCA5s6dK0l65JFH5OHhcdW4AAAAQGfWpa0TAAAAAJqjqqpKGRkZ+uijj1ReXi5/f3+NGzdOCxcuVEBAgNPiVFRU6PXXX9fHH3+so0ePys3NTSEhIYqJidELL7wgb29vu/V+fn5NPm///v265ZZb2ux9AAAA0HJpaWnKy8tTbm6uoqOjFR0dLZPJpKKiIgUFBSkjI8NpsbZu3apTp07J399fcXFxTa7NyclRSkqK+vXrp8jISN1www0qLS3VwYMHVVtbq/vuu0/PPvus03IDAAAAOioaJQAAANDuVVVVKTY2VoWFhQoLC9P48eNlMpm0bt067dixQzt37lRQUFCr45SWlmrChAk6duyYevbsqdGjR0uSSkpK9NZbb+mpp56q1yhRZ9q0aQ2O+/j4tNn7AAAAwDE+Pj7avn27li1bps2bN2vLli3y9/dXUlKSFixY4PD1GA159913JUlTpkxR165dm1ybkJAgd3d3FRQUyGg0qqqqSt7e3oqJidFDDz2kadOmyc2NQ4QBAACAqzGYzWZrWycBAAAANGXhwoV64403NGbMGGVnZ8vDw0NWq1UpKSnKzs7Wgw8+aLvX2VGXL1/W3XffrcLCQj322GP61a9+ZfdFdVFRkcLCwtS9e3e7fXUnSpjN5nb1PgAAAAAAAACAhtEoAQAAgHatpqZG4eHhslgs2rt3r/r372+bM5vNioiI0Pnz53Xo0KFG74lujvfff18zZ87U6NGj9eGHHzZ7X0sbJVz1PgAAAAAAAACAhnEOGwAAANq1/Px8WSwWRURE2DUVSFeaFGJiYmS1WpWbm9uqOBs3bpQkzZ49u1XPuRpXvQ8AAAAAAAAAoGFd2joBAAAAoCmFhYWSpKioqAbnBw8erNzcXJlMplbF2b9/vyTprrvu0pEjR/TBBx+ovLxcAQEBGjdunIYPH97k/lWrVqmkpETu7u4aNGiQJkyY0ODd1a56HwAAAAAAAABAwzhRAgAAAO3a8ePHJUm9evWSJG3atEmjR4/W//zP/9iNl5WVORzDYrHo5MmTuummm7R161aNGDFCS5cu1bp167R8+XL96Ec/UkpKii5fvtzoM5599lm9/fbb+u1vf6u5c+dq6NChWrt2bZu8DwAAAAAAAACgcZwoAQAAgHbNYrFIkrp16yZJysjIkMlk0pEjR5ScnCwvLy+7dY44e/asJOnChQtKTU3V5MmTNXfuXAUEBOjPf/6zUlNTlZWVpYEDB2rOnDl2e6dPn66EhAQNGjRIPj4+Kikp0dq1a5WZmWl7xsSJE6/5+6xfv14bNmxo1tr09HQNGTJE1dXVNGQAANDJhYSEqHv37m2dBgAAAAC4FI0SAAAAaNesVqvd56lTp2r58uVKTEy0mzcYDA7HqK2tlSRVVVVp+PDhevPNN21zcXFxqq2tVWJiolavXq3U1FS7WKtXr7Z71m233aaVK1cqJCRES5Ys0YsvvmjXKHGt3ufo0aMyGo3NWltZWdmiZwMAAAAAAABAR0KjBAAAANo1b29vSdK5c+ckSampqUpNTbXNV1dXS1Krfgn5/b3Tpk2rNz9+/Hh5eHjo1KlTKikpUXh4+FWfmZKSooyMDBUXF+vrr79Wnz59run7hIWFKSYmpllrfX19bTEGDBjQojgAAAAAAAAAcL2jUQIAAADtWnBwsCSpvLy8wfm68ZCQEIdj3Hjjjerevbuqq6vVu3fvevMGg0GBgYH65ptvdPr06WY1Svj4+Mjf318nTpzQiRMnbI0S1+p9EhMTbadSAAAAAAAAAAAa59bWCQAAAABNiYqKkiQVFhY2OF9QUCBJioyMdDiGwWBQ//79JUlms7nBNRUVFZIkT0/PZj3z4sWLOnPmjCT70yFc8T4AAAAAAAAAgMbRKAEAAIB2bcSIEfLy8lJRUZGKi4vt5sxms4xGowwGg8aOHduqOPfee68kyWg01psrLi5WZWWlunTp0uyrKnbt2qVLly7J29tbAwcOtI276n0AAAAAAAAAAA2jUQIAAADtmqenp5KSkiRJ8+bN04ULFyRJVqtVaWlpqqmpUXx8vEJDQxvcn56eLj8/P/n5+WnPnj2NxklKSlKXLl20YcMG5eXl2cbPnTunBQsWSJImTJhgdzpEVlaW/va3v9V71oEDBzR37lxJ0iOPPCIPDw+nvQ8AAAAAAAAAoHUMZrPZ2tZJAAAAAE05e/asYmNjZTKZFBYWpujoaJlMJhUVFSkoKEi5ubkKDg5ucG96erqWLVsmScrJydGoUaMajfP666/rueeek5ubm4YPH66AgAB98cUXKisrU2hoqHbs2KGgoCDb+unTp2vr1q3q16+fIiMjdcMNN6i0tFQHDx5UbW2t7rvvPm3YsMGuUaK17wMAAAAAAAAAaB1OlAAAAEC75+Pjo+3bt+vxxx+XJG3ZskUVFRVKSkpSXl6e05oKnnjiCf3+97/XqFGjdPjwYW3fvl1dunTRrFmz9Mknn9g1SUhSQkKCJkyYIOnKlR2bN29WaWmpYmJi9MYbb+i9996r1yThyvcBAAAAAAAAANTHiRIAAAAAAAAAAAAAAKDTaPcnSlRVVen555/X0KFDFRgYqMjISKWmpurUqVNOi1FTU6MVK1Zo5MiRCg4OVmBgoIYNG6b58+c3GqfunuvG/ispKXFafgAAAAAAAAAAAAAAwDna9YkSVVVVio2NVWFhocLCwnTHHXfIZDLp8OHDCgkJ0c6dO+sdf9xSNTU1io+P1759++Tr66sRI0aoa9eu2rt3r8rLyxUUFKQ//elP6t27t90+Pz8/SdK0adMafO6LL76ogICAVuUGAAAAAAAAAAAAAACcq0tbJ9CU9PR0FRYWasyYMcrOzpaHh4esVqtSUlKUnZ2tZ555RpmZma2K8bvf/U779u1TeHi4duzYoZtuukmSdO7cOU2bNk15eXlasmSJ1qxZ0+D+xsYBAAAAAAAAAAAAAED7026v3qipqdG6deskSRkZGfLw8JAkGQwGLV26VJ6ensrJydGxY8daFcdoNEqSZsyYYWuSkKRu3bpp5syZkqT9+/e3KgYAAAAAAAAAAAAAAGgf2m2jRH5+viwWiyIiItS/f3+7OT8/P8XExMhqtSo3N7dVcTw9PSVJbm71/ynqxr7fQAEAAAAAAAAAAAAAAK5f7bZRorCwUJIUFRXV4PzgwYMlSSaTqVVxfvSjH0mS1q9fr4qKCtv4+fPntXbtWklSUlJSo/tXrVqlp556Sk8//bTWrl2rEydOtCofAAAAAAAAAAAAAABw7XRp6wQac/z4cUlSr169JEmbNm3SypUrNWPGDCUnJ9vGy8rKWhXnpz/9qXbv3q133nlHQ4cO1Q9/+EN17dpVe/fu1YULF5SRkaGHHnqo0f3PPvtsvc+LFy/Wo48+2qI81q9frw0bNjRrbXp6uoYMGaLq6upWvz8AALi+hYSEqHv37m2dBgAAAAAAAAAA14122yhhsVgkSd26dZMkZWRkyGQy6ciRI0pOTpaXl5fdOkcZDAa99tprGjBggF588UVt27bNNhcfH6/o6OgG902fPl0JCQkaNGiQfHx8VFJSorVr1yozM1Nz585VQECAJk6c2Ow8jh49KqPR2Ky1lZWVzX4uAAAAAAAAAAAAAAD4P+22UcJqtdp9njp1qpYvX67ExES7eYPB0Ko4FRUVSk5O1t69e/XKK6/o/vvvV9euXfXpp59q3rx5iouL07vvvmu7oqPO6tWr7T7fdtttWrlypUJCQrRkyRK9+OKLLWqUCAsLU0xMTLPW+vr6SpK6d++uAQMGNDsGAAAAAAAAAAAAAACdXbttlPD29pYknTt3TpKUmpqq1NRU23x1dbUktfqo6UWLFmnXrl36zW9+oxkzZtjGf/zjH8vLy0tTpkzRvHnztG/fPrm5uV31eSkpKcrIyFBxcbG+/vpr9enTp1l5JCYm2ppAAAAAAAAAAAAAAADAtXH1/+e/jQQHB0uSysvLG5yvGw8JCXE4htVq1e9//3tJ0v33319vfuzYsfL09FRpaamOHj3arGf6+PjI399fknTixAmHcwMAAAAAAAAAAAAAAM7XbhsloqKiJEmFhYUNzhcUFEiSIiMjHY5x8uRJ24kVXl5e9ebd3NzUrVs329rmuHjxos6cOSOp9addAAAAAAAAAAAAAAAA52q3jRIjRoyQl5eXioqKVFxcbDdnNptlNBplMBg0duxYh2P4+vrK3d1dknTw4MF688eOHdM///lPSVJQUFCznrlr1y5dunRJ3t7eGjhwoMO5AQAAAAAAAAAAAAAA52u3jRKenp5KSkqSJM2bN08XLlyQdOW6jLS0NNXU1Cg+Pl6hoaEN7k9PT5efn5/8/Py0Z8+eBtd069ZNo0ePliQ999xzOnXqlG3OYrFo7ty5kqRhw4apd+/etrmsrCz97W9/q/e8AwcO2PY88sgj8vDwaOlrAwAAAAAAAAAAAACAa6hLWyfQlLS0NOXl5Sk3N1fR0dGKjo6WyWRSUVGRgoKClJGR0eoYGRkZiouL0xdffKHo6GgNHz5cXbt21b59+3Ty5En5+fnptddes9uTk5OjlJQU9evXT5GRkbrhhhtUWlqqgwcPqra2Vvfdd5+effbZVucGAAAAAAAAAAAAAACcq92eKCFJPj4+2r59ux5//HFJ0pYtW1RRUaGkpCTl5eUpODi41TFuueUWffbZZ3riiScUGBioPXv2aNeuXfL29tbMmTNlNBo1ePBguz0JCQmaMGGCJMloNGrz5s0qLS1VTEyM3njjDb333nucJgEAAAAAAAAAAAAAQDtkMJvN1rZOAgAAAAAAAAAAAAAAwBXa9YkSAAAAAAAAAAAAAAAAzkSjBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAAAAJ0GjRIAAAAAAAAAAAAAAKDT6NLWCQAAAAAAAAAAAACNWbhwoQoLC9s6DXxPVFSUXn755bZOAwAcxokSAAAAAAAAAAAAAACg06BRAgAAAAAAAAAAAAAAdBoGs9lsbeskAAAAAAAAAAAAAAAAXIETJQAAAAAAAADg31RVVen555/X0KFDFRgYqMjISKWmpurUqVNOeb6fn1+z/vvmm2/q7S0tLdXMmTM1YMAABQYG6s4779SKFSt08eJFp+QGAAAAdHScKAEAAAAAAAAA31NVVaXY2FgVFhYqLCxMd9xxh0wmkw4fPqyQkBDt3LlTQUFBrYqRkpLS6NxXX32l/Px89e3bV1988YUMBoNtzmQy6f7771dlZaX+4z/+Q3369JHRaNSpU6c0ZswYvf/++3J3d29VbgAAAEBH16WtEwAAAAAAAACA9iQ9PV2FhYUaM2aMsrOz5eHhIavVqpSUFGVnZ+uZZ55RZmZmq2KsWbOm0blZs2YpPz9f06dPt2uSkKSf//znqqys1Pz58zV//nxJUkVFheLi4rRr1y699dZbmjVrVqtyAwAAADo6TpQAAAAAAAAAgH+pqalReHi4LBaL9u7dq/79+9vmzGazIiIidP78eR06dEihoaFOj282m3Xrrbfq/PnzOnjwoHr37m2by8/PV1xcnEJDQ3Xw4EG7kyN27NihKVOmqF+/fvriiy+cnhcAAADQkbi1dQIAAAAAAAAA0F7k5+fLYrEoIiLCrklCkvz8/BQTEyOr1arc3NxrEv+9997TuXPndPfdd9s1SUjSzp07JUn3339/ves1xowZIy8vL5WWlqq4uPia5AYAAAB0FDRKAAAAAAAAAMC/FBYWSpKioqIanB88eLAkyWQyXZP477zzjiQpMTGxRbm5u7srIiLimuYGAAAAdBQ0SgAAAAAAAADAvxw/flyS1KtXL0nSpk2bNHr0aP3P//yP3XhZWZnTYx84cECHDh2Sr6+vHnjggavm9tJLL+lHP/qR/vrXv17z3AAAAICOpEtbJwAAAAAAAAAA7YXFYpEkdevWTZKUkZEhk8mkI0eOKDk5WV5eXnbrnCkzM1OSNHnyZFv8hnLr3r27vvvuO61YsUKS9Oqrryo7O9vh3NavX68NGzY0a216erqGDBmi6upqGjIAAOjkQkJC1L1797ZOA3AIjRIAAAAAAAAA8C9Wq9Xu89SpU7V8+XLbVRh18waDwalxq6ur9cEHH0hq+NqNf8+tR48eiouLk9Fo1JQpU1qV29GjR2U0Gpu1trKyskXPBgAAANojGiUAAAAAAAAA4F+8vb0lSefOnZMkpaamKjU11TZfXV0tSU7/9eSmTZtUWVmpQYMGKTo6usncqqurZTAYlJWVZTfvaG5hYWGKiYlp1lpfX19bjAEDBrQoDgAAANBe0CgBAACA60JVVZUyMjL00Ucfqby8XP7+/ho3bpwWLlyogIAAp8WpqKjQ66+/ro8//lhHjx6Vm5ubQkJCFBMToxdeeMH25bQkmc1m/fGPf9THH3+sw4cP69ixY+rSpYsiIiI0depUPfLII3J3d68XIz4+vslf7L322muaMWOG094JAAAAzRccHCxJKi8vb3C+bjwkJMSpcd955x1JjZ8mUZfbl19+6fTcEhMTm4wLAAAAdDQ0SgAAAKDdq6qqUmxsrAoLCxUWFqbx48fLZDJp3bp12rFjh3bu3KmgoKBWxyktLdWECRN07Ngx9ezZU6NHj5YklZSU6K233tJTTz1l1yixZs0aLVu2TG5ubhoyZIji4uJ05swZ/fWvf9Xnn3+uzZs367333mvwfmlJGjt2rHr27FlvPDw8vNXvAgAAAMdERUVJkgoLCxucLygokCRFRkY6LeY//vEP5efny93dXQkJCU3mtm3btgZzu3z5soqKipyeGwAAANAR0SgBAACAdi89PV2FhYUaM2aMsrOz5eHhIavVqpSUFGVnZ+uZZ55RZmZmq2JcvnxZDz/8sI4dO6bHHntMv/rVr9S1a1fbfFFRkXr06GG3x8vLS0899ZQeffRR2y8PJemrr77S/fffrz179ujXv/61nnvuuQZjpqamatSoUa3KGwAAAM41YsQIeXl5qaioSMXFxXZNrGazWUajUQaDQWPHjnVazLpa9r777lNgYGCj68aOHasVK1Zo27ZtWrZsmd3pZbt27ZLFYlHfvn1pvAUAAACuwq2tEwAAAACaUlNTo3Xr1kmSMjIy5OHhIUkyGAxaunSpPD09lZOTo2PHjrUqzh/+8AcVFhZq9OjRevnll+2aJCQpIiKi3l3PTz75pJ5//nm7JglJ6tu3r37xi19Ikt57771W5QUAAADX8vT0VFJSkiRp3rx5unDhgiTJarUqLS1NNTU1io+PV2hoaIP709PT5efnJz8/P+3Zs+eq8S5evKjs7GxJTV+7IV1p4hgyZIiOHTum5cuX28YrKiq0aNEiSdLs2bOv/pIAAABAJ0ejBAAAANq1/Px8WSwWRUREqH///nZzfn5+iomJkdVqVW5ubqvibNy4UZLzvliuy/XkyZNOeR4AAABcJy0tTZGRkcrNzVV0dLQeeeQRjRgxQllZWQoKClJGRobTYm3dulWnTp2Sv7+/4uLimlxrMBi0evVq+fj4aOnSpRozZoySk5M1fPhwmUwm3XPPPXr00UedlhsAAADQUXH1BgAAANq1uvuX6+6K/neDBw9Wbm6uTCZTq+Ls379fknTXXXfpyJEj+uCDD1ReXq6AgACNGzdOw4cPb9Hzjh49KkmN/tJQuvKleE5Oji5duqTevXsrNjaW+6QBAADaAR8fH23fvl3Lli3T5s2btWXLFvn7+yspKUkLFixo8nqMlnr33XclSVOmTKl3qllDBg8erLy8PC1ZskSffvqpCgsLFRYWppkzZ+oXv/iFunThK18AAADgaqiaAQAA0K4dP35cktSrVy9J0qZNm7Ry5UrNmDFDycnJtvGysjKHY1gsFp08eVI33XSTtm7dqscff1wXL160zS9fvlzTpk3TqlWr7O6Bbkxtba3tupDJkyc3um7NmjV2n1944QX97Gc/04oVK2xXjDTX+vXrtWHDhmatTU9P15AhQ1RdXd2qfzcAAHD9CwkJqXe9GK7w8fHR4sWLtXjx4hbtS0tLU1paWrPXv//++y1NTeHh4XrrrbdavA8AAADAFTRKAAAAoF2zWCySpG7dukmSMjIyZDKZdOTIESUnJ8vLy8tunSPOnj0rSbpw4YJSU1M1efJkzZ07VwEBAfrzn/+s1NRUZWVlaeDAgZozZ85Vn/f666/r0KFDCg4O1uOPP15vfuTIkXr00Uc1bNgwBQYGqqysTFu3btWyZcv0zjvvyNPT0+7O6eY4evSojEZjs9ZWVla26NkAAAAAAAAA0JHQKAEAAIB2zWq12n2eOnWqli9frsTERLt5g8HgcIza2lpJUlVVlYYPH64333zTNhcXF6fa2lolJiZq9erVSk1NbTLWnj179NJLL8nDw0Pr1q2Tr69vvTX//gvD8PBwPfHEExo2bJji4+P19ttv68knn1Tv3r2b/Q5hYWGKiYlp1tq6nLp3764BAwY0OwYAAAAAAAAAdAQ0SgAAAKBd8/b2liSdO3dOkpSamqrU1FTbfHV1tSS16sjo7++dNm1avfnx48fLw8NDp06dUklJicLDwxt8TmFhoR5++GFdvnxZ//Vf/6U777yzRXnExMTojjvu0L59+7R7925bM0hzJCYmtmg9AAAAAAAAAHRWbm2dAAAAANCU4OBgSVJ5eXmD83XjISEhDse48cYbbc0SDZ3iYDAYFBgYKEk6ffp0g8/4+uuvNXnyZFVUVCgjI0OTJ092KJe+fftKkk6cOOHQfgAAAAAAAABA02iUAAAAQLsWFRUl6cppDQ0pKCiQJEVGRjocw2AwqH///pIks9nc4JqKigpJkqenZ725kydP6ic/+YnKy8v13HPPaebMmQ7ncvz4cUmtOyEDAAAAAAAAANA4rt4AAABAuzZixAh5eXmpqKhIxcXFdtdemM1mGY1GGQwGjR07tlVx7r33Xn355ZcyGo2aMmWK3VxxcbEqKyvVpUsXDRgwwG7ObDZr0qRJKikp0Zw5c/TLX/7S4RxOnjypQ4cOSZKGDRvm8HMAoD1auHBho01vaBtRUVF6+eWX2zoNAAAAAABcjhMlAAAA0K55enoqKSlJkjRv3jxduHBBkmS1WpWWlqaamhrFx8crNDS0wf3p6eny8/OTn5+f9uzZ02icpKQkdenSRRs2bFBeXp5t/Ny5c1qwYIEkacKECXYnPVRXV+uhhx5SQUGBZs2apUWLFl31fT799FPl5eWptrbWbvzEiROaNWuWqqqqdMcdd+jOO++86rMAAAAAAAAAAC3HiRIAAABo99LS0pSXl6fc3FxFR0crOjpaJpNJRUVFCgoKUkZGRqtjhIeHa9GiRXruuec0adIkDR8+XAEBAfriiy9UVlam0NBQLVmyxG7PSy+9pL/85S/q1q2bKisrlZKS0uCzFy9eLH9/f0lXrhBZsGCBbr75Zt1+++3q0aOHysrK9OWXX6qqqkp9+/bV22+/3er3AQAAAAAAAAA0zGA2m61tnQQAAABwNWfPntWyZcu0efNmlZeXy9/fX+PGjdOCBQsUGBjY6L709HQtW7ZMkpSTk6NRo0Y1GWf79u1avXq1Dh48KIvFouDgYMXGxurpp59WQECA3dqUlBRlZWVdNfeDBw+qT58+tv/93//939q/f79OnTqliooKeXh4qH///oqPj9fs2bPl6+t71WcCAAAAAAAAABxDowQAAAAAAAAAAAAAAOg03No6AQAAAAAAAAAAAAAAAFehUQIAAAAAAAAAAAAAAHQaNEoAAAAAAAAAAAAAAIBOg0YJAAAAAAAAAAAAAADQadAoAQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAQKdBowQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAACdBo0SAAAAAAAAAAAAAACg06BRAgAAAAAAAAAAAAAAdBo0SgAAAAAAAAAAAAAAgE6DRgkAAAAAAAAAAAAAANBp0CgBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAABAp0GjBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAAAAJ0GjRIAAAAAAAAAAAAAAKDToFECAAAAAAAAAAAAAAB0GjRKAAAAAAAAAAAAAACAToNGCQAAAAAAAAAAAAAA0GnQKAEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAECnQaMEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAAAnQaNEgAAAAAAAAAAAAAAoNOgUQIAAAAAAAAAAAAAAHQaNEoAAAAAAAAAAAAAAIBOg0YJAAAAAAAAAAAAAADQadAoAQAAAAAAAAAAAAAAOo0urX1ARUWFvv76a1ksFtXW1ja5NiYmprXhAAAA0E5RFwIAAMCVqD8BAAAAOMrhRok//elPWrp0qQ4cONCs9QaDQWfOnHE0HAAAANop6kIAAAC4kqvqz6qqKmVkZOijjz5SeXm5/P39NW7cOC1cuFABAQEtfl5jKioq9Prrr+vjjz/W0aNH5ebmppCQEMXExOiFF16Qt7e33Xo/P78mn7d//37dcsstTssPAAAA6IgcapT46KOP9Mgjj8hqtcpqteqGG27QzTffLDc3bvIAAADoTKgLAQAA4Equqj+rqqoUGxurwsJChYWFafz48TKZTFq3bp127NihnTt3KigoqNVxSktLNWHCBB07dkw9e/bU6NGjJUklJSV666239NRTT9VrlKgzbdq0Bsd9fHxanRcAAADQ0RnMZrO1pZvuvvtuHTp0SMOHD1dGRoZuv/32a5AaAAAA2jvqQgAAALiSq+rPhQsX6o033tCYMWOUnZ0tDw8PWa1WpaSkKDs7Ww8++KAyMzNbFePy5cu6++67VVhYqMcee0y/+tWv1LVrV9t8UVGRwsLC1L17d7t9dSdKmM3mVsUHAAAAOjOHGiV69eqlCxcuqKCgQMHBwdciLwAAAFwHqAsBAADgSq6oP2tqahQeHi6LxaK9e/eqf//+tjmz2ayIiAidP39ehw4dUmhoqMNx3n//fc2cOVOjR4/Whx9+2Ox9NEoAAAAArefQmXQ33nijfHx8+DIcAACgk6MuBAAAgCu5ov7Mz8+XxWJRRESEXZOEdKVJISYmRlarVbm5ua2Ks3HjRknS7NmzW/UcAAAAAC3nUKPEPffco6qqKp06dcrZ+QAAAOA64sq6sKqqSs8//7yGDh2qwMBARUZGKjU11emxKyoqtHjxYo0YMUIhISHq3bu3fvjDH+qXv/ylqqqqGtxTWlqqmTNnasCAAQoMDNSdd96pFStW6OLFi23+PgAAAB2JK+rPwsJCSVJUVFSD84MHD5YkmUymVsXZv3+/JOmuu+7SkSNHtHTpUqWmpurll1/W559/ftX9q1at0lNPPaWnn35aa9eu1YkTJ1qVDwAAANCZOHT1xtGjRzVmzBj94Ac/0Nq1a9WtW7drkRsAAADaOVfVhVVVVYqNjVVhYaHCwsJ0xx13yGQy6fDhwwoJCdHOnTsVFBTU6jilpaWaMGGCjh07pp49e+rOO++UJJWUlMhkMqmwsFAhISF2e0wmk+6//35VVlbqP/7jP9SnTx8ZjUadOnVKY8aM0fvvvy93d/c2eR8AAICOxhX154IFC7R69Wo99thjevnll7Vp0yatXLlSM2bMUHJystasWaO0tDQ98MADevfddx2KYbFYFBISoptuuknp6el6/PHH6zXZTps2TatWrapXS9ZdvfHvPD09tXjxYj366KMtzmf9+vXasGFDs9amp6dryJAhqq6uVllZWYtjAQCAjiMkJETdu3dv6zQAh3RxZJPRaNTMmTO1cuVKRUVFadKkSerbt6/8/f2b3Ddt2rQWx6qqqlJGRoY++ugjlZeXy9/fX+PGjdPChQsVEBDgSPr11NTU6I033tCHH36okpISXb58WSEhIRo3bpx++ctfNhqntLRUS5YsUV5eniorK9WnTx8lJCToySefVNeuXZ2SGwC0FwsXLrT9qgbtR1RUlF5++eW2TgOdmKvqwvT0dBUWFmrMmDHKzs6Wh4eHrFarUlJSlJ2drWeeeUaZmZmteRVdvnxZDz/8sI4dO6bHHntMv/rVr+xquqKiIvXo0aPevp///OeqrKzU/PnzNX/+fElXTqWIi4vTrl279NZbb2nWrFkufx8AAICOyBX1p8VikSRbE0ZGRoZMJpOOHDmi5ORkeXl52a1zxNmzZyVJFy5cUGpqqiZPnqy5c+cqICBAf/7zn5WamqqsrCwNHDhQc+bMsds7ffp0JSQkaNCgQfLx8VFJSYnWrl2rzMxM2zMmTpzYonyOHj0qo9HYrLWVlZUtejYAAADQHjl0okSPHj1kMBhktV7ZajAYmrXvu+++a1EcV/zSrqamRvHx8dq3b598fX01YsQIde3aVXv37lV5ebmCgoL0pz/9Sb1797bb58gvBwHgekajRPtEowTamivqwpqaGoWHh8tisWjv3r1290SbzWZFRETo/PnzOnTokEJDQ1v2At/z/vvva+bMmRo9erQ+/PDDZu3Jz89XXFycQkNDdfDgQbv6b8eOHZoyZYr69eunL774wuXvAwAA0BG5ov588sknbU0Hzz77rH7zm99o+fLl+tnPfqalS5fqd7/7nX7xi19ozJgx+sMf/uDQexw/flyRkZGSpOHDh2vHjh128x9//LESExMVEBCgv//97816z4yMDC1ZskTh4eHat29fi/Jx5EQJAAAA4Hrm0IkSd911V7P/CGkNV/zS7ne/+5327dun8PBw7dixQzfddJMk6dy5c5o2bZry8vK0ZMkSrVmzxm6fI78cBAAA6GhcURfm5+fLYrEoIiLCrqlAunLscExMjHJzc5Wbm6ukpCSH42zcuFGSNHv27Gbv2blzpyTp/vvvr9ckO2bMGHl5eam0tFTFxcUKDw936fsAAAB0RK6oP729vSVd+X5QklJTU5Wammqbr66ulqRWHTP9/b0NnXYxfvx4eXh46NSpUyopKbHVkk1JSUlRRkaGiouL9fXXX6tPnz7NzicxMVGJiYnNXg8AAABc7xxqlPj444+dnUc9NTU1WrdunaQr3dAeHh6SrnSJL126VJs2bVJOTo6OHTvWql/a1R0pN2PGDFuThHTlaL2ZM2cqLy9P+/fvt9uTn5+vAwcOKDQ0VE8//bRt/MYbb9QLL7ygKVOmaM2aNTRKAOhQOLUAQENcURfWnWYTFRXV4PzgwYOVm5srk8nUqjh1Nd9dd92lI0eO6IMPPlB5ebkCAgI0btw4DR8+vEW5ubu7KyIiQvv27ZPJZLJ9ue2q9wEAAOiIXFF/BgcHS5LKy8sbnK8bDwkJcTjGjTfeqO7du6u6urreSbbSle9AAwMD9c033+j06dPNapTw8fGRv7+/Tpw4oRMnTrSoUQIAAADobBxqlHAFV/3SztPTU5Lk5uZWb65u7PsNFJJjvxwEAACAY44fPy5J6tWrlyRp06ZNWrlypWbMmKHk5GTbeFlZmcMxLBaLTp48qZtuuklbt27V448/rosXL9rmly9frmnTpmnVqlV29d+/5/bSSy9p9+7dWrx4sX7wgx80mNu1eh9Hjkuurq5u1b8bAAC4/oWEhLTqZISOqK6htbHrJwsKCiTJdnWGIwwGg/r3768vv/xSZrO5wTUVFRWS/u/7y6u5ePGizpw5I6l1p10AAAAAnUH97oB2ojm/tJPU6l/a/ehHP5J05Yvluj8+JOn8+fNau3atJNVrxGjOLwedkRsAAACuNDFIV078kq6cNvbFF1/o+eeflyR5eXnZrXPE2bNnJUkXLlxQamqqJk+erL179+rrr79WVlaWAgMDlZWVpddee63B3Lp3767vvvtOK1as0Oeff65XX3210dyu1fscPXpURqOxWf9VVla26NkAAACdyYgRI+Tl5aWioiIVFxfbzZnNZhmNRhkMBo0dO7ZVce69915J/3fi7fcVFxersrJSXbp00YABA5r1vF27dunSpUvy9vbWwIEDW5UbAAAA0NG12xMlXPHLQUn66U9/qt27d+udd97R0KFD9cMf/lBdu3bV3r17deHCBWVkZOihhx5qMrfm/HIQAAAAjrFarXafp06dquXLl9vuUK6bb81d1bW1tZKkqqoqDR8+XG+++aZtLi4uTrW1tUpMTNTq1auVmppqi/X93Hr06KG4uDgZjUZNmTKl0dyu1fuEhYUpJiamWWt9fX0lXWnwaO4X7wAAAJ2Fp6enkpKStHr1as2bN09ZWVny8PCQ1WpVWlqaampq9MADDzR6HXB6erqWLVsmScrJydGoUaMaXFcXY8OGDfrxj39sa5w4d+6cFixYIEmaMGGC3ekQWVlZuv3223XrrbfaPevAgQOaO3euJOmRRx6xXWMMAAAAoGGtapTYunWrNm7cqJKSElVVVenixYv1vvitYzAYdODAgWY/u6Ff2plMJh05ckTJyclO+eVgXV6vvfaaBgwYoBdffFHbtm2zzcXHxys6OrrR3L7/y0FJevXVV5Wdne1QbhyVDAAAHNFejkq+lnWht7e3pCtfGEtSamqqUlNTbfPV1dWSWne88Pf3Tps2rd78+PHj5eHhoVOnTqmkpMR2vVpdbtXV1TIYDMrKyrLb11Bu1+p9EhMTbc0WAAAAHd21rD8lKS0tTXl5ecrNzVV0dLSio6NlMplUVFSkoKAgZWRktPodwsPDtWjRIj333HOaNGmShg8froCAAH3xxRcqKytTaGiolixZYrcnJydHKSkp6tevnyIjI3XDDTeotLRUBw8eVG1tre677z49++yzrc4NAAAA6OgcbpRYsGCB3nzzzUb/AJGu/BHi6C/iXPHLQenKXX/Jycnau3evXnnlFd1///3q2rWrPv30U82bN09xcXF69913bVd0/Htuzf3l4NXUHZXcHByVDAAA2pNrXRcGBwdLksrLyxucrxsPCQlp0XO/78Ybb1T37t1VXV2t3r1715s3GAwKDAzUN998o9OnT9saJYKDg/Xll1+2KDdXvA8AAEBHdq3rT0ny8fHR9u3btWzZMm3evFlbtmyRv7+/kpKStGDBAgUGBjqc//c98cQTGjhwoFavXq2DBw9q//79Cg4O1qxZs/T0008rICDAbn1CQoLc3d1VUFAgo9GoqqoqeXt7KyYmRg899JCmTZsmN7d2e9syAAAA0G441Cixfft2rVmzRt7e3kpNTdWQIUM0depU9ejRQ//zP/+jM2fOKD8/X9nZ2XJzc9PixYvVr1+/FsVwxS8HJWnRokXatWuXfvOb32jGjBm28R//+Mfy8vLSlClTNG/ePO3bt8/2R4Yjvxy8Go5KBgAA1yNX1IVRUVGSpMLCwgbnCwoKJEmRkZEOv4fBYFD//v315Zdfymw2N7imoqJC0pWjmL+f27Zt2xrM7fLlyyoqKqqXmyveBwAAoKNyRf1Zx8fHR4sXL9bixYtbtC8tLU1paWnNXh8bG6vY2NhmrZ04caImTpzYonwAAAAA1OdQo8S6detkMBi0cuVKTZo0yTbu4eGhe+65R5I0adIkPfHEE/rxj3+sxYsX69NPP21RDFf80s5qter3v/+9JOn++++vNz927Fh5enqqtLRUR48eVd++fW25tfSXg1fDUckAAOB65Iq6cMSIEfLy8lJRUZGKi4ttpzlIktlsltFolMFg0NixY1v1Lvfee6++/PJLu5PC6hQXF6uyslJdunSxa1QdO3asVqxYoW3btmnZsmVyd3e3ze3atUsWi0V9+/a1y9lV7wMAANARuaL+BAAAANDxOXQO2xdffCFJmjBhQpPrwsLC9Oqrr+rkyZMtvrfPFb+0O3nypO3ECi8vr3rzbm5u6tatm21tc3Jr7JeDAAAAHZEr6kJPT08lJSVJkubNm6cLFy5IutL0mpaWppqaGsXHxys0NLTB/enp6fLz85Ofn5/27NnTaJykpCR16dJFGzZsUF5enm383LlzWrBggaQr7/n9U8NGjBihIUOG6NixY1q+fLltvKKiQosWLZIkzZ4926nvAwAA0Jm5ov4EAAAA0PEZzGZz45f5NSIwMFBeXl4qKSmxjQUEBMjT01PffPON3Vqr1aqQkBD5+/vr0KFDzY5RU1Oj8PBwWSwW7du3r94v7SIiInT+/HkdOnTI4S+Rz507p9DQUF2+fFlbtmzRyJEj7eaPHTumwYMHS5IOHTpku6/6z3/+s8aPH6/Q0FAdPHjQ7peDO3bs0JQpU9S3b18dOHDAobwAAACuF66oCyXp7Nmzio2NlclkUlhYmKKjo2UymVRUVKSgoCDl5ubaTiT7d+np6Vq2bJkkKScnR6NGjWo0zuuvv67nnntObm5uGj58uAICAvTFF1+orKxMoaGh2rFjh4KCguz2FBQUKC4uTmfPntWwYcPUp08fGY1GnTx5Uvfcc482btyoLl3sD3JrzfsAAAB0Zq6qPwEAAAB0bA6dKNGjRw/bSQx1brrpJlkslnp3OhsMBrm5udmdyNAcrvjlYLdu3TR69GhJ0nPPPadTp07Z5iwWi+bOnStJGjZsmK1JQnLsl4MAAAAdkSvqQunK/dDbt2/X448/LknasmWLKioqlJSUpLy8PKc1FTzxxBP6/e9/r1GjRunw4cPavn27unTpolmzZumTTz6p1yQhSYMHD1ZeXp4mT56so0ePauvWrbrxxhu1cOFCvf/++/WaJFz5PgAAAB2Nq+pPAAAAAB2bQydK3Hfffdq/f7/279+vvn37Srpy919eXp5eeeUV/ed//qdt7RdffKExY8aoZ8+eOnz4cIviuOKXgyUlJYqLi9OJEyd04403avjw4eratav27dunkydPys/PT1u2bLGdLFHHkV8OAgAAdDSuqgsBAAAAifoTAAAAgHM4dKJE3RUVu3btso39+Mc/ltVq1XPPPafMzEwVFRXpj3/8o2bOnCmDwWA7uaElXPFLu1tuuUWfffaZnnjiCQUGBmrPnj3atWuXvL29NXPmTBmNxnpNEpJjvxwEAADoaFxVFwIAAAAS9ScAAAAA53DoRIl9+/bpvvvu02233abdu3dLkmpraxUfH6+//OUvMhgMtrVWq1U333yzcnNzFRYW5rzMAQAA0OaoCwEAAOBK1J8AAAAAnMGhRglJslgskiQvLy+7sV//+tf68MMPdfz4cfn6+mr06NFauHCh7Sg8AAAAdCzUhQAAAHAl6k8AAAAAreVwowQAAAAAAAAAAAAAAMD1xq2tEwAAAAAAAAAAAAAAAHAVpzRK1NbW6vTp0/rmm2+c8TgAAABcp6gLAQAA4ErUnwAAAAAc0apGiV27dmnSpEkKDQ3VwIEDdfvtt9vNl5aW6v/7//4/paSk2O4OBAAAQMdDXQgAAABXov4EAAAA0BpdHN348ssva8WKFbJarY2u6devn/7xj3/owIEDuvvuuzVt2jRHwwEAAKCdoi4EAACAK1F/AgAAAGgth06U+NOf/qRf//rXuvHGG/XGG2/o8OHD6tmzZ4Nr/9//+3+yWq3avn17qxIFAABA+0NdCAAAAFei/gQAAADgDA6dKPFf//VfMhgMWrFihSZNmtTk2tjYWEnS4cOHHQkFAACAdoy6EAAAAK5E/QkAAADAGRw6UWL//v0yGAx64IEHrrr25ptvlo+Pj8rKyhwJBQAAgHaMuhAAAACuRP0JAAAAwBkcOlGiurpaXl5e8vDwaNb62traJu8MBAAAwPWJuhAAAACuRP0JAAAAwBkcOlEiMDBQVVVVOn369FXXFhUVyWKxKCQkxJFQAAAAaMeoCwEAAOBK1J8AAAAAnMGhRolRo0ZJunIn4NW88MILMhgMuueeexwJBQAAgHaMuhAAAACuRP0JAAAAwBkcapT4xS9+IXd3d7366qtasWKFKisr660pKCjQ1KlTtW3bNnXt2lU///nPW50sAAAA2hfqQgAAALgS9ScAAAAAZzCYzWaHLulbv369nnzySVmtVnXp0kW1tbWqra3VkCFDdPz4cZ0+fVpWq1Vubm56/fXXNX36dGfnDgAAgHaAuhAAAACuRP0JAAAAoLUcbpSQJKPRqIULF+rgwYMNzt92221avHix7r77bocTBAAAQPtHXQgAAABXov4EAAAA0BqtapSo8/e//1179+7VqVOnZLVaFRAQoDvuuEMRERHOyBEAAADXCepCAAAAuBL1JwAAAABHOKVRAgAAAAAAAAAAAAAA4Hrg1tYJAAAAAAAAAAAAAAAAuEoXRzf+/e9/1/bt2/X3v/9dp0+f1vnz53Xp0iVZrQ0fUGEwGLR582aHEwUAAED7RF0IAAAAV6L+BAAAANBaDjVK/Pa3v9X8+fNltVob/QPk3xkMBkdCAQAAoB2jLgQAAIArUX8CAAAAcAaHGiV+/etfy2q1Ki4uTvHx8QoICJCHh4fc3d2dnR8AAADaMepCAAAAuBL1JwAAAABnMJjN5ua1Xn9PWFiYLl26pLKyMjqyAQAAOjHqQgAAALgS9ScAAAAAZ3BzZFNCQoJqamr02WefOTsfAAAAXEeoCwEAAOBK1J8AAAAAnMGhEyUuX76shx56SLm5uQoODlZgYKA8PT3l5tZ434XBYNDmzZtblSwAAADaF+pCAAAAuBL1JwAAAABn6OLIphUrVmjnzp2SpLKyMpWVlV11D0fhAQAAdDzUhQAAAHAl6k8AAAAAzuBQo8SaNWtkMBj0ox/9SA8++KACAgJ0ww03yN3d3dn5AQAAoB2jLgQAAIArUX8CAAAAcAaHrt4YMGCALBaLjh071uSxdgAAAOjYqAsBAADgStSfAAAAAJzBob8mnn76adXU1Ogvf/mLs/MBAADAdYS6EAAAAK5E/QkAAADAGRw6UeKBBx5QYWGhKioqFBwcrMDAQHl6ejbZxW0wGLR58+ZWJQsAAID2hboQAAAArkT9CQAAAMAZHGqU6NGjR8sDGQz67rvvWrwPAAAA7Rd1IQAAAFyJ+hMAAACAM3RxZFNOTo6z8wAAAMB1iLoQAAAArkT9CQAAAMAZHDpRwpnefPNNzZ49uy1TAAAAQDtAXQgAAABXov4EAAAAOq82b5QICgrSt99+25YpAAAAoB2gLgQAAIArXa3+rKqqUkZGhj766COVl5fL399f48aN08KFCxUQEOC0PCoqKvT666/r448/1tGjR+Xm5qaQkBDFxMTohRdekLe3d709paWlWrJkifLy8lRZWak+ffooISFBTz75pLp27eq03AAAAICOyq2tE7Ba27RPAwAAAO3E1erCqqoqPf/88xo6dKgCAwMVGRmp1NRUnTp1yinx9+zZIz8/v0b/i4yMrLcnPj6+yT11/2VlZbVoX2ZmplPeCQAAAI1rqv6sqqpSbGysXnvtNVmtVo0fP14+Pj5at26d7r33Xqc1+JaWliomJka//vWvdebMGY0ePVr33HOP3Nzc9NZbb6mioqLeHpPJpHvuuUfvv/++QkNDFRcXp3/+85966aWXlJCQoMuXLzslNwAAAKAj69LWCRgMhrZOAQAAAO1AU3Vh3RfVhYWFCgsL0/jx42UymbRu3Trt2LFDO3fuVFBQkFPy6Nmzp8aOHVtvvEePHvXG7rvvPoWFhTX4nOrqan300UcyGAy66667GlwzduxY9ezZs954eHh4C7MGAABASzVVf6anp6uwsFBjxoxRdna2PDw8ZLValZKSouzsbD3zzDOtbm69fPmyHn74YR07dkyPPfaYfvWrX9mdBlFUVNRgDfrzn/9clZWVmj9/vubPny/pyqkUcXFx2rVrl9566y3NmjWrVbkBAAAAHR1XbwAAAKBdaKouXLhwod54441Gv6h+8MEHW/1F9Z49ezRhwgTFxMTo448/btWzJCkzM1NPPvmk7r77bm3evNluLj4+XkajUTk5ORo1alSrYwEAAKDlGqs/a2pqFB4eLovFor1796p///62ObPZrIiICJ0/f16HDh1SaGiow/Hff/99zZw5U6NHj9aHH37YrD35+fmKi4tTaGioDh48KHd3d9vcjh07NGXKFPXr109ffPGFw3kBAAAAnUGbX70BAAAANKWmpkbr1q2TJGVkZMjDw0PSlV8ALl26VJ6ensrJydGxY8faMMv66ho3EhMT2zgTAAAAtER+fr4sFosiIiLsmiQkyc/PTzExMbJarcrNzW1VnI0bN0qSZs+e3ew9O3fulCTdf//9dk0SkjRmzBh5eXmptLRUxcXFrcoNAAAA6OholAAAAEC75qovqp3pb3/7m/bu3StfX19NmDChrdMBAABACxQWFkqSoqKiGpwfPHiwJMlkMrUqzv79+yVJd911l44cOaKlS5cqNTVVL7/8sj7//PMW5+bu7q6IiAin5AYAAAB0dF3aOgEAAACgKc35ojo3N9dpXwafPn1aS5cu1bfffitvb28NGzZM8fHx8vT0bPYzfve730mSfvKTn6h79+6Nrtu6datycnJ06dIl9e7dW7GxsYqMjGz1OwAAAMBxx48flyT16tVLkrRp0yatXLlSM2bMUHJysm28rKzM4RgWi0UnT57UTTfdpK1bt+rxxx/XxYsXbfPLly/XtGnTtGrVKruTI/49t5deekm7d+/W4sWL9YMf/MApuQEAAACdAY0SAAAAaNdc8UX19x0+fFhLly61GwsKCtLbb7+tESNGXHX/hQsX9N5770m6+rUba9assfv8wgsv6Gc/+5lWrFhhu2KkudavX68NGzY0a216erqGDBmi6upqvkQHAKCTCwkJabKxszOyWCySpG7dukm6cv2byWTSkSNHlJycLC8vL7t1jjh79qykK7VjamqqJk+erLlz5yogIEB//vOflZqaqqysLA0cOFBz5sypl1v37t313XffacWKFZKkV199VdnZ2Q7nRi0JAAAcQS2J6xmNEgAAAGjXXPFFtST5+vpqzpw5mjhxovr27StJKigoUHp6uoxGoxISErR7927bXGO2bNmi7777TgMGDNCdd97Z4JqRI0fq0Ucf1bBhwxQYGKiysjJt3bpVy5Yt0zvvvCNPT08tX768RfkfPXpURqOxWWsrKytb9GwAAIDOxGq12n2eOnWqli9fbmuCrZs3GAwOx6itrZUkVVVVafjw4XrzzTdtc3FxcaqtrVViYqJWr16t1NRUW6zv59ajRw/FxcXJaDRqypQprcqNWhIAAACdDY0SAAAAaNdc8UW1JA0dOlRDhw61Gxs5cqRycnI0adIk5eXl6ZVXXtFrr73W5HMyMzMlNX2aRFpamt3n8PBwPfHEE7ZrPt5++209+eST6t27d7PzDwsLU0xMTLPW+vr6SrryS8QBAwY0OwYAAEBn4O3tLUk6d+6cJCk1NVWpqam2+erqaklq1a8nv7932rRp9ebHjx8vDw8PnTp1SiUlJQoPD7fLrbq6WgaDQVlZWXb7HM2NWhIAAACdDY0SAAAAaNdc8UV1U9zc3PTYY48pLy9Pn3zySZNrv/76a3366adyd3dXQkJCi2PFxMTojjvu0L59+7R79+6rXt3xfYmJiS1aDwAAgIYFBwdLksrLyxucrxsPCQlxOMaNN96o7t27q7q6usHmWIPBoMDAQH3zzTc6ffq0rVEiODhYX375pdNzo5YEAABAZ+PW1gkAAAAATXHFF9VXU3fdxokTJ5pc984778hqtWrs2LEKCgq6prEAAABwbURFRUmSCgsLG5wvKCiQJEVGRjocw2AwqH///pIks9nc4JqKigpJkqenZ7Nyu3z5soqKilqdGwAAANAZ0CgBAACAds0VX1RfzfHjxyU1fWrF5cuXbUcft+bXeM2JBQAAgGtnxIgR8vLyUlFRkYqLi+3mzGazjEajDAaDxo4d26o49957ryTJaDTWmysuLlZlZaW6dOlid71FXcxt27bp8uXLdnt27doli8Wivn372k6gAAAAANCwNm+U+Pc7pwEAANA5NVYXuuqL6qbs3LlTkjRs2LAm15SVlemmm25SXFycQ3FOnjypQ4cOXTUWAAAAWq+x+tPT01NJSUmSpHnz5unChQu29WlpaaqpqVF8fLxCQ0Mb3J+eni4/Pz/5+flpz549jcZPSkpSly5dtGHDBuXl5dnGz507pwULFkiSJkyYYNdAO2LECA0ZMkTHjh3T8uXLbeMVFRVatGiRJGn27NnNeHsAAACgc2vzRonGjlAGAABA59JYXeiqL6pXrVqlkydP1hvfuHGj1qxZI6npL50zMzMlST/96U/l4eHR6LpPP/1UeXl5qq2ttRs/ceKEZs2apaqqKt1xxx268847G30GAAAAWq+p7yXT0tIUGRmp3NxcRUdH65FHHtGIESOUlZWloKAgZWRktDp+eHi4Fi1apAsXLmjSpEmKjY3Vww8/rOjoaG3fvl2hoaFasmSJ3R6DwaDVq1fLx8dHS5cu1ZgxY5ScnKzhw4fLZDLpnnvu0aOPPtrq3AAAAICOrktbJwAAAABcTVpamvLy8mxfVEdHR8tkMqmoqMhpX1RnZGRo0aJFGjx4sG655RZdvHhRRUVFOnLkiCRp/vz5GjduXIN7T548qe3bt0u6+rUbhYWFWrBggW6++Wbdfvvt6tGjh8rKyvTll1+qqqpKffv21dtvv93q9wEAAIDjfHx8tH37di1btkybN2/Wli1b5O/vr6SkJC1YsECBgYFOifPEE09o4MCBWr16tQ4ePKj9+/crODhYs2bN0tNPP62AgIB6ewYPHqy8vDwtWbJEn376qQoLCxUWFqaZM2fqF7/4hbp04StfAAAA4GoMZrO5xXdfLFu2TF5eXnr88cebtT4zM1PffvutnnnmmRYnCAAAgPbLlXXh2bNnbV9Ul5eXy9/fX+PGjbvqF9Xp6elatmyZJCknJ0ejRo1qcN2rr76qvLw8FRcXq6KiQufOndPNN9+sH/zgB5o5c6ZGjhzZaIyVK1famiw+++yzJt/j4MGD+u///m/t379fp06dUkVFhTw8PNS/f3/Fx8dr9uzZ8vX1bca/CAAAQOfD95IAAAAAnMGhRokePXooMDBQRUVFzVo/evRoHTx4UN99912LEwQAAED7RV0IAAAAV6L+BAAAAOAMbm2dAAAAAAAAAAAAAAAAgKu4pFHiu+++U9euXV0RCgAAAO0YdSEAAABcifoTAAAAQEOueaPE559/rm+++Ua9evW61qEAAADQjlEXAgAAwJWoPwEAAAA0pktzFn388cfaunWr3VhlZaUee+yxRvdcvnxZ3377rfLz8yVJY8eObUWaAAAAaA+oCwEAAOBK1J8AAAAArgWD2Wy2Xm3R0qVLtWzZMoeDREVF6aOPPpK/v7/DzwAAAEDboy4EAACAK1F/AgAAALgWmnWixMiRI+0+L1u2TN7e3k12bru5ucnX11eDBw9WTEyMDAZD6zIFAABAm6MuBAAAgCtRfwIAAAC4Fpp1osS/69GjhwIDA1VUVHQtcgIAAMB1groQAAAArkT9CQAAAMAZ3No6AQAAAAAAAAAAAAAAAFehUQIAAAAAAAAAAAAAAHQaDl29AQAAAAAAAAAAAAAAcD3iRAkAAAAAAAAAAAAAANBp0CgBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAABAp+FQo8R3332nDz/8UH/84x/rzR04cEATJ05Unz59FB4erlmzZun48eOtThQAAADtD3UhAAAAXIn6EwAAAIAzONQosWHDBv2///f/lJeXZzf+1Vdf6cEHH9SePXtUWVmp7777Th988IHi4uJUUVHhjHwBAADQjlAXAgAAwJWoPwEAAAA4g0ONEjt27JAkPfTQQ3bj//3f/62zZ8+qf//+2rZtm/7whz8oPDxc33zzjd54443WZwsAAIB2hboQAAAArkT9CQAAAMAZDGaz2drSTbfddptOnjypb7/9Vm5u/9drER0drZKSEm3evFkjR46UJH3++ecaN26coqKi9NlnnzkvcwAAALQ56kIAAAC4EvUnAAAAAGdwqFEiMDBQ3t7eKi4uto1VVFSoX79+CggI0OHDh+ut79q1q44dO9b6jAEAANBuUBcCAADAlag/AQAAADiDQ1dveHp6qqKiQpcuXbKN/e///q+sVqt+8IMf1FvfrVs31dbWOp4lAAAA2iXqQgAAALgS9ScAAAAAZ3CoUSIyMlK1tbXauHGjbSw7O1sGg0E//OEP7dZWVFSosrJSvXr1al2mAAAAaHeoCwEAAOBK1J8AAAAAnKGLI5sSEhL0l7/8RU8++aQ2bdqkf/7zn/rrX/8qDw8P/eQnP7Fb+9lnn8lqtWrAgAFOSRgAAADtB3UhAAAAXIn6EwAAAIAzOHSiRFJSkn7yk5/owoUL2rZtm/7617/K3d1dL774ooKCguzWvvfee5Kk0aNHtz5bAAAAtCvUhQAAAHAl6k8AAAAAzmAwm81WRzfn5+dr79696tatm0aNGqVBgwbZzV+8eFEvvviiLl26pMcee0yhoaGtThgAAADtD3UhAAAAXIn6EwAAAEBrtKpRwhWqqqqUkZGhjz76SOXl5fL399e4ceO0cOFCBQQEtPr5fn5+zVp36NAh9e7du9n79u/fr1tuuaUVmQEAAAAAAAAAAAAAAGfr0tYJNKWqqkqxsbEqLCxUWFiYxo8fL5PJpHXr1mnHjh3auXNnvSP1WmratGmNzn311VfKz89X3759G+06b2y/j49Pq/ICAAAAAAAAAAAAAADO164bJdLT01VYWKgxY8YoOztbHh4eslqtSklJUXZ2tp555hllZma2KsaaNWsanZs1a5by8/M1ffp0GQyGFu8HAAAAAAAAAAAAAADtS6uv3vjf//1fffbZZzp+/Lhqamq0atUq25zFYtGpU6ckSX379m3Rc2tqahQeHi6LxaK9e/eqf//+tjmz2ayIiAidP39ehw4duiZ3DJrNZt166606f/68Dh48aHfthvR/V2+YzWanxwYAALgeXau6EAAAAGgI9ScAAAAARzl8osTXX3+tWbNm6fPPP5ckWa1WGQyGen+QxMTEqKamRrt27dLQoUOb/fz8/HxZLBZFRETYNUlIV5oUYmJilJubq9zcXCUlJTn6Go167733dO7cOd177731miQAAADwf651XQgAAAB8H/UnAAAAgNZyc2TTd999pwceeED/+7//q/DwcP3nf/6nvLy86q3r2bOnEhMTVVtbq02bNrUoRmFhoSQpKiqqwfnBgwdLkkwmU8uSb6Z33nlHkpSYmNjkulWrVumpp57S008/rbVr1+rEiRPXJB8AAID2yBV1IQAAAFCH+hMAAACAMzh0osRvfvMbHTt2TBMnTtTatWvVpUsXffzxx6qurq639qGHHtJvf/tb5efntyjG8ePHJUm9evWSJG3atEkrV67UjBkzlJycbBsvKytz5BWadODAAR06dEi+vr564IEHmlz77LPP1vu8ePFiPfrooy2KuX79em3YsKFZa9PT0zVkyBBVV1dfk/cHAADXj5CQEHXv3r3N4ruiLgQAAADqUH8CAAAAcAaHGiX++Mc/ymAw6IUXXlCXLk0/4vbbb1fXrl117NixFsWwWCySpG7dukmSMjIyZDKZdOTIESUnJ9s6xevWOVNmZqYkafLkybb4/2769OlKSEjQoEGD5OPjo5KSEq1du1aZmZmaO3euAgICNHHixGbHPHr0qIxGY7PWVlZWNvu5AAAA15Ir6kIAAACgDvUnAAAAAGdwqFHim2++kZeXl/r06XPVtW5ubvL29tapU6daFMNqtdp9njp1qpYvX267CqNu3mAwtOi5V1NdXa0PPvhAUtPXbqxevdru82233aaVK1cqJCRES5Ys0YsvvtiiRomwsDDFxMQ0a62vr68kqXv37howYECzYwAAADibK+pCAAAAoA71JwAAAABncKhRwtPTUxaLRZcvX5a7u3uTa6urq1VZWakePXq0KIa3t7ck6dy5c5Kk1NRUpaam2j1XktOPmt60aZMqKys1aNAgRUdHt3h/SkqKMjIyVFxcrK+//rpZf7RJV5oymmrMAAAAaI9cURcCAAAAdag/AQAAADiDmyObbr31Vl2+fLlZ9/v94Q9/0OXLl3Xbbbe1KEZwcLAkqby8vMH5uvGQkJAWPfdq3nnnHUlNnybRFB8fH/n7+0uSTpw44bS8AAAA2iNX1IUAAABAHepPAAAAAM7gUKPET3/6U1mtVqWlpem7775rdN1f//pXLVy4UAaDQT/96U9bFCMqKkqSVFhY2OB8QUGBJCkyMrJFz23KP/7xD+Xn58vd3V0JCQkOPePixYs6c+aMJOefdgEAANDeuKIurFNVVaXnn39eQ4cOVWBgoCIjI5Wamuq0o5T37NkjPz+/Rv9rrO5sao+fn59KSkra5H0AAAA6IlfWnwAAAAA6Loeu3vjP//xPZWVlad++fRo1apQmT55suyJj+/btKisr065du7Rt2zZdvnxZd955px566KEWxRgxYoS8vLxUVFSk4uJihYeH2+bMZrOMRqMMBoPGjh3ryCs0KDMzU5J03333KTAw0KFn7Nq1S5cuXZK3t7cGDhzotNwAAADaI1fUhdKVpoLY2FgVFhYqLCxM48ePl8lk0rp167Rjxw7t3LlTQUFBTnmnnj17NlhjXu3I5mnTpjU47uPjU2/Mle8DAADQkbiq/gQAAADQsRnMZrPVkY3//Oc/lZycrE8//VQGg6HevNV65bGjRo3SunXrdNNNN7U4xoIFC7R69WqNHTtWWVlZ8vDwkNVq1c9//nNlZWXpgQce0Lvvvtvg3vT0dC1btkySlJOTo1GjRjUZ6+LFi4qMjNSpU6eUmZmpBx98sNG1WVlZuv3223XrrbfajR84cEA/+9nP9M033+jJJ5/Uiy++2MI3BgAAuP64oi5cuHCh3njjDY0ZM0bZ2dm2ujAlJUXZ2dl68MEHbU2vjtqzZ48mTJigmJgYffzxx83e5+fnJ+lKM29zueJ9AAAAOipX1J8AAAAAOjaHGyXqbN++Xb///e+1d+9e2zHBN998s+644w5NmTJF48ePb/APluY4e/asYmNjZTKZFBYWpujoaJlMJhUVFSkoKEi5ubkKDg5ucG9LGyU++ugjJSUlyd/fX0VFReratWuja6dPn66tW7eqX79+ioyM1A033KDS0lIdPHhQtbW1uu+++7RhwwZ5eHg49N4AAADXo2tVF9bU1Cg8PFwWi0V79+5V//79bXNms1kRERE6f/68Dh06pNDQUIfzd1WjhKveBwAAoKO7lt9LAgAAAOjYHLp64/tiY2MVGxvrjFzq8fHx0fbt27Vs2TJt3rxZW7Zskb+/v5KSkrRgwQKHr8doSN3JFFOmTGmySUKSEhIS5O7uroKCAhmNRlVVVcnb21sxMTF66KGHNG3aNLm5uTktNwAAgOvBtaoL8/PzZbFYFBERYddUIF1pUoiJiVFubq5yc3OVlJTk9PjO1tHeBwAAoK1cy+8lAQAAAHRsrW6UuNZ8fHy0ePFiLV68uEX70tLSlJaW1uz177//frPXTpw4URMnTmxRPgAAAHBMYWGhJCkqKqrB+cGDBys3N1cmk8kp8U6fPq2lS5fq22+/lbe3t4YNG6b4+Hh5eno2uW/VqlUqKSmRu7u7Bg0apAkTJjTY2Ovq9wEAAIBjqqqqlJGRoY8++kjl5eXy9/fXuHHjtHDhQgUEBLT6+XUnmjUmODi4wZqw7kSzxuzfv1+33HJLa9MDAAAAOrR23ygBAACAzu348eOSpF69ekmSNm3apJUrV2rGjBlKTk62jZeVlTkl3uHDh7V06VK7saCgIL399tsaMWJEo/ueffbZep8XL16sRx991G7c1e8DAACAlquqqlJsbKwKCwsVFham8ePHy2Qyad26ddqxY4d27typoKAgp8Tq2bOnxo4dW2+8R48eTe6bNm1ag+M+Pj5OyQsAAADoyBxqlOjRo4d69eqlv/3tb81aP3r0aH355Zc6c+aMI+EAAADQTrmiLrRYLJKkbt26SZIyMjJkMpl05MgRJScny8vLy26do3x9fTVnzhxNnDhRffv2lSQVFBQoPT1dRqNRCQkJ2r17t22uzvTp05WQkKBBgwbJx8dHJSUlWrt2rTIzMzV37lwFBATYnUZ2rd5n/fr12rBhQ7PWpqena8iQIaqurqYhAwCATi4kJETdu3dv6zSazVXfS6anp6uwsFBjxoxRdna2PDw8ZLValZKSouzsbD3zzDPKzMx05BXqGTBggNasWdPifY7sAQAAAHCFwydKWK3Wa7oeAAAA14drXRf++/qpU6dq+fLlSkxMtJs3GAwteu6/Gzp0qIYOHWo3NnLkSOXk5GjSpEnKy8vTK6+8otdee81uzerVq+0+33bbbVq5cqVCQkK0ZMkSvfjii3aNEtfqfY4ePSqj0distZWVlS16NgAAQHtyrevPmpoarVu3TtKVplYPDw9JV+qzpUuXatOmTcrJydGxY8cUGhraomcDAAAAaB9ccvXGxYsXXREGAAAA7ZwjdaG3t7ck6dy5c5Kk1NRUpaam2uarq6sl6Zr9EtLNzU2PPfaY8vLy9MknnzR7X0pKijIyMlRcXKyvv/5affr0kXTt3icsLEwxMTHNWuvr62uLMWDAgBbFAQAAuJ44Un/m5+fLYrEoIiJC/fv3t5vz8/NTTEyMcnNzlZubq6SkJGelCgAAAMCFrnmjxPnz53X06FHbF8IAAADonBytC4ODgyVJ5eXlDc7XjYeEhLQuwSbUXbdx4sSJZu/x8fGRv7+/Tpw4oRMnTtgaJa7V+yQmJtpOpQAAAIDj9WdhYaEkKSoqqsH5wYMHKzc3VyaTqdU5StLp06e1dOlSffvtt/L29tawYcMUHx8vT0/PJvetWrVKJSUlcnd316BBgzRhwgQFBgY6JScAAACgo2tWo0RlZaUqKirsxi5fvqxjx441enTd5cuX9e233+rNN9/U2bNn9cMf/rD12QIAAKBNtUVdWPcFdd0X1v+uoKBAkhQZGdmi57bE8ePHJbXslIeLFy/a7sL+/r728D4AAADXi7aoP+tqv169ekmSNm3apJUrV2rGjBlKTk62jZeVlbX0dRp0+PBhLV261G4sKChIb7/9tkaMGNHovmeffbbe58WLF+vRRx9tcQ7r16/Xhg0bmrU2PT1dQ4YMUXV1tdP+DQAAwPUpJCTkmp3yClxrzWqUWL16tTIyMuzGzpw5oyFDhlx1b90fLLNnz3YgPQAAALQnbVEXjhgxQl5eXioqKlJxcbHCw8Ntc2azWUajUQaDQWPHjm3Rc1ti586dkqRhw4Y1e8+uXbt06dIleXt7a+DAgbbx9vA+AAAA14u2qD8tFoskqVu3bpKkjIwMmUwmHTlyRMnJyfLy8rJb5yhfX1/NmTNHEydOtJ1gVlBQoPT0dBmNRiUkJGj37t22uTrTp09XQkKCBg0aJB8fH5WUlGjt2rXKzMzU3LlzFRAQoIkTJ7Yol6NHj8poNDZrbWVlZYueDQAAALRHzWqUsFqt9Tq0G+vYrmMwGOTr66vBgwdr5syZLS7OAQAA0P60RV3o6emppKQkrV69WvPmzVNWVpY8PDxktVqVlpammpoaPfDAAwoNDW1wf3p6upYtWyZJysnJ0ahRoxpct2rVKk2dOlU9e/a0G9+4caPWrFkjqf6X7FlZWbr99tt166232o0fOHBAc+fOlSQ98sgj8vDwcNr7AAAAdCZtUX/++/OnTp2q5cuX2645q5s3GAwteu6/Gzp0qIYOHWo3NnLkSOXk5GjSpEnKy8vTK6+8otdee81uzerVq+0+33bbbVq5cqVCQkK0ZMkSvfjiiy1+57CwMMXExDRrra+vr6Qrp6YNGDCgRXEAAACA9sJgNpub/suiAT169FBgYKCKioquRU4AAAC4TriqLjx79qxiY2NlMpkUFham6OhomUwmFRUVKSgoSLm5uQoODm5wb3MbJcLCwmSxWDR48GDdcsstunjxooqKinTkyBFJ0vz58zV//ny7PdOnT9fWrVvVr18/RUZG6oYbblBpaakOHjyo2tpa3XfffdqwYYNdo0Rr3wcAAKAzc0X9uWDBAq1evVqPPfaYXn755Xrza9asUVpamh544AG9++671ySHHTt2aMqUKerdu7cOHTrUrD1nz55Vv379dOnSJR08eFB9+vS5JrkBAAAAHYFbWycAAAAAXI2Pj4+2b9+uxx9/XJK0ZcsWVVRUKCkpSXl5eU5pKpgzZ45GjhypM2fOaOfOndq2bZuqqqo0ceJEbdmypV6ThCQlJCRowoQJkiSj0ajNmzertLRUMTExeuONN/Tee+/Va5Jw1fsAAADAMXW1WHl5eYPzdeMhISHXLIe66zZOnDjR7D0+Pj7y9/dv8T4AAACgM+JECQAAADiMuhAAAACu5Ir685NPPtFPfvITRURE6C9/+Uu9+cmTJys3N1crV65UUlLSNcnh008/1cSJE+Xn56evvvqqWXsuXryooKAgXbp0SZ999pkGDx58TXIDAAAAOoIujmx65pln5OXl5excAAAAcJ2hLgQAAIAruaL+HDFihLy8vFRUVKTi4mKFh4fb5sxms4xGowwGg8aOHXvNcti5c6ckadiwYc3es2vXLl26dEne3t4aOHDgtUoNAAAA6BAcunpj/vz5euKJJ5ydCwAAAK4z1IUAAABwJVfUn56enraTIubNm6cLFy5IkqxWq9LS0lRTU6P4+HiFhoY2uD89PV1+fn7y8/PTnj17Go2zatUqnTx5st74xo0btWbNGknS7Nmz7eaysrL0t7/9rd6eAwcOaO7cuZKkRx55pMHr3wAAAAD8H4dOlAAAAAAAAACAjiotLU15eXnKzc1VdHS0oqOjZTKZVFRUpKCgIGVkZLQ6RkZGhhYtWqTBgwfrlltu0cWLF1VUVKQjR45IutIUMm7cOLs9OTk5SklJUb9+/RQZGakbbrhBpaWlOnjwoGpra3Xffffp2WefbXVuAAAAQEdHowQAAAAAAAAAfI+Pj4+2b9+uZcuWafPmzdqyZYv8/f2VlJSkBQsWKDAwsNUx5syZo7y8PBUXF6ukpETnzp3TzTffrIkTJ2rmzJkaOXJkvT0JCQlyd3dXQUGBjEajqqqq5O3trZiYGD300EOaNm2a3NwcOkQYAAAA6FQMZrPZ2tZJAAAAAAAAAAAAAAAAuALtxQAAAAAAAAAAAAAAoNOgUQIAAAAAAAAAAAAAAHQaNEoAAAAAAAAAAAAAAIBOg0YJAAAAAAAAAAAAAADQadAoAQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAQKdBowQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAACdBo0SAAAAAAAAAAAAAACg06BRAgAAAAAAAAAAAAAAdBo0SgAAAAAAAAAAAAAAgE6DRgkAAAAAAAAAAAAAANBp0CgBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAABAp0GjBAAAAAAAAAAAAAAA6DRolAAAAAAAAAAAAAAAAJ0GjRIAAAAAAAAAAAAAAKDToFECAAAAAAAAAAAAAAB0GjRKAAAAAAAAAAAAAACAToNGCQAAAAAAAAAAAAAA0GnQKAEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAECnQaMEAAAAAAAAAAAAAADoNGiUAAAAAAAAAAAAAAAAnQaNEgAAAAAAAAAAAAAAoNOgUQIAAAAAAAAAAAAAAHQaNEoAAAAAAAAAAAAAAIBOg0YJAAAAAAAAAAAAAADQadAoAQAAAAAAAAAAAAAAOg0aJQAAAAAAAAAAAAAAQKdBowQAAACuC1VVVXr++ec1dOhQBQYGKjIyUqmpqTp16pRTnr9nzx75+fk1+l9kZGS9PWazWVlZWXr44Yc1fPhwBQUFqXfv3vrRj36k3/72t7p8+XKDseLj45uMlZmZ6ZR3AgAAAAAAAADU16WtEwAAAACupqqqSrGxsSosLFRYWJjGjx8vk8mkdevWaceOHdq5c6eCgoKcEqtnz54aO3ZsvfEePXrUG1uzZo2WLVsmNzc3DRkyRHFxcTpz5oz++te/6vPPP9fmzZv13nvvqVu3bg3GGjt2rHr27FlvPDw8vPUvAgAAAAAAAABoEI0SAAAAaPfS09NVWFioMWPGKDs7Wx4eHrJarUpJSVF2draeeeYZp53CMGDAAK1Zs6ZZa728vPTUU0/p0UcfVXBwsG38q6++0v333689e/bo17/+tZ577rkG96empmrUqFFOyRsAAAAAAAAA0DxcvQEAAIB2raamRuvWrZMkZWRkyMPDQ5JkMBi0dOlSeXp6KicnR8eOHXN5bk8++aSef/55uyYJSerbt69+8YtfSJLee+89l+cFAAAAAAAAAGgcjRIAAABo1/Lz82WxWBQREaH+/fvbzfn5+SkmJkZWq1W5ubltlGHD6nI9efJkG2cCAAAAAAAAAPg+rt4AAABAu1ZYWChJioqKanB+8ODBys3Nlclkckq806dPa+nSpfr222/l7e2tYcOGKT4+Xp6eni16ztGjRyVJoaGhja7ZunWrcnJydOnSJfXu3VuxsbGKjIxsVf4AAAAAAAAAgKbRKAEAAIB27fjx45KkXr16SZI2bdqklStXasaMGUpOTraNl5WVOSXe4cOHtXTpUruxoKAgvf322xoxYkSznlFbW2u7LmTy5MmNrluzZo3d5xdeeEE/+9nPtGLFCtsVIwAAAAAAAAAA56JRAgAAAO2axWKRJHXr1k2SlJGRIZPJpCNHjig5OVleXl526xzl6+urOXPmaOLEierbt68kqaCgQOnp6TIajUpISNDu3bttc015/fXXdejQIQUHB+vxxx+vNz9y5Eg9+uijGjZsmAIDA1VWVqatW7dq2bJleuedd+Tp6anly5e3KP/169drw4YNzVqbnp6uIUOGqLq62mkNJgAA4PoUEhKi7t27t3UaAAAAAOBSNEoAAACgXbNarXafp06dquXLlysxMdFu3mAwtCrO0KFDNXToULuxkSNHKicnR5MmTVJeXp5eeeUVvfbaa00+Z8+ePXrppZfk4eGhdevWydfXt96atLQ0u8/h4eF64oknbNd8vP3223ryySfVu3fvZud/9OhRGY3GZq2trKxs9nMBAAAAAAAAoKOhUQIAAADtmre3tyTp3LlzkqTU1FSlpqba5qurqyXpmv0S0s3NTY899pjy8vL0ySefNLm2sLBQDz/8sC5fvqz/+q//0p133tmiWDExMbrjjju0b98+7d6929YM0hxhYWGKiYlp1tq65o3u3btrwIABLcoRAAAAAAAAAK53NEoAAACgXQsODpYklZeXNzhfNx4SEnLNcqi7buPEiRONrvn66681efJkVVRUaPny5Zo8ebLDsfbt29dkrIYkJia2qLECAAAATauqqlJGRoY++ugjlZeXy9/fX+PGjdPChQsVEBDQ6ufv2bNHEyZMaHQ+ODhYJpOpwbnS0lItWbJEeXl5qqysVJ8+fZSQkKAnn3xSXbt2bXVuAAAAQEdHowQAAADataioKElXTmtoSEFBgSQpMjLymuVw/PhxSY2fWnHy5En95Cc/UXl5uZ577jnNnDnzmsUCAADAtVdVVaXY2FgVFhYqLCxM48ePl8lk0rp167Rjxw7t3LlTQUFBTonVs2dPjR07tt54jx49GlxvMpl0//33q7KyUv/xH/+hPn36yGg06qWXXpLRaNT7778vd3d3p+QGAAAAdFQ0SgAAAKBdGzFihLy8vFRUVKTi4mKFh4fb5sxms4xGowwGQ4NfLjvLzp07JUnDhg2rN2c2mzVp0iSVlJRozpw5+uUvf+lwnJMnT+rQoUONxgIAAIBrpKenq7CwUGPGjFF2drY8PDxktVqVkpKi7OxsPfPMM8rMzHRKrAEDBmjNmjXNXv/zn/9clZWVmj9/vubPny9JqqioUFxcnHbt2qW33npLs2bNckpuAAAAQEfl1tYJAAAAAE3x9PRUUlKSJGnevHm6cOGCJMlqtSotLU01NTWKj49XaGhog/vT09Pl5+cnPz8/7dmzp9E4q1at0smTJ+uNb9y40fbF9ezZs+3mqqur9dBDD6mgoECzZs3SokWLrvo+n376qfLy8lRbW2s3fuLECc2aNUtVVVW64447dOedd171WQAAAHC+mpoarVu3TpKUkZEhDw8PSZLBYNDSpUvl6empnJwcHTt2zOW55efn68CBAwoNDdXTTz9tG7/xxhv1wgsvSFKLmi4AAACAzooTJQAAANDupaWlKS8vT7m5uYqOjlZ0dLRMJpOKiooUFBSkjIyMVsfIyMjQokWLNHjwYN1yyy26ePGiioqKdOTIEUnS/PnzNW7cOLs9L730kv7yl7+oW7duqqysVEpKSoPPXrx4sfz9/SVduUJkwYIFuvnmm3X77berR48eKisr05dffqmqqir17dtXb7/9dqvfBwAAAI7Jz8+XxWJRRESE+vfvbzfn5+enmJgY5ebmKjc319bQ6yp1J53df//99a7XGDNmjLy8vFRaWlrvJDYAAAAA9miUAAAAQLvn4+Oj7du3a9myZdq8ebO2bNkif39/JSUlacGCBQoMDGx1jDlz5igvL0/FxcUqKSnRuXPndPPNN2vixImaOXOmRo4cWW+P2WyWJJ07d07Z2dmNPnv+/Pm2RomYmBglJiZq//79OnDggCoqKuTh4aH+/fsrPj5es2fPlq+vb6vfBwAAAI4pLCyUJEVFRTU4P3jwYOXm5spkMjkl3unTp7V06VJ9++238vb21rBhwxQfHy9PT88W5ebu7q6IiAjt27dPJpOJRgkAAACgCTRKAAAA4Lrg4+OjxYsXa/HixS3al5aWprS0tKuumzNnjubMmdOiZ69Zs6bFRxsPHTpUb7zxRov2AAAAwHWOHz8uSerVq5ckadOmTVq5cqVmzJih5ORk23hZWZlT4h0+fFhLly61GwsKCtLbb7+tESNGNJnbSy+9pN27d2vx4sX6wQ9+4HBu69ev14YNG5q1Nj09XUOGDFF1dbXT/g0AAMD1KSQkRN27d2/rNACH0CgBAAAAAAAAAP9isVgkSd26dZN05Yo2k8mkI0eOKDk5WV5eXnbrHOXr66s5c+Zo4sSJ6tu3rySpoKBA6enpMhqNSkhI0O7du21z34/ZvXt3fffdd1qxYoUk6dVXX1V2drbDuR09elRGo7FZaysrK1v0bAAAAKA9olECAAAAAAAAAP7FarXafZ46daqWL1+uxMREu3mDwdCqOEOHDtXQoUPtxkaOHKmcnBxNmjRJeXl5euWVV/Taa681mFuPHj0UFxcno9GoKVOmtCq3sLAwxcTENGtt3TVx3bt314ABA1oUBwAAAGgvaJQAAAAAAAAAgH/x9vaWJJ07d06SlJqaqtTUVNt8dXW1JF2zY6bd3Nz02GOPKS8vT5988kmDuVVXV8tgMCgrK8tu3tHcEhMTbY0gAAAAQGfg1tYJAAAAAAAAAEB7ERwcLEkqLy9vcL5uPCQk5JrlUHfdxokTJ9pdbgAAAEBHQKMEAAAAAAAAAPxLVFSUJKmwsLDB+YKCAklSZGTkNcvh+PHjkuqfDNFUbpcvX1ZRUdE1zw0AAADoCGiUAAAAAAAAAIB/GTFihLy8vFRUVKTi4mK7ObPZLKPRKIPBoLFjx16zHHbu3ClJGjZsmN14Xcxt27bp8uXLdnO7du2SxWJR3759FR4efs1yAwAAADoCGiUAAAAAAAAA4F88PT2VlJQkSZo3b54uXLggSbJarUpLS1NNTY3i4+MVGhra4P709HT5+fnJz89Pe/bsaTTOqlWrdPLkyXrjGzdu1Jo1ayRJs2fPtpsbMWKEhgwZomPHjmn58uW28YqKCi1atKjBPQAAAADqM5jNZmtbJwEAAAAAAAAA7cXZs2cVGxsrk8mksLAwRUdHy2QyqaioSEFBQcrNzVVwcHCDe9PT07Vs2TJJUk5OjkaNGtXgurCwMFksFg0ePFi33HKLLl68qKKiIh05ckSSNH/+fM2fP7/evoKCAsXFxens2bMaNmyY+vTpI6PRqJMnT+qee+7Rxo0b1aVLFyf9SwAAAAAdEydKAAAAAAAAAMD3+Pj4aPv27Xr88cclSVu2bFFFRYWSkpKUl5fXaJNES8yZM0cjR47UmTNntHPnTm37/9m797Co6/z//48BRZSD4xE5iBqSBIhboS2LVmqlpGZrqSm7km32iw4bfnJV0mK3VBTXyvKw+10rs1CqbT8WrqspRuks7a6Wp5mwOJSKZ20gBlDT+f3hh9lIUBiGg3C/XRfX1bxfh+fzPXHpk/HJ671pk0pLSzV27Fht2LCh2iYJSYqMjFR2drbuu+8+HTx4UBs3blTHjh01Z84cvffeezRJAAAAALXQ7E+UKC0tVVpamj744AMdO3ZMXbp00V133aU5c+aoW7du9d7faDTWat6+ffvUs2fPKtcKCwu1YMECZWdnq6SkRL169dLEiRP129/+Vm3btq13bgAAAAAAAAAAAAAAwLWadaNEaWmpRowYIbPZrODgYN18882yWCw6cOCAAgMDtXXrVvn7+9crRmJiYo1j33zzjXJyctS7d2998cUXMhgMjjGLxaKRI0eqpKREN954o+OIu5MnT2rYsGF677335O7uXq/cAAAAAAAAAAAAAACAazXrc9hSU1NlNps1bNgwZWRkyMPDQ3a7XYmJicrIyNCsWbO0Zs2aesVYuXJljWOPPPKIcnJyNHny5CpNEpL02GOPqaSkpMqzAouLixUXF6dt27bptdde0yOPPFKv3AAAAAAAAAAAAAAAgGs12xMlKioqFBISIpvNpp07d6pv376OMavVqrCwMJ09e1b79u1TUFCQy+NbrVbdcMMNOnv2rPbs2VPlsRs5OTmKi4tTUFCQ9uzZU+XkiC1btmj8+PHq06ePvvjiC5fnBQAAAAAAAAAAAAAAnOfW1AnUJCcnRzabTWFhYVWaJCTJaDQqNjZWdrtdWVlZDRL/3XffVXl5uW699dYqTRKStHXrVknSyJEjL3u8xrBhw+Tl5aXCwkLl5+c3SG4AAAAAAAAAAAAAAMA5zbZRwmw2S5IiIiKqHY+MjJQkWSyWBon/1ltvSZLi4+PrlJu7u7vCwsIaNDcAAAAAAAAAAAAAAOCcZtsoceTIEUlSjx49JEnr16/X0KFD9cYbb1S5XlRU5PLYu3fv1r59++Tr66vRo0dfNbcXXnhBd955p/71r381eG4AAAAAAAAAAAAAAMB5bZo6gZrYbDZJUvv27SVJaWlpslgsysvL09SpU+Xl5VVlniutWbNGknTfffc54leXW4cOHXTmzBktWbJEkvTSSy8pIyPDqdzS09O1du3aWs1NTU1VVFSUysrKaMYAAKCVCwwMVIcOHZo6DQAAAAAAAAAArhnNtlHCbrdXeT1hwgQtXrzY8SiMynGDweDSuGVlZfrrX/8qqfrHbvw0t06dOikuLk4mk0njx493OreDBw/KZDLVam5JSUmt9wUAAAAAAAAAAAAAAP/VbBslvL29JUnl5eWSpKSkJCUlJTnGy8rKJMnlv0G5fv16lZSUqF+/foqOjr5ibmVlZTIYDFq3bl2VcWdyCw4OVmxsbK3m+vr6OvYPDQ2tdQwAAAAAAAAAAAAAAFq7ZtsoERAQIEk6duxYteOV1wMDA10a96233pJU82kSlbnt3bvXpbnFx8dfMSYAAAAAAAAAAAAAAKg/t6ZOoCYRERGSJLPZXO34/v37JUnh4eEui/n1118rJydH7u7umjhxolO5XbhwQbm5uS7PDQAAAAAAAAAAAAAA1F+zbZSIiYmRl5eXcnNzlZ+fX2XMarXKZDLJYDBo+PDhLou5Zs0aSdIdd9whPz+/GudVxty0aZMuXLhQZWzbtm2y2Wzq3bu3QkJCXJYbAAAAAAAAAAAAAACov2bbKOHp6amEhARJ0syZM3Xu3DlJkt1uV3JysioqKjRq1CgFBQVVuz41NVVGo1FGo1Hbt2+/arzz588rIyND0pUfuyFdauKIiorS4cOHtXjxYsf14uJipaSkSJIeffTRq98kAAAAAAAAAAAAAABoVG2aOoErSU5OVnZ2trKyshQdHa3o6GhZLBbl5ubK399faWlpLou1ceNGnTx5Ul26dFFcXNwV5xoMBq1YsUJxcXFauHChPvroI/Xq1Usmk0knTpzQbbfdpocffthluQEAAAAAAAAAAAAAANdotidKSJKPj482b96sJ554QpK0YcMGFRcXKyEhQdnZ2QoICHBZrLfffluSNH78eLVt2/aq8yMjI5Wdna377rtPBw8e1MaNG9WxY0fNmTNH7733ntq0adY9KAAAAAAAAAAAAAAAtEoGq9Vqb+okAAAAAAAAAAAAAAAAGkOzPlECAAAAAAAAAAAAAADAlWiUAAAAAAAAAAAAAAAArQaNEgAAAAAAAAAAAAAAoNWgUQIAAAAAAAAAAAAAALQaNEoAAAAAAAAAAAAAAIBWg0YJAAAAAAAAAAAAAADQatAoAQAAAAAAAAAAAAAAWg0aJQAAAAAAAAAAAAAAQKtBowQAAAAAAAAAAAAAAGg1aJQAAADANaG0tFTPPfecBgwYID8/P4WHhyspKUknT550yf7bt2+X0Wis8Ss8PLzGtYWFhZo2bZpCQ0Pl5+enQYMGacmSJTp//nyT3Q8AAAAAAAAAoHoGq9Vqb+okAAAAgCspLS3ViBEjZDabFRwcrJtvvlkWi0UHDhxQYGCgtm7dKn9//3rF2L59u8aMGaPu3btr+PDhl4136tRJCxYsuOy6xWLRyJEjVVJSohtvvFG9evWSyWTSyZMnNWzYML333ntyd3dv9PsBAAAAAAAAAFSvTVMnAAAAAFxNamqqzGazhg0bpoyMDHl4eMhutysxMVEZGRmaNWuW1qxZ45JYoaGhWrlyZa3nP/bYYyopKdHs2bM1e/ZsSVJxcbHi4uK0bds2vfbaa3rkkUea7H4AAAAAAAAAAFVxogQAAACatYqKCoWEhMhms2nnzp3q27evY8xqtSosLExnz57Vvn37FBQU5HScyhMlYmNj9fe//71Wa3JychQXF6egoCDt2bOnyskRW7Zs0fjx49WnTx998cUXjX4/AAAAAAAAAIDquTV1AgAAAMCV5OTkyGazKSwsrEpTgSQZjUbFxsbKbrcrKyur0XPbunWrJGnkyJGXPV5j2LBh8vLyUmFhofLz8x3Xm/P9AAAAAAAAAEBrQKMEAAAAmjWz2SxJioiIqHY8MjJSkmSxWFwS79SpU1q4cKGeeuopzZkzR++//74qKirqnJu7u7vCwsIuy62x7wcAAAAAAAAAUFWbpk4AAAAAuJIjR45Iknr06CFJWr9+vZYuXaopU6Zo6tSpjutFRUUuiXfgwAEtXLiwyjV/f3+9/vrriomJuWJuL7zwgj799FPNmzdPt9xyS7W5NdT9pKena+3atbWam5qaqqioKJWVlbnsfQMAANemwMBAdejQoanTAAAAAIBGRaMEAAAAmjWbzSZJat++vSQpLS1NFotFeXl5mjp1qry8vKrMc5avr6+mT5+usWPHqnfv3pKk/fv3KzU1VSaTSRMnTtSnn37qGPtxzA4dOujMmTNasmSJJOmll15SRkZGtbk11P0cPHhQJpOpVnNLSkrqtDcAAAAAAAAAtCQ0SgAAAKBZs9vtVV5PmDBBixcvVnx8fJVxg8FQrzgDBgzQgAEDqlwbPHiwMjMzNW7cOGVnZ+vFF1/UK6+8Um1unTp1UlxcnEwmk8aPH19jbg11P8HBwYqNja3VXF9fX0mXGjxCQ0PrFAcAAAAAAAAArnU0SgAAAKBZ8/b2liSVl5dLkpKSkpSUlOQYLysrk6QGOzLazc1Njz/+uLKzs/Xxxx9Xm1tZWZkMBoPWrVtXZby63BrqfuLj4x3NFgAAAAAAAACAmrk1dQIAAADAlQQEBEiSjh07Vu145fXAwMAGy6HycRvHjx+vd27N4X4AAAAAAAAAoDWjUQIAAADNWkREhCTJbDZXO75//35JUnh4eIPlcOTIEUmXn/JwpdwuXLig3Nzcy3JrDvcDAAAAAAAAAK0ZjRIAAABo1mJiYuTl5aXc3Fzl5+dXGbNarTKZTDIYDBo+fHiD5bB161ZJ0k033VTlemXMTZs26cKFC1XGtm3bJpvNpt69eyskJMRxvTncDwAAAAAAAAC0ZjRKAAAAoFnz9PRUQkKCJGnmzJk6d+6cJMlutys5OVkVFRUaNWqUgoKCql2fmpoqo9Eoo9Go7du31xhn2bJlOnHixGXX33//fa1cuVKS9Oijj1YZi4mJUVRUlA4fPqzFixc7rhcXFyslJaXaNfW9HwAAAAAAAABA/RisVqu9qZMAAAAAruT777/XiBEjZLFYFBwcrOjoaFksFuXm5srf319ZWVkKCAiodm1qaqoWLVokScrMzNSQIUOqnRccHCybzabIyEhdd911On/+vHJzc5WXlydJmj17tmbPnn3Zuv379ysuLk7ff/+9brrpJvXq1Usmk0knTpzQbbfdpvfff19t2rRx2f0AAACgcZSWliotLU0ffPCBjh07pi5duuiuu+7SnDlz1K1btwaJuXHjRk2ePFmSlJKSounTp182x2g0XnGPzz//XNddd11DpAcAAAC0GG2uPgUAAABoWj4+Ptq8ebMWLVqkDz/8UBs2bFCXLl2UkJCgZ555Rn5+fvWOMX36dGVnZys/P18FBQUqLy9X165dNXbsWE2bNk2DBw+udl1kZKSys7O1YMECffLJJzKbzQoODta0adP01FNPXdYk0Vj3AwAAAOeVlpZqxIgRjtru7rvvlsVi0erVq7VlyxZt3bpV/v7+Lo1ZXFysp59+utbzJ02aVO11Hx8fV6UEAAAAtFicKAEAAAAAAAAAPzJnzhwtX75cw4YNU0ZGhjw8PGS325WYmKiMjAzdc889WrNmjUtjJiUl6W9/+5sGDhyorKysq54oYbVaXRofAAAAaE3cmjoBAAAAAAAAAGguKioqtHr1aklSWlqaPDw8JEkGg0ELFy6Up6enMjMzdfjwYZfF3LFjh958803NnTtX3bt3d9m+AAAAAKpHowQAAAAAAAAA/J+cnBzZbDaFhYWpb9++VcaMRqNiY2Nlt9uVlZXlkngVFRV66qmn1L9/f/3mN79xyZ4AAAAAruzyByYDAAAAAAAAQCtlNpslSREREdWOR0ZGKisrSxaLxSXxUlNTVVBQoI8++kju7u61Xrds2TIVFBTI3d1d/fr105gxY+Tn5+eSnAAAAICWjhMlAAAAAAAAAOD/HDlyRJLUo0cPSdL69es1dOhQvfHGG1WuFxUV1TvWnj17tHz5ck2ZMkUDBw6s09q5c+fq9ddf11/+8hfNmDFDAwYM0KpVq+qdEwAAANAacKIEAAAAAAAAAPwfm80mSWrfvr0kKS0tTRaLRXl5eZo6daq8vLyqzHPWDz/8oCeffFK+vr5KSUmp9brJkydr4sSJ6tevn3x8fFRQUKBVq1ZpzZo1mjFjhrp166axY8fWKZf09HStXbu2VnNTU1MVFRWlsrIylzSLAACAa1dgYKA6dOjQ1GkATqFRAlc1Z84cx5GDaD4iIiI0f/78pk4DAADgqqgnmx9qSQAAama326u8njBhghYvXqz4+Pgq4waDoV5xXn31Ve3du1evvPKKOnfuXOt1K1asqPK6f//+Wrp0qQIDA7VgwQI9//zzdW6UOHjwoEwmU63mlpSU1Gnv+lq5cqUKCgoaNSau7LrrrlNiYmJTpwEAAFAvNEoAAAAAAAAAwP/x9vaWJJWXl0uSkpKSlJSU5BgvKyuTpHr99mR+fr4WLVqkgQMH6te//rXzyf5IYmKi0tLSlJ+fr2+//Va9evWq9drg4GDFxsbWaq6vr6+kS/cfGhrqVK51UXmyB5qP9u3bN8r/ewAAgIZEowQAAAAAAAAA/J+AgABJ0rFjx6odr7weGBjodIzNmzeroqJCpaWluv/++6uMWSwWSZceh7Fjxw4NGjRIs2bNuuqePj4+6tKli44fP67jx4/XqVEiPj7ecWIGAAAA0BrQKIGr4kheAAAA1Af1JAAAuJZERERIUo2PDtu/f78kKTw8vN6xvvzyS3355ZfVjuXl5SkvL0/t2rWr1V7nz5/X6dOnJdXvtIvmhloSAAAADcGtqRMAAAAAAAAAgOYiJiZGXl5eys3NVX5+fpUxq9Uqk8kkg8Gg4cOHOx3jsccek9VqrfZr0qRJkqSUlBRZrVatXbu2Vntu27ZNP/zwg7y9vXX99dc7nRsAAADQGtAoAQAAAAAAAAD/x9PTUwkJCZKkmTNn6ty5c5Iku92u5ORkVVRUaNSoUQoKCqp2fWpqqoxGo4xGo7Zv3+7S3NatW1ftCRS7d+/WjBkzJEkPPfSQPDw8XBoXAAAAaGl49AYAAAAAAAAA/EhycrKys7OVlZWl6OhoRUdHy2KxKDc3V/7+/kpLS2uSvDIzM5WYmKg+ffooPDxc7dq1U2Fhofbs2aOLFy/qjjvu0Ny5c5skNwAAAOBawokSAAAAAAAAAPAjPj4+2rx5s5544glJ0oYNG1RcXKyEhARlZ2crICCgSfKaOHGixowZI0kymUz68MMPVVhYqNjYWC1fvlzvvvsup0kAAAAAtWCwWq32pk4CAAAAAAAAAAAAAACgMXCiBAAAAAAAAAAAAAAAaDVolAAAAAAAAAAAAAAAAK0GjRIAAAAAAAAAAAAAAKDVoFECAAAAAAAAAAAAAAC0GjRKAAAAAAAAAAAAAACAVoNGCQAAAAAAAAAAAAAA0GrQKAEAAAAAAAAAAAAAAFoNGiUAAAAAAAAAAAAAAECrQaMEAAAAAAAAAAAAAABoNWiUAAAAAAAAAAAAAAAArQaNEgAAAAAAAAAAAAAAoNVo09QJAHDO3r17VVJSIl9fX0VFRTV1OgCaCH8WAACcwd8fACT+LAAAOIe/PwBI/FkA4NpnsFqt9qZOAkDdjRo1SiaTSbGxsfr73//e1OkAaCL8WQAAcAZ/fwCQ+LMAAOAc/v4AIPFnAYBrH4/eAAAAAAAAAAAAAAAArQaNEgAAAAAAAAAAAAAAoNWgUQIAAAAAAAAAAAAAALQaNEoAAAAAAAAAAAAAAIBWg0YJAAAAAAAAAAAAAADQatAoAQAAAAAAAAAAAAAAWg0aJQAAAAAAAAAAAAAAQKtBowQAAAAAAAAAAAAAAGg1aJQAAAAAAAAAAAAAAACtRpumTgCAcyZPnqzBgwcrODi4qVMB0IT4swAA4Az+/gAg8WcBAMA5/P0BQOLPAgDXPoPVarU3dRIAAAAAAAAAAAAAAACNgUdvAAAAAAAAAAAAAACAVoNGCQAAAAAAAAAAAAAA0GrQKAEAAAAAAAAAAAAAAFoNGiUAAAAAAAAAAAAAAECrQaMEAAAAAAAAAAAAAABoNWiUAAAAAAAAAAAAAAAArQaNEgAAAAAAAAAAAAAAoNWgUQIAAAAAAAAAAAAAALQaNEoAAAAAAAAAAAAAAIBWg0YJAAAAAAAAAAAAAADQatAoAQAAAAAAAAAAAAAAWg0aJQAAAAAAAAAAAAAAQKtBowQAAAAAAAAAAAAAAGg1aJQAAAAAAAAAAAAAAACtBo0SAAAAAAAAAAAAAACg1aBRAgAAAAAAAAAAAAAAtBo0SgAAAAAAAAAAAAAAgFaDRgkAAAAAAAAAAAAAANBq0CgBAAAAAAAAAAAAAABaDRolAAAAAAAAAAAAAABAq0GjBAAAAAAAAAAAAAAAaDVolAAAAAAAAAAAAAAAAK0GjRIAAAAAAAAAAAAAAKDVoFECAAAAAAAAAAAAAAC0GjRKAAAAAAAAAAAAAACAVoNGCQAAAAAAAAAAAAAA0GrQKAEAAAAAAAAAAAAAAFoNGiUAAAAAAAAAAAAAAECrQaMEAAAAAAAAAAAAAABoNZp9o0Rpaamee+45DRgwQH5+fgoPD1dSUpJOnjzpshgVFRVasmSJBg8erICAAPn5+emmm27S7Nmza4xjNBqv+FVQUOCy/AAAAAAAAAAAAAAAgGsYrFarvamTqElpaalGjBghs9ms4OBg3XzzzbJYLDpw4IACAwO1detW+fv71ytGRUWFRo0apV27dsnX11cxMTFq27atdu7cqWPHjsnf318fffSRevbsWWWd0WiUJE2aNKnafZ9//nl169atXrkBAAAAAAAAAAAAAADXatPUCVxJamqqzGazhg0bpoyMDHl4eMhutysxMVEZGRmaNWuW1qxZU68Yb775pnbt2qWQkBBt2bJFnTt3liSVl5dr0qRJys7O1oIFC7Ry5cpq19d0HQAAAAAAAAAAAAAAND/N9tEbFRUVWr16tSQpLS1NHh4ekiSDwaCFCxfK09NTmZmZOnz4cL3imEwmSdKUKVMcTRKS1L59e02bNk2S9Pnnn9crBgAAAAAAAAAAAAAAaB6abaNETk6ObDabwsLC1Ldv3ypjRqNRsbGxstvtysrKqlccT09PSZKb2+VvReW1HzdQAAAAAAAAAAAAAACAa1ezbZQwm82SpIiIiGrHIyMjJUkWi6Vece68805JUnp6uoqLix3Xz549q1WrVkmSEhISaly/bNky/c///I9+97vfadWqVTp+/Hi98gEAAAAAAAAAAAAAAA2nTVMnUJMjR45Iknr06CFJWr9+vZYuXaopU6Zo6tSpjutFRUX1inP//ffr008/1VtvvaUBAwbo5z//udq2baudO3fq3LlzSktL0wMPPFDj+rlz5172et68eXr44YfrlEd6errWrl1bq7mpqamKiopSWVlZve8fAABc2wIDA9WhQ4emTgMAAAAAAAAAgGtGs22UsNlskqT27dtLktLS0mSxWJSXl6epU6fKy8uryjxnGQwGvfLKKwoNDdXzzz+vTZs2OcZGjRql6OjoatdNnjxZEydOVL9+/eTj46OCggKtWrVKa9as0YwZM9StWzeNHTu21nkcPHhQJpOpVnNLSkpqvS8AAAAAAAAAAAAAAPivZtsoYbfbq7yeMGGCFi9erPj4+CrjBoOhXnGKi4s1depU7dy5Uy+++KJGjhyptm3b6pNPPtHMmTMVFxent99+2/GIjkorVqyo8rp///5aunSpAgMDtWDBAj3//PN1apQIDg5WbGxsreb6+vpKkjp06KDQ0NBaxwAAAAAAAAAAAAAAoLVrto0S3t7ekqTy8nJJUlJSkpKSkhzjZWVlklTvo6ZTUlK0bds2vfzyy5oyZYrj+r333isvLy+NHz9eM2fO1K5du+Tm5nbV/RITE5WWlqb8/Hx9++236tWrV63yiI+PdzSBAAAAAAAAAAAAAACAhnH1f/lvIgEBAZKkY8eOVTteeT0wMNDpGHa7Xe+8844kaeTIkZeNDx8+XJ6eniosLNTBgwdrtaePj4+6dOkiSTp+/LjTuQEAAAAAAAAAAAAAANdrtidKRERESJLMZnO14/v375ckhYeHOx3jxIkTjhMrvLy8Lht3c3NT+/btVVFRoRMnTqh3795X3fP8+fM6ffq0pPqfdgEAQG3NmTOnxr8z0TQiIiI0f/78pk4DAADgqqglmyfqSQAAcC2glmyeqCWBq2u2J0rExMTIy8tLubm5ys/PrzJmtVplMplkMBg0fPhwp2P4+vrK3d1dkrRnz57Lxg8fPqzvvvtOkuTv71+rPbdt26YffvhB3t7euv76653ODQAAAAAAAAAAAAAAuF6zbZTw9PRUQkKCJGnmzJk6d+6cpEuPy0hOTlZFRYVGjRqloKCgatenpqbKaDTKaDRq+/bt1c5p3769hg4dKkl69tlndfLkSceYzWbTjBkzJEk33XSTevbs6Rhbt26dvvzyy8v22717t2PNQw89JA8Pj7reNgAAAAAAAAAAAAAAaEAGq9Vqb+okavL9999rxIgRslgsCg4OVnR0tCwWi3Jzc+Xv76+srCwFBARUuzY1NVWLFi2SJGVmZmrIkCHVzisoKFBcXJyOHz+ujh07auDAgWrbtq127dqlEydOyGg0asOGDYqMjHSsmTx5sjZu3Kg+ffooPDxc7dq1U2Fhofbs2aOLFy/qjjvu0Nq1a2mUAAAAAAAAAAAAAACgmWm2J0pIko+PjzZv3qwnnnhCkrRhwwYVFxcrISFB2dnZNTZJ1MV1112nHTt26Mknn5Sfn5+2b9+ubdu2ydvbW9OmTZPJZKrSJCFJEydO1JgxYyRJJpNJH374oQoLCxUbG6vly5fr3XffpUkCAAAAAAAAAAAAAIBmqFmfKAEAAAAAAAAAAAAAAOBKzfpECQAAAAAAAAAAAAAAAFeiUQIAAAAAAAAAAAAAALQaNEoAAAAAAAAAAAAAAIBWg0YJAAAAAAAAAAAAAADQatAoAQAAAAAAAAAAAAAAWg0aJQAAAAAAAAAAAAAAQKtBowQAAAAAAAAAuEBpaamee+45DRgwQH5+fgoPD1dSUpJOnjzp0jjFxcWaN2+eYmJiFBgYqJ49e+rnP/+5nn76aZWWlro0FgAAANASGaxWq72pkwAAAAAAAACAa1lpaalGjBghs9ms4OBg3XzzzbJYLDpw4IACAwO1detW+fv71ztOYWGhxowZo8OHD6t79+4aNGiQJKmgoEAWi0Vms1mBgYH1jgMAAAC0ZG2aOgEAAAAAAAAAuNalpqbKbDZr2LBhysjIkIeHh+x2uxITE5WRkaFZs2ZpzZo19Ypx4cIF/epXv9Lhw4f1+OOP6/e//73atm3rGM/NzVWnTp3qeysAAABAi8eJEgAAAAAAAABQDxUVFQoJCZHNZtPOnTvVt29fx5jValVYWJjOnj2rffv2KSgoyOk47733nqZNm6ahQ4fqf//3f12ROgAAANAquTV1AgAAAAAAAABwLcvJyZHNZlNYWFiVJglJMhqNio2Nld1uV1ZWVr3ivP/++5KkRx99tF77AAAAAK0dj94AAABAi1VaWqq0tDR98MEHOnbsmLp06aK77rpLc+bMUbdu3eq9//bt2zVmzJgaxwMCAmSxWC67bjQar7jv559/ruuuu66+6QEAAKCRmM1mSVJERES145GRkcrKyqq2NqyLzz//XJL0i1/8Qnl5efrrX/+qY8eOqVu3brrrrrs0cODAeu0PAAAAtBY0SgAAAKBFKi0t1YgRI2Q2mxUcHKy7775bFotFq1ev1pYtW7R161b5+/u7JFb37t01fPjwy65f7fnQkyZNqva6j4+PS/ICAABA4zhy5IgkqUePHpKk9evXa+nSpZoyZYqmTp3quF5UVOR0DJvNphMnTqhz587auHGjnnjiCZ0/f94xvnjxYk2aNEnLli2Tu7t7nfZOT0/X2rVrazU3NTVVUVFRKisrq9f9AACAa19gYKA6dOjQ1GkATqFRAgAAAC1SamqqzGazhg0bpoyMDHl4eMhutysxMVEZGRmaNWuW1qxZ45JYoaGhWrlyZZ3XObMGAAAAzY/NZpMktW/fXpKUlpYmi8WivLw8TZ06VV5eXlXmOeP777+XJJ07d05JSUm67777NGPGDHXr1k3//Oc/lZSUpHXr1un666/X9OnT67T3wYMHZTKZajW3pKSkzrkDAAAAzQ2NEgAAAGhxKioqtHr1akmXPqT28PCQJBkMBi1cuFDr169XZmamDh8+rKCgoCbMFAAAAC2B3W6v8nrChAlavHix4uPjq4wbDAanY1y8eFHSpZPTBg4cqD/96U+Osbi4OF28eFHx8fFasWKFkpKS6hQrODhYsbGxtZrr6+srSerQoYNCQ0PrcAcAAABA80GjBAAAAFqcnJwc2Ww2hYWFqW/fvlXGjEajYmNjlZWVpaysLCUkJDRRlgAAAGgpvL29JUnl5eWSpKSkJCUlJTnGy8rKJKleR1P/eG11j3C7++675eHhoZMnT6qgoEAhISG13js+Pt7R1AEAAAC0BjRKAAAAoMUxm82SpIiIiGrHIyMjlZWVJYvF4pJ4p06d0sKFC3X06FF5e3vrpptu0qhRo+Tp6XnFdcuWLVNBQYHc3d3Vr18/jRkzRn5+fi7JCQAAAI0nICBAknTs2LFqxyuvBwYGOh2jY8eO6tChg8rKytSzZ8/Lxg0Gg/z8/HTo0CGdOnWqTo0SAAAAQGtDowQAAABanCNHjkiSevToIUlav369li5dqilTpmjq1KmO60VFRS6Jd+DAAS1cuLDKNX9/f73++uuKiYmpcd3cuXMvez1v3jw9/PDDdc4hPT1da9eurdXc1NRURUVFqayszGXvAQAAuDYFBgbW65QDXFLZoFvZsPtT+/fvlySFh4c7HcNgMKhv377au3evrFZrtXOKi4sl6aoNuwAAAEBrR6MEAAAAWhybzSZJat++vSQpLS1NFotFeXl5mjp1qry8vKrMc5avr6+mT5+usWPHqnfv3pIufQiempoqk8mkiRMn6tNPP3WMVZo8ebImTpyofv36ycfHRwUFBVq1apXWrFmjGTNmqFu3bho7dmydcjl48KBMJlOt5paUlNRpbwAAAFxZTEyMvLy8lJubq/z8/CqnOVitVplMJhkMBg0fPrxecW6//Xbt3btXJpNJ48ePrzKWn5+vkpIStWnTRqGhofWKAwAAALR0NEoAAACgxbHb7VVeT5gwQYsXL3Y8d7ly3GAw1CvOgAEDNGDAgCrXBg8erMzMTI0bN07Z2dl68cUX9corr1SZs2LFiiqv+/fvr6VLlyowMFALFizQ888/X+dGieDgYMXGxtZqrq+vr6RLz7nmQ3QAAID68/T0VEJCglasWKGZM2dq3bp18vDwkN1uV3JysioqKjR69GgFBQVVuz41NVWLFi2SJGVmZmrIkCHVzquMsXbtWt177726/fbbJUnl5eV65plnJEljxozhlBAAAADgKmiUAAAAQIvj7e0t6dIHxpKUlJSkpKQkx3hZWZkkNdgHyG5ubnr88ceVnZ2tjz/+uNbrEhMTlZaWpvz8fH377bfq1atXrdfGx8c7GkEAAADQ+JKTk5Wdna2srCxFR0crOjpaFotFubm58vf3V1paWr1jhISEKCUlRc8++6zGjRungQMHqlu3bvriiy9UVFSkoKAgLViwwAV3AwAAALRsbk2dAAAAAOBqAQEBkqRjx45VO155PTAwsMFyqHzcxvHjx2u9xsfHR126dKnzOgAAADQ9Hx8fbd68WU888YQkacOGDSouLlZCQoKys7MdNWp9Pfnkk3rnnXc0ZMgQHThwQJs3b1abNm30yCOP6OOPP5a/v79L4gAAAAAtGSdKAAAAoMWJiIiQJJnN5mrH9+/fL0kKDw9vsByOHDkiqW6nVpw/f16nT5+u8zoAAAA0Dz4+Ppo3b57mzZtXp3XJyclKTk6u9fwRI0ZoxIgRdU0PAAAAwP/hRAkAAAC0ODExMfLy8lJubq7y8/OrjFmtVplMJhkMBg0fPrzBcti6dask6aabbqr1mm3btumHH36Qt7e3rr/++oZKDQAAAAAAAABaNRolAAAA0OJ4enoqISFBkjRz5kydO3dOkmS325WcnKyKigqNGjVKQUFB1a5PTU2V0WiU0WjU9u3ba4yzbNkynThx4rLr77//vlauXClJevTRR6uMrVu3Tl9++eVla3bv3q0ZM2ZIkh566CF5eHjU4k4BAAAAAAAAAHXFozcAAADQIiUnJys7O1tZWVmKjo5WdHS0LBaLcnNz5e/vr7S0tHrHSEtLU0pKiiIjI3Xdddfp/Pnzys3NVV5eniRp9uzZuuuuu6qsyczMVGJiovr06aPw8HC1a9dOhYWF2rNnjy5evKg77rhDc+fOrXduAAAAAAAAAIDq0SgBAACAFsnHx0ebN2/WokWL9OGHH2rDhg3q0qWLEhIS9Mwzz8jPz6/eMaZPn67s7Gzl5+eroKBA5eXl6tq1q8aOHatp06Zp8ODBl62ZOHGi3N3dtX//fplMJpWWlsrb21uxsbF64IEHNGnSJLm5cfAbAAAAAAAAADQUg9VqtTd1EgAAAAAAAAAAAAAAAI2BX1UDAAAAAAAAAAAAAACtBo0SAAAAAAAAAAAAAACg1aBRAgAAAAAAAAAAAAAAtBo0SgAAAAAAAAAAAAAAgFaDRgkAAAAAAAAAAAAAANBq0CgBAAAAAAAAAAAAAABaDRolAAAAAAAAAAAAAABAq0GjBAAAAAAAAAAAAAAAaDVolAAAAAAAAAAAAAAAAK0GjRIAAAAAAAAAAAAAAKDVoFECAAAAAAAAAAAAAAC0GjRKAAAAAAAAAAAAAACAVqPZN0qUlpbqueee04ABA+Tn56fw8HAlJSXp5MmTLotRUVGhJUuWaPDgwQoICJCfn59uuukmzZ49+4pxCgsLNW3aNIWGhsrPz0+DBg3SkiVLdP78eZflBgAAAAAAAAAAAAAAXMdgtVrtTZ1ETUpLSzVixAiZzWYFBwfr5ptvlsVi0YEDBxQYGKitW7fK39+/XjEqKio0atQo7dq1S76+voqJiVHbtm21c+dOHTt2TP7+/vroo4/Us2fPKussFotGjhypkpIS3XjjjerVq5dMJpNOnjypYcOG6b333pO7u3u9cgMAAAAAAAAAAAAAAK7VrE+USE1Nldls1rBhw7Rz50698cYb+uyzz/TAAw+oqKhIs2bNqneMN998U7t27VJISIh2796td955R2+//ba++OIL3X777Tp69KgWLFhw2brHHntMJSUlmj17tj7++GOtXr1aO3fuVHh4uLZt26bXXnut3rkBAAAAAAAAAAAAAADXaraNEhUVFVq9erUkKS0tTR4eHpIkg8GghQsXytPTU5mZmTp8+HC94phMJknSlClT1LlzZ8f19u3ba9q0aZKkzz//vMqanJwc7d69W0FBQfrd737nuN6xY0f94Q9/kCStXLmyXnkBAAAAAAAAAAAAAADXa7aNEjk5ObLZbAoLC1Pfvn2rjBmNRsXGxsputysrK6tecTw9PSVJbm6XvxWV137cQCFJW7dulSSNHDnyssdrDBs2TF5eXiosLFR+fn69cgMAAAAAAAAAAAAAAK7VbBslzGazJCkiIqLa8cjISEmSxWKpV5w777xTkpSenq7i4mLH9bNnz2rVqlWSpISEhFrn5u7urrCwMJfkBgAAAAAAAAAAAAAAXKtNUydQkyNHjkiSevToIUlav369li5dqilTpmjq1KmO60VFRfWKc//99+vTTz/VW2+9pQEDBujnP/+52rZtq507d+rcuXNKS0vTAw88cMXcXnjhBX366aeaN2+ebrnlFqdyS09P19q1a2s1NzU1VVFRUSorK6v3/QMAgGtbYGCgOnTo0NRpAAAAAAAAAABwzWi2jRI2m02S1L59e0lSWlqaLBaL8vLyNHXqVHl5eVWZ5yyDwaBXXnlFoaGhev7557Vp0ybH2KhRoxQdHV1jbh06dNCZM2e0ZMkSSdJLL72kjIwMp3I7ePCgTCZTreaWlJTUel8AAAAAAAAAAAAAAPBfzbZRwm63V3k9YcIELV68WPHx8VXGDQZDveIUFxdr6tSp2rlzp1588UWNHDlSbdu21SeffKKZM2cqLi5Ob7/9tuMRHT/NrVOnToqLi5PJZNL48eOdzi04OFixsbG1muvr6yvpUqNGaGhorWMAAAAAAAAAAAAAANDaNdtGCW9vb0lSeXm5JCkpKUlJSUmO8bKyMkmq91HTKSkp2rZtm15++WVNmTLFcf3ee++Vl5eXxo8fr5kzZ2rXrl1yc3OrkltZWZkMBoPWrVtXZU9ncouPj3c0gQAAAAAAAAAAAAAAgIbh1tQJ1CQgIECSdOzYsWrHK68HBgY6HcNut+udd96RJI0cOfKy8eHDh8vT01OFhYU6ePBgo+YGAAAAAAAAAAAAAABcr9k2SkREREiSzGZzteP79++XJIWHhzsd48SJE44TK7y8vC4bd3NzU/v27R1za5PbhQsXlJubW+/cAAAAAAAAAAAAAACA6zXbRomYmBh5eXkpNzdX+fn5VcasVqtMJpMMBoOGDx/udAxfX1+5u7tLkvbs2XPZ+OHDh/Xdd99Jkvz9/R3XK2Nu2rRJFy5cqLJm27Ztstls6t27t0JCQpzODQAAAAAAAAAAAAAAuF6zbZTw9PRUQkKCJGnmzJk6d+6cpEuPy0hOTlZFRYVGjRqloKCgatenpqbKaDTKaDRq+/bt1c5p3769hg4dKkl69tlndfLkSceYzWbTjBkzJEk33XSTevbs6RiLiYlRVFSUDh8+rMWLFzuuFxcXKyUlRZL06KOPOnvrAAAAAAAAAAAAAACggRisVqu9qZOoyffff68RI0bIYrEoODhY0dHRslgsys3Nlb+/v7KyshQQEFDt2tTUVC1atEiSlJmZqSFDhlQ7r6CgQHFxcTp+/Lg6duyogQMHqm3bttq1a5dOnDgho9GoDRs2KDIyssq6/fv3Ky4uTt9//71uuukm9erVSyaTSSdOnNBtt92m999/X23atHHtGwIAAAAAAAAAAAAAAOql2Z4oIUk+Pj7avHmznnjiCUnShg0bVFxcrISEBGVnZ9fYJFEX1113nXbs2KEnn3xSfn5+2r59u7Zt2yZvb29NmzZNJpPpsiYJSYqMjFR2drbuu+8+HTx4UBs3blTHjh01Z84cvffeezRJAAAAAAAAAAAAAADQDDXrEyUAAAAAAAAAAAAAAABcqVmfKAEAAAAAAAAAAAAAAOBKNEoAAAAAAAAAAAAAAIBWg0YJAAAAAAAAAAAAAADQatAoAQAAAAAAAAAAAAAAWg0aJQAAAAAAAAAAAAAAQKtBowQAAAAAAAAAAAAAAGg1aJQAAAAAAAAAAAAAAACtBo0SAAAAAAAAAAAAAACg1aBRAgAAAAAAAAAAAAAAtBo0SgAAAAAAAAAAAAAAgFaDRgkAAAAAAAAAAAAAANBq0CgBAAAAAAAAAAAAAABaDRolAAAAAAAAAAAAAABAq0GjBAAAAAAAAAAAAAAAaDVolAAAAAAAAAAAAAAAAK0GjRIAAAAAAAAAAAAAAKDVoFECAAAALVZpaamee+45DRgwQH5+fgoPD1dSUpJOnjzpkv23b98uo9FY41d4eHiNawsLCzVt2jSFhobKz89PgwYN0pIlS3T+/HmX5AYAAAAAAAAAqF6bpk4AAAAAaAilpaUaMWKEzGazgoODdffdd8tisWj16tXasmWLtm7dKn9/f5fE6t69u4YPH37Z9U6dOlU732KxaOTIkSopKdGNN96oXr16yWQy6YUXXpDJZNJ7770nd3d3l+QGAAAAAAAAAKiKRgkAAAC0SKmpqTKbzRo2bJgyMjLk4eEhu92uxMREZWRkaNasWVqzZo1LYoWGhmrlypW1nv/YY4+ppKREs2fP1uzZsyVJxcXFiouL07Zt2/Taa6/pkUcecUluAAAAAAAAAICqePQGAAAAWpyKigqtXr1akpSWliYPDw9JksFg0MKFC+Xp6anMzEwdPny40XPLycnR7t27FRQUpN/97neO6x07dtQf/vAHSapT0wUAAAAAAAAAoG5olAAAAECLk5OTI5vNprCwMPXt27fKmNFoVGxsrOx2u7Kysho9t61bt0qSRo4cednjNYYNGyYvLy8VFhYqPz+/0XMDAAAAAAAAgNaAR28AAACgxTGbzZKkiIiIascjIyOVlZUli8XikninTp3SwoULdfToUXl7e+umm27SqFGj5OnpWafc3N3dFRYWpl27dslisSgkJMQl+QEAAAAAAAAA/osTJQAAANDiHDlyRJLUo0cPSdL69es1dOhQvfHGG1WuFxUVuSTegQMHtHDhQr355ptavny5fvOb3+jGG29UTk7OVXN74YUXdOedd+pf//pXg+QGAAAAAAAAAKiKEyUAAADQ4thsNklS+/btJUlpaWmyWCzKy8vT1KlT5eXlVWWes3x9fTV9+nSNHTtWvXv3liTt379fqampMplMmjhxoj799FPH2I9jdujQQWfOnNGSJUskSS+99JIyMjKczi09PV1r166t1dzU1FRFRUWprKyMhgwAAFq5wMBAdejQoanTAAAAAIBGRaMEAAAAWhy73V7l9YQJE7R48WLFx8dXGTcYDPWKM2DAAA0YMKDKtcGDByszM1Pjxo1Tdna2XnzxRb3yyivV5tapUyfFxcXJZDJp/Pjx9crt4MGDMplMtZpbUlJSp70BAAAAAGhKc+bMcTzKEs1DRESE5s+f39RpAIDTaJQAAABAi+Pt7S1JKi8vlyQlJSUpKSnJMV5WViZJDfbbk25ubnr88ceVnZ2tjz/+uNrcysrKZDAYtG7duirjzuYWHBys2NjYWs319fV1xAgNDa1THAAAAAAAAAC41tEoAQAAgBYnICBAknTs2LFqxyuvBwYGNlgOlY/bOH78+GW57d271+W5xcfHO07MAAAAAAAAAADUjEYJAAAAtDgRERGSVOOxnPv375ckhYeHN1gOR44ckXT5yRARERHatGlTtblduHBBubm5DZ4bAAAAAADXEh7xAABwNRolAAAA0OLExMTIy8tLubm5ys/PV0hIiGPMarXKZDLJYDBo+PDhDZbD1q1bJUk33XRTlevDhw/XkiVLtGnTJi1atEju7u6OsW3btslms6l3795VcgaAloDnSjc/PFcaAAAAANBauTV1AgAAAICreXp6KiEhQZI0c+ZMnTt3TpJkt9uVnJysiooKjRo1SkFBQdWuT01NldFolNFo1Pbt22uMs2zZMp04ceKy6++//75WrlwpSXr00UerjMXExCgqKkqHDx/W4sWLHdeLi4uVkpJS7RoAAAAAAAAAgOtwogQAAABapOTkZGVnZysrK0vR0dGKjo6WxWJRbm6u/P39lZaWVu8YaWlpSklJUWRkpK677jqdP39eubm5ysvLkyTNnj1bd911V5U1BoNBK1asUFxcnBYuXKiPPvpIvXr1kslk0okTJ3Tbbbfp4YcfrnduAAAAAAAAAIDqGaxWq72pkwAAAAAawvfff69Fixbpww8/1LFjx9SlSxfdddddeuaZZ+Tn51fjutTUVC1atEiSlJmZqSFDhlQ776WXXlJ2drby8/NVXFys8vJyde3aVbfccoumTZumwYMH1xgjPz9fCxYs0CeffKLvv/9ewcHBmjBhgp566il5eHjU78YBAAAAAAAAADVySaPEv//9b+3YsUNHjhxRRUWFli1b5hiz2Ww6efKkJKl37971DQUAAIAWhloSAAAAjY0aFAAAAGjd6tUo8e233+qRRx7Rf/7zH0mXnvlsMBh05swZx5wTJ07oxhtvVEVFhbZt26YBAwbUP2sAAABc86glAQAA0NgaugYtLS1VWlqaPvjggyonms2ZM0fdunWrd/7bt2/XmDFjahwPCAiQxWKpdxwAAACgpXNzduGZM2c0evRo/fvf/1ZISIgefPBBeXl5XTave/fuio+P18WLF7V+/fr65AoAAIAWgloSAAAAja2ha9DS0lKNGDFCr7zyiux2u+6++275+Pho9erVuv3223X06FGX3Uv37t01adKky77uvfdel8UAAAAAWrI2zi58+eWXdfjwYY0dO1arVq1SmzZt9Pe//11lZWWXzX3ggQf0l7/8RTk5OfVKFgAAAC0DtSQAAAAaW0PXoKmpqTKbzRo2bJgyMjLk4eEhu92uxMREZWRkaNasWVqzZo1L7iU0NFQrV650yV4AAABAa+T0iRL/+Mc/ZDAY9Ic//EFt2ly53+JnP/uZ2rZtq8OHDzsbDgAAAC0ItSQAAAAaW0PWoBUVFVq9erUkKS0tTR4eHpIkg8GghQsXytPTU5mZmdS0AAAAQDPhdKPEoUOH5OXlpV69el09iJubvL29dfLkSWfDAQAAoAWhlgQAAEBja8gaNCcnRzabTWFhYerbt2+VMaPRqNjYWNntdmVlZTmVOwAAAADXcvrRG56enrLZbLpw4YLc3d2vOLesrEwlJSXq1KmTs+EAAADQglBLAgAAoLE1ZA1qNpslSREREdWOR0ZGKisrSxaLpW5J1+DUqVNauHChjh49Km9vb910000aNWqUPD09XbI/AAAA0NI53Shxww036F//+pdycnI0ePDgK87929/+pgsXLqh///7OhgMAAEALQi0JAACAxtaQNeiRI0ckST169JAkrV+/XkuXLtWUKVM0depUx/WioqJ63MF/HThwQAsXLqxyzd/fX6+//rpiYmLqvF96errWrl1bq7mpqamKiopSWVmZy+4HAABcmwIDA9WhQ4emTgNwitONEvfff78+++wzJScn64MPPlDnzp2rnfevf/1Lc+bMkcFg0P3331/nOKWlpUpLS9MHH3ygY8eOqUuXLrrrrrs0Z84cdevWzdn0HYxGY63m7du3Tz179qz1us8//1zXXXddPTIDAABouRqrlgQAAAAqNWQNarPZJEnt27eXJKWlpclisSgvL09Tp06Vl5dXlXnO8vX11fTp0zV27Fj17t1bkrR//36lpqbKZDJp4sSJ+vTTTx1jtXXw4EGZTKZazS0pKalj1gAAAEDz43SjxIMPPqh169Zp165dGjJkiO677z6Vl5dLkjZv3qyioiJt27ZNmzZt0oULFzRo0CA98MADdYpRWlqqESNGyGw2Kzg4WHfffbcsFotWr16tLVu2aOvWrfL393f2FiRJkyZNqnHsm2++UU5Ojnr37q2goKA6rffx8alXXgAAAC1ZY9SSAAAAwI81ZA1qt9urvJ4wYYIWL16s+Pj4KuMGg6Fe9zBgwAANGDCgyrXBgwcrMzNT48aNU3Z2tl588UW98sorddo3ODhYsbGxtZrr6+srSerQoYNCQ0PrFAcAAABoLgxWq9V+9WnV++677zR16lR98skn1Rb5lT8ADBkyRKtXr66xS7smc+bM0fLlyzVs2DBlZGTIw8NDdrtdiYmJysjI0D333KM1a9Y4m/5VPfLII3r33Xf1zDPPaObMmVXGKk+UsFqtDRYfAACgJWvoWhIAAAD4qYaqQZ955hmtWLFCjz/+uObPn3/Z+MqVK5WcnKzRo0fr7bffrt9N1GDLli0aP368evbsqX379jVIDAAAAKClcPpECUnq1KmT1q9fr82bN+udd97Rzp07dfLkSUlS165ddfPNN2v8+PG6++6769wtXVFRodWrV0u6dFSdh4eHpEtd1wsXLtT69euVmZmpw4cP13jaQ31YrVZlZmbKzc3tiqdOAAAAwDkNWUsCAAAA1WmoGjQgIECSdOzYsWrHK68HBgbW8w5qVvm4jePHjzdYDAAAAKClqFejRKURI0ZoxIgRrtjKIScnRzabTWFhYerbt2+VMaPRqNjYWGVlZSkrK0sJCQkujS1J7777rsrLy3X77berZ8+eLt8fAAAAlzRELQkAAABciatr0IiICEmS2Wyudnz//v2SpPDwcJfF/KkjR45IuvRIDAAAAABX5pJGiYZQ+UNF5Q8ZPxUZGamsrCxZLJYGif/WW29JkuM5gjVZtmyZCgoK5O7urn79+mnMmDHy8/NrkJwAAAAAAAAAND8xMTHy8vJSbm6u8vPzFRIS4hizWq0ymUwyGAwaPnx4g+WwdetWSdJNN93UYDEAAACAlsKtqROoSWUHdI8ePSRJ69ev19ChQ/XGG29UuV5UVOTy2Lt379a+ffvk6+ur0aNHX3Hu3Llz9frrr+svf/mLZsyYoQEDBmjVqlUuzwkAAAAAAABA8+Tp6ek49XbmzJk6d+6cJMlutys5OVkVFRUaNWpUjY8QTk1NldFolNFo1Pbt22uMs2zZMp04ceKy6++//75WrlwpSXr00UfrezsAAABAi1erEyVMJpPLAsbGxtZqns1mkyS1b99ekpSWliaLxaK8vDxNnTpVXl5eVea50po1ayRJ9913nyP+T02ePFkTJ05Uv3795OPjo4KCAq1atUpr1qzRjBkz1K1bN40dO7bWMdPT07V27dpazU1NTVVUVJTKysoapFEEAABcOwIDA5v90bpNUUsCAACgdWuKGjQ5OVnZ2dnKyspSdHS0oqOjZbFYlJubK39/f6WlpdU7l7S0NKWkpCgyMlLXXXedzp8/r9zcXOXl5UmSZs+erbvuuqvecQAAAICWrlaNEqNHj5bBYKh3MIPBoNOnT9dqrt1ur/J6woQJWrx4seNRGJXjrsjrx8rKyvTXv/5V0pUfu7FixYoqr/v376+lS5cqMDBQCxYs0PPPP1+nRomDBw/W+ge4kpKSWu8LAADQ1JqilgQAAEDr1hQ1qI+PjzZv3qxFixbpww8/1IYNG9SlSxclJCTomWeeccnjeqdPn67s7Gzl5+eroKBA5eXl6tq1q8aOHatp06Zp8ODB9Y4BAAAAtAa1apQICgqq8QeLQ4cOOf7b09NTRqNR0qVn71VUVEi69ANFTcfK1cTb21uSVF5eLklKSkpSUlKSY7ysrEySXP4blOvXr1dJSYn69eun6OjoOq9PTExUWlqa8vPz9e2336pXr161WhccHFzr7nRfX19Jl+49NDS0zjkCAAA0pqaoJQEAANC6NVUN6uPjo3nz5mnevHl1WpecnKzk5OSrzps+fbqmT59e57wAAAAAVFWrRol9+/Zddu3s2bP69a9/rSNHjigxMVHx8fHq16+f4wcQu92uAwcO6O2339af/vQn3XDDDXr77bdrnVhAQIAk6dixY9WOV14PDAys9Z618dZbb0m68mkSV+Lj46MuXbro+PHjOn78eK0bJeLj452OCQAA0Jw1RS0JAACA1o0aFAAAAMCVuDm7cOHChdq6dateeuklvfDCCwoLC6vSpW0wGBQWFqZ58+bpxRdf1JYtW7Ro0aJa7x8RESFJMpvN1Y7v379fkhQeHu7sLVzm66+/Vk5Ojtzd3TVx4kSn9jh//rzjOL7m/rxwAACAptLQtSQAAADwU9SgAAAAACoZrFar3ZmFkZGROnPmjA4fPiw3tyv3W1y4cEE9e/ZUly5dqu3mrk5FRYVCQkJks9m0a9cuhYSEOMasVqvCwsJ09uxZ7du3z2VHMT/77LN69dVXNWLECL3zzjtO7bF582ZNnDhR3t7eKigokIeHh0tyAwAAaEkaupYEAAAAfooaFAAAAEAlp0+UOHXqlNzd3a/6Q4Ukx7xTp07Ven9PT08lJCRIkmbOnKlz585JunQEXnJysioqKjRq1KgamyRSU1NlNBplNBq1ffv2q8Y7f/68MjIyJF39sRvr1q3Tl19+edn13bt3a8aMGZKkhx56iCYJAACAGjR0LQkAAAD8FDUoAAAAgEpON0oEBQXJZrNp06ZNV537j3/8Qzabrc4nPyQnJys8PFxZWVmKjo7WQw89pJiYGK1bt07+/v5KS0tzNv3LbNy4USdPnlSXLl0UFxd3xbmZmZmKiYnRjTfeqPj4eD300EMaOnSohg0bpkOHDumOO+7Q3LlzXZYbAABAS9MYtSQAAADwY9SgAAAAACo53Sgxfvx42e12TZs2TX/5y19ktVovm2O1WvX//t//0//3//1/MhgMGj9+fJ1i+Pj4aPPmzXriiSckSRs2bFBxcbESEhKUnZ2tgIAAZ9O/zNtvvy3p0n21bdv2inMnTpyoMWPGSJJMJpM+/PBDFRYWKjY2VsuXL9e7777LaRIAAABX0Bi1JAAAAPBj1KAAAAAAKhmsVqvdmYXnzp3Tvffeq5ycHBkMBrm5uSkwMFCdO3eWwWDQ6dOnVVRUpIsXL8putysmJkbr16+ngQAAAADUkgAAAGh01KAAAAAAKjndKCFJZ8+e1ZIlS7Rq1Sp999131c7p1KmTpk2bpv/5n/9Ru3btnE4UAAAALQu1JAAAABobNSgAAAAAqZ6NEpXOnz+vnTt3Kjc313FkXadOnXTDDTfo5ptvVps2beobAgAAAC0UtSQAAAAaGzUoAAAA0Lq5pFECANDyzZkzR2azuanTwE9ERERo/vz5TZ0GAAAAAAAAAADANcOtqROQpL59+zZ1CgAAALhGUUsCAACgsVGDAgAAANe2ZtEoUVpa2tQpAAAA4BpFLQkAAIDGRg0KAAAAXNuaxcP2DAZDU6cAALgKHu8AoLmilgQAAEBjowYFAAAArm3N4kQJAAAAAAAAAAAAAACAxkCjBAAAAAAAAAAAAAAAaDVolAAAAAAAAAAAAAAAAK0GjRIAAAAAAAAAAAAAAKDVaNPUCQAAAAAAAAAAAAAAWqaLFy+qtLRUZWVlOn/+fFOngxbOYDDI09NTvr6+8vDwqHEejRIAAAAAAAAAAAAAAJe7ePGiTp06pbNnzzZ1Kmgl7Ha7ysvLde7cOfXo0UNubtU/ZINGCQAAAAAAAAAAAACAy5WWlurs2bNyd3dXp06d1K5duxr/4RpwhR9++EGnT5/WuXPnVFJSIqPRWO08vgsBAAAAAAAAAAAAAC5XVlYmSerUqZPat29PkwQaXJs2bdSxY0dJUnl5eY3z+E4EAAAAAAAAAAAAALjc+fPnJUnt2rVr4kzQmnh4eEiSLly4UOMcGiUAAAAAAAAAAAAAAA2GkyTQmAwGgyTJbrfXOKdZfEdeKUEAAADgSqglAQAA0NioQQEAAIDmq7JR4kqaRaPEjBkzmjoFAAAAXKOoJQEAANDYqEEBAACAa5vBarXS/gwAAAAAAAAAAAAAcKlDhw5Jknr27NnEmaC1udr3XhtXBCkuLta3334rm82mixcvXnFubGysK0ICAACghaCWBAAAQGOjBgUAAEBrlJiYqHXr1mnWrFlKTk5u6nTqJD09XY8//rhiY2P197//vd771atR4qOPPtLChQu1e/fuWs03GAw6ffp0fUICAACghaCWBAAAQGOjBgUAAGieRo0aJZPJVOWau7u7OnbsqBtuuEH33HOPHnzwQbVr166JMrzc9u3btWPHDvXv31+jR49u6nRQR043SnzwwQd66KGHZLfbZbfb1a5dO3Xt2lVubm6uzA8AAAAtELUkAAAAGhs1KAAAQPPn6ekpX19fSdLZs2d15swZmUwmmUwmrVmzRh9++KG6dOnSxFlesmPHDi1atEiTJk26ZholevToodDQ0GbzHjYlpxsllixZoosXL2rgwIFKS0vTz372MxemBQAAgJassWrJ0tJSpaWl6YMPPtCxY8fUpUsX3XXXXZozZ466devWIDE3btyoyZMnS5JSUlI0ffr0y+YYjcYr7vH555/ruuuua4j0AAAAWi0+zwQAAGj+fvnLX2rlypWO1ydOnNDLL7+sFStWyGw2KykpSW+99VYTZnhtS0lJUUpKSlOn0Sw43Sjx1VdfyWAwaPXq1QoICHBlTgAAAGjhGqOWLC0t1YgRI2Q2mxUcHKy7775bFotFq1ev1pYtW7R161b5+/u7NGZxcbGefvrpWs+fNGlStdd9fHxclRIAAAD+D59nAgAAXHu6d++uBQsW6NSpU3r33XeVmZmp48ePy8/Pr6lTwzXO6XPlOnbsKB8fH36oAAAAQJ01Ri2Zmpoqs9msYcOGaefOnXrjjTf02Wef6YEHHlBRUZFmzZrl8pgpKSmy2WwaPnx4reavXLmy2q+GOu0CAACgNePzTAAAgGvXAw884Pjv3bt3Vxnbvn27jEaj+vfvL0n64osv9Ktf/UrXX3+9evTooQEDBuipp57SuXPnLtv3wIEDevzxx9W/f391795dvXv31rhx47R58+Zq8zAajY6vRYsWSZLWrVtX5brRaFRqamqN9zJq1CgZjUalp6fr7NmzevnllxUTEyN/f3/16dNHcXFx2rJlS5U1O3fu1O9//3sNHz5c/fr1U/fu3dWvXz898MAD2rRp0xXfOz8/vzrlV917umbNGg0ZMkT+/v4KCQnR448/rjNnzlxxj7q+t5V27dqlCRMmqFevXgoKCtLo0aP1z3/+84prnOF0o8Rtt92m0tJSnTx50pX5AAAAoBVo6FqyoqJCq1evliSlpaXJw8NDkmQwGLRw4UJ5enoqMzNThw8fdlnMHTt26M0339TcuXPVvXt3l+0LAAAA1+DzTAAAgGvXj5tdS0pKapy3ZcsWjRw5Uhs2bFBpaak8PDz07bff6s0331RZWVmVuenp6YqNjVV6eroOHTqkdu3aqbi4WNu2bdPEiRM1b968y/bv3r2748vLy0uS5OnpWeV69+7d5e3tfdV7unDhgiZMmKDf//73OnDggDw9PfX9998rJydHWVlZjnmlpaW644479PLLL2vXrl2yWq3q0KGDjh8/rk2bNumBBx7Q7Nmza4zz47w8PT2vmtdPPffcc/rtb3+rvLw8XbhwQadPn1Z6eromTJigixcvVrvGmfdWuvRY4xEjRuijjz7S999/L3d3d+3YsUP33HOPPvvsszrnfiVON0rMnTtXnTp1UlJSksrLy12ZEwAAAFq4hq4lc3JyZLPZFBYWpr59+1YZMxqNio2Nld1ur/IDR31UVFToqaeeUv/+/fWb3/zGJXsCAADAtfg8EwAA4Np16NAhx38bjcZq55w9e1ZJSUn6xS9+oR07dujIkSM6ePCgdu3apfj4eBkMBsdck8mkJ598UhcvXtTTTz+tr776SocOHdLRo0e1atUqGY1G/fGPf9TWrVurxPjqq68cX0888YQk6Ze//GWV61999ZWefPLJq97T66+/rp07d+qll17SwYMHVVhYqMOHD+v1119XYGBglbmRkZFavHixvvjiCx0/flzffPONjh8/rlWrVsnb21t/+tOftGHDhmrj7Nu3z5HXL3/5y6vm9WMnTpzQ66+/rjfffFNFRUUqKirSq6++Kjc3N+3cuVMfffTRZWucfW/PnDmjxx9/XD/88INGjRqlr776St9++6327Nmj6OhovfXWW3XK/WraOLvQZDJp2rRpWrp0qSIiIjRu3Dj17t1bXbp0ueK6mp7DDAAAgNajoWtJs9ksSYqIiKh2PDIyUllZWbJYLHVLvAapqakqKCjQRx99JHd391qvW7ZsmQoKCuTu7q5+/fppzJgxPF8RAACggfB5JgAAwLXr9ddflyS5ubnpxhtvrHbOiRMnNGjQIL333ntq0+a//wweEhKi5cuXV5k7Z84cXbx4Uc8884xmzpzpuO7p6an7779fZ8+e1eOPP65ly5bpjjvuaIA7uvQIkXfeeUcjRoyoEn/cuHFV5nl7e2vHjh2XrW/Xrp3uv/9+ffPNN5o3b57ef/99jR492qU5nj17VjNnztTYsWMlXXr/f/3rX2vDhg3avHmzsrOzNXLkyCprnH1v09PT9d1338nf31+vvfaa4/SLXr16ac2aNfrZz3522akg9eF0o8Rjjz0mg8Egu92u8vJyxzfn1fCDBQAAABq6ljxy5IgkqUePHpKk9evXa+nSpZoyZYqmTp3quF5UVORE9lXt2bNHy5cv15QpUzRw4MA6rZ07d+5lr+fNm6eHH364znmkp6dr7dq1tZqbmpqqqKgolZWVueQ9AAAA167AwEB16NChqdNoFHyeCQAAcG05e/asvv76a73yyiv6xz/+IUm6//771bVr1xrXzJw5s0qTRHUOHDig3bt3q02bNnrkkUeqnVP5D/ifffaZfvjhh6vu6Yzo6OgqTRLOGjBggCSpoKCg3ntV59e//vVl12655RZt3rxZ33zzTZXr9Xlvt2zZIkm69957L3tESPfu3XXnnXfqgw8+qO/tODj9f/QXv/hFleNJAAAAgNpq6FrSZrNJktq3by9JSktLk8ViUV5enqZOnep4fmDlPGf98MMPevLJJ+Xr66uUlJRar5s8ebImTpyofv36ycfHRwUFBVq1apXWrFmjGTNmqFu3bo4u7do6ePCgTCZTreZe6TmOAAAALRWfZwIAADR/69at07p166od+/nPf64//vGPNa51d3dXbGzsVWPs3LlTknTx4kUNGjToinMrKip05swZde/e/ar71tVtt91W67kXLlxQenq6/vd//1dms1lnzpzRDz/8UGVOaWmpq1OUl5dXtfde2azy089X6/Pe5ubmSrp0GnB1oqKimkejxN///neXJQEAAIDWpaFrSbvdXuX1hAkTtHjxYsXHx1cZr+8H5a+++qr27t2rV155RZ07d671uhUrVlR53b9/fy1dulSBgYFasGCBnn/++To3SgQHB9fqB0FJ8vX1lSR16NBBoaGhdYoDAABwreLzTAAAgObP09PT8dmVu7u7OnbsqLCwMI0ePVq//OUvr/jY2y5dujh+cepKTp48KenSP+afOHHiqvPLy8trmX3dBAYG1mpeaWmpxo8fr5ycHMc1Ly8vx+eR586dk9Vq1fnz512eY02feVb+f7h48WKV6/V5b61W6xVjXu2ReXXl+jNCAAAAgCbm7e0t6b+FdlJSkpKSkhzjlc+yq88x0/n5+Vq0aJEGDhxY7fFzzkhMTFRaWpry8/P17bffqlevXrVeGx8f72gEAQAAAAAAAK5Fv/zlL7Vy5Uqn1rZr165W8yp/iSoqKkqffvqpU7Fcobb5LlmyRDk5OfLy8tLzzz+vcePGqVOnTo7xTz75RGPHjr3sl8eagive28Y6BY5GCQAAALQ4AQEBkqRjx45VO155vbZd29XZvHmzKioqVFpaqvvvv7/KmMVikSSlp6drx44dGjRokGbNmnXVPX18fNSlSxcdP35cx48fr1OjBAAAAAAAAICr69atmyTpyJEjTZxJ7fztb3+TJM2fP18PPvjgZeOnTp1q5IxqVp/3tlOnTjp+/LhOnz5d7XhN151FowQAAABanIiICEmS2Wyudnz//v2SpPDw8HrH+vLLL/Xll19WO5aXl6e8vLxad4efP3/eUfDX57QLAAAAAAAAANW7+eabJV1qMNi7d6+ioqKc2sfNzU2SdOHCBZflVp3KpoNBgwZVO/7jR3I0tfq8tzfccIOOHz+uffv2VTu+d+9el+RYqd6NEhs3btT777+vgoIClZaW6vz58zUe62EwGLR79+76hgQAAEAL0VC1ZExMjLy8vJSbm6v8/HyFhIQ4xqxWq0wmkwwGg4YPH+507o899pgee+yxascSExO1bt06paSkaPr06bXec9u2bfrhhx/k7e2t66+/3uncAAAAUDM+zwQAAGjdbrjhBvXv31/79u3T888/r3fffdfR9PBTBQUFuu6666od8/X1lSQdPXq0wXKtjHP69GkVFhZe9otfBw8eVEZGRoPGr4v6vLfDhw9Xdna2PvjgA/3+97+Xp6enY+zEiRPasmWLS3OtPqtaeuaZZ/SrX/1Kf/vb37R7927l5eXp22+/1cGDBx1fhw4dqvIaAAAAkBq2lvT09FRCQoIkaebMmTp37pykS8/IS05OVkVFhUaNGqWgoKBq16empspoNMpoNGr79u31v9kfWbduXbUnUOzevVszZsyQJD300EPy8PBwaVwAAADweSYAAAAumTdvntzc3LR161ZNnjy5yud1J0+eVHp6uoYOHaqFCxfWuEdkZKSkSyc6/Pvf/26wXIcOHSpJevbZZ/X5559Lki5evKhPPvlEY8eOrbERoak4+97Gx8fLaDTq6NGjevjhhx2PFPn22281ZcoUlZWVuTRPp0+U2Lx5s1auXClvb28lJSUpKipKEyZMUKdOnfTGG2/o9OnTysnJUUZGhtzc3DRv3jz16dPHlbkDAADgGtUYtWRycrKys7OVlZWl6OhoRUdHy2KxKDc3V/7+/kpLS2ugu7uyzMxMJSYmqk+fPgoPD1e7du1UWFioPXv26OLFi7rjjjs0d+7cJskNAACgJePzTAAAAFS67bbb9Morr2j69OnatGmTNm3aJC8vL7m7u6ukpMQxLzQ0tMY9YmNjFRERIbPZrBEjRqhnz57q3LmzJOnBBx/Ugw8+6JJc586dq48//lgFBQUaNmyYvLy8dPHiRZWXl6tr166aN2+efvvb31a7dujQoSoqKnK8rry3ZcuW6Y033nBcDwwM1Mcff+ySfJ19bzt37qzly5drypQp2rBhgzZu3ChfX18VFxerTZs2mjJlitasWeOSHKV6NEqsXr1aBoNBS5cu1bhx4xzXPTw8dNttt0mSxo0bpyeffFL33nuv5s2bp08++aT+GQMAAOCa1xi1pI+PjzZv3qxFixbpww8/1IYNG9SlSxclJCTomWeekZ+fn0vvqbYmTpwod3d37d+/XyaTSaWlpfL29lZsbKweeOABTZo0qdl1gQMAALQEfJ4JAACAH/vVr36lmJgYrVy5UtnZ2SoqKpKbm5v69eunfv366a677tLYsWNrXO/m5qb169dr/vz5ysrK0tGjRx0nkrnycRy9e/dWVlaWFixYoI8//lhWq1V+fn4aPny4Zs2apfz8/BrXnjp1SidOnLjsus1mk81mc7xu166dy/KVnH9vR40apU2bNiktLU3/+te/dP78ecXGxmru3LnKz893aaOEwWq1Vv8AvqsICwvTiRMndPz4cbVt21aS1KlTJ/n5+Sk3N7fK3E8++UT33nuvpk6dqhdffLH+WQMAAOCaRi0JAACAxkYNCgAA0PgOHTokSerZs2cTZ4LW5mrfe07/qtp3330no9Ho+KFCktq0aVOl86TSrbfeqvbt22vLli3OhgMAAEALQi0JAACAxkYNCgAAAKCS040SnTp1Unl5eZVrnTt3ls1mk9VqrXLdYDDIzc2t2mM9rqa0tFTPPfecBgwYID8/P4WHhyspKUknT550NvUqjEZjrb4qO05+rLCwUNOmTVNoaKj8/Pw0aNAgLVmyROfPn3dJbgAAAC1VY9WSAAAAQCVqUAAAAACVnG6UCAoK0tmzZ/XNN984rkVEREiS1q9fX2XuF198IZvNJqPRWKcYpaWlGjFihF555RXZ7Xbdfffd8vHx0erVq3X77be75NkukyZNqvErJiZG0qXnvgQFBVVZZ7FYdNttt+m9995TUFCQ4uLi9N133+mFF17QxIkTdeHChXrnBgAA0FI1Ri0JAAAA/Bg1KAAAAIBKbZxdOHjwYH3++efatm2bHnroIUnSvffeq48//ljPPvus3NzcNGjQIBUWFurZZ5+VwWDQ0KFD6xQjNTVVZrNZw4YNU0ZGhjw8PGS325WYmKiMjAzNmjVLa9ascfYWJEkrV66sceyRRx5RTk6OJk+eLIPBUGXsscceU0lJiWbPnq3Zs2dLkoqLixUXF6dt27bptdde0yOPPFKv3AAAAFqqxqglAQAAgB+jBgUAAABQyWC1Wu3OLNy1a5fuuOMO9e/fX59++qkk6eLFixo1apQ+++yzKo0FdrtdXbt2VVZWloKDg2u1f0VFhUJCQmSz2bRz50717dvXMWa1WhUWFqazZ89q3759l5324ApWq1U33HCDzp49qz179qhnz56OsZycHMXFxSkoKEh79uyRu7u7Y2zLli0aP368+vTpoy+++MLleQEAALQEDV1LAgAAAD9FDQoAAND4Dh06JElV/q0VaAxX+95z+tEbN998sw4fPqx//OMf/93MzU1//etflZSUpODgYLVp00adO3fW/fffry1bttTph4qcnBzZbDaFhYVVaZKQJKPRqNjYWNntdmVlZTl7C1f07rvvqry8XLfeeutlb97WrVslSSNHjqzSJCFJw4YNk5eXlwoLC5Wfn98guQEAAFzrGrqWBAAAAH6KGhQAAABAJacfvSFJXl5e1V5LSUlRSkpKfbaW2WyW9N/nBP5UZGSksrKyZLFY6hWnJm+99ZYkKT4+vk65ubu7KywsTLt27ZLFYlFISEiD5AcAAHCta8haEgAAAKgONSgAAAAAqR4nSjS0I0eOSJJ69OghSVq/fr2GDh2qN954o8r1oqIil8fevXu39u3bJ19fX40ePfqqub3wwgu688479a9//avBcwMAAAAAAAAAAAAAAM6r14kSP3bx4kWdOXNG5eXlLnnGjM1mkyS1b99ekpSWliaLxaK8vDxNnTrV0f1dOc+V1qxZI0m67777HPGry61Dhw46c+aMlixZIkl66aWXlJGR4VRu6enpWrt2ba3mpqamKioqSmVlZTRjAADQygUGBqpDhw5NnUa9ubqWBAAAAK6GGhQAAABoverdKLFt2zYtW7ZMn332mSoqKmQwGHT69GnHeGFhoRYuXCg3Nzf98Y9/rPZ4u+rY7fYqrydMmKDFixc7HoVROW4wGOp7C1WUlZXpr3/9q6TqH7vx09w6deqkuLg4mUwmjR8/3uncDh48KJPJVKu5JSUltd4XAACgOWuoWhIAAACoCTUoAAAAgHo1SsyfP19Lliy5rKnhx/r06aOvv/5au3fv1q233qpJkybVam9vb29JUnl5uSQpKSlJSUlJjvGysjJJcvlvUK5fv14lJSXq16+foqOjr5hbWVmZDAaD1q1bV2XcmdyCg4MVGxtbq7m+vr6O/UNDQ2sdAwAAoDlpyFoSAAAAqA41KAAAAABJcnN24UcffaQ//vGP6tixo5YvX64DBw6oe/fu1c79zW9+I7vdrs2bN9d6/4CAAEnSsWPHqh2vvB4YGFjHzK/srbfeklTzaRINlVt8fLz+/ve/1+orKiqq1vsCAAA0Rw1dSwIAAAA/RQ0KAAAAoJLTJ0r8+c9/lsFg0JIlSzRu3Lgrzh0xYoQk6cCBA7XePyIiQpJkNpurHd+/f78kKTw8vNZ7Xs3XX3+tnJwcubu7a+LEiVfMbdOmTdXmduHCBeXm5ro8NwAAgJakoWtJAAAA4KeoQQEAAABUcrpR4vPPP5fBYNDo0aOvOrdr167y8fFRUVFRrfePiYmRl5eXcnNzlZ+fr5CQEMeY1WqVyWSSwWDQ8OHDncq/OmvWrJEk3XHHHfLz86tx3vDhw7VkyRJt2rRJixYtkru7u2Ns27Ztstls6t27d5WcAQAA8F8NXUsCAAAAP0UNCgAA0LKtWrVKhYWFTZ1GFX369NHDDz/c1GlcZuDAgfr6668dr5cvX37FJy60RE43SpSVlcnLy0seHh61mn/x4sUrPvvvpzw9PZWQkKAVK1Zo5syZWrdunTw8PGS325WcnKyKigqNHj1aQUFB1a5PTU3VokWLJEmZmZkaMmTIFeOdP39eGRkZkq782A3pUhNHVFSU9u7dq8WLF2v27NmSpOLiYqWkpEiSHn300VrfKwAAQGvT0LUkAAAA8FPUoAAAAC1bYWGh9h7I01mfmn8hvjG1+/64S/YxGo01jo0bN06vv/56nfd8/vnnVVJSoq+++kpLliypR3bXLqcbJfz8/HT48GGdOnVKXbt2veLc3Nxc2Ww2hYaG1ilGcnKysrOzlZWVpejoaEVHR8tisSg3N1f+/v5KS0tzNv3LbNy4USdPnlSXLl0UFxd3xbkGg0ErVqxQXFycFi5cqI8++ki9evWSyWTSiRMndNtttzXLziAAAIDmojFqSQAAAODHqEEBAABavrM+fioa+KumTkOSFPift122V0REhH77299edj04ONip/Sr/PXz79u2ttlHCzdmFlSc0/PnPf77q3D/84Q8yGAy67bbb6hTDx8dHmzdv1hNPPCFJ2rBhg4qLi5WQkKDs7GwFBATUPfEavP32pW/U8ePHq23btledHxkZqezsbN133306ePCgNm7cqI4dO2rOnDl677331KaN0z0oAAAALV5j1JIAAADAj1GDAgAA4FrVo0cPTZw48bKvmJiYpk7tmuV0o8RTTz0ld3d3vfTSS1qyZIlKSkoum7N//35NmDBBmzZtUtu2bfXYY4/VOY6Pj4/mzZunvXv36sSJE/ryyy+1dOlS+fld+ciU5ORkWa1WWa3Wqz52Q5Lee+89Wa1WLVy4sNa5hYSE6LXXXlNeXp6OHz+u//znP/rd735X6+P7AAAAWqvGqiUBAACAStSgAAAAaMmOHj2qOXPmKDY2VsHBwfL399eQIUP02muv1Xtvk8mksWPHKiQkRD169NDPfvYzPfnkk9XW1Pv27VN8fLz69OkjPz8/3Xrrrfrggw/qnYOrOX3swfXXX6+XX35Zv/3tbzV//nwtWrRIFy9elCTdfvvtOnLkiE6dOiW73S43Nze99NJL6tOnj8sSBwAAwLWLWhIAAACNjRoUAAAA16rz58/r9OnTl13v1KmT3NwunY1gNpv19ttva+zYsZo8ebI8PDy0bds2Pf300zp58qRmz57tVOyvv/5a999/v3r16qXp06fLx8dH33zzjdavX6/vvvtOvr6+jrn//Oc/dd9996lr16568skn5evrq48++kgJCQn685//rIkTJzr3BjQAg9VqtddnA5PJpDlz5mjPnj3Vjvfv31/z5s3TrbfeWp8wAAAAaIGoJQEAANDYqEEBAAAaz6FDhyRJPXv2bPBYc+bM0X+OfK+igb9q8Fi1EfiftzUwwEfz58+v1z5Go7HGMbPZrMDAQEnSd999Jw8PD3l5eVWZc/fdd8tsNquwsNDRVFFp+/btGjNmjJYvX674+PhqY/zpT3/S7NmzlZ2drZ/97GeO63a7XRcvXpS7u7vj9aBBg1RWViaTyVQl73Hjxik3N1dms1kGg6EOd++8q33vOX2iRKXY2FhlZ2frq6++0s6dO3Xy5EnZ7XZ169ZNN998s8LCwuobAgAAAC0UtSQAAAAaGzUoAAAArjU33nijUlJSLrvetWtXx3936tTJ8d9nz56VzWaT3W5XZGSk/vnPf+rUqVPq3r17nWP7+PhIkj755BNFRUU5mi0MBoOjSUKS9uzZo6+//lqPPvqoLly4UOUEjJiYGG3btk15eXkKDQ2tcw4Nod6NEpWuv/56XX/99a7aDgAAAK0ItSQAAAAaW0PUoKWlpUpLS9MHH3ygY8eOqUuXLrrrrrs0Z84cdevWzaWxKm3cuFGTJ0+WJKWkpGj69OkNEgcAAABNp3Pnzrr99tuvOOeHH37QSy+9pPT0dH3zzTeXjVdUVDgV+7777tO6deuUkpKipUuXKjo6WrfccoseeOABx2kWklRQUCDp0gkUf/rTn6rd6+TJky2vUQIAAAAAAAAAWqvS0lKNGDFCZrNZwcHBuvvuu2WxWLR69Wpt2bJFW7dulb+/v0tjFhcX6+mnn3bpngAAALg2zZkzR3/+8591zz336JlnnlHXrl3l5uam9PR0vffee7Lb7U7t6+npqczMTP373//W9u3btX37ds2fP19Lly5VVlbWZY0Pjz/+uO68885q9woPD3cqh4ZQr0aJr776Sps3b9ZXX32lU6dO6ezZs/rhhx9qfJMNBoM+/PDD+oQEAABAC0EtCQAAgMbWkDVoamqqzGazhg0bpoyMDHl4eMhutysxMVEZGRmaNWuW1qxZ48rbUUpKimw2m4YPH66srCyX7g0AAIBrS0ZGhmJiYi6rOdeuXVvjGg8PD0nShQsXrri3wWDQLbfcoltuuUUzZsxQdna27r33Xr311lt6/vnnJUnXXXedJKlt27ZXPf2iOXC6UeIvf/mLZs+eLbvdXuvuE4PB4Gw4AAAAtCDUkgAAAGhsDVmDVlRUaPXq1ZKktLQ0xwfOBoNBCxcu1Pr165WZmanDhw8rKCjIqfx/aseOHXrzzTe1aNEiffHFFy7ZEwAAANcud3d3tWlT9Z//v/32W23YsKHGNZW16ddff13jnNOnT6tLly5VrlU2RZw7d85xLSoqSiEhIXrzzTf16KOPqkePHlXWFBQUONY1B043Svzxj3+U3W5XXFycRo0apW7dusnDw0Pu7u6uzA8AAAAtELUkAAAAGltD1qA5OTmy2WwKCwtT3759q4wZjUbFxsYqKytLWVlZSkhIqHe8iooKPfXUU+rfv79+85vf6Iknnqj3ngAAAC1Bu++PK/A/bzd1GpIu5SL5NFq8sWPH6o033tCjjz6qmJgYHTp0SK+//rp69+4ti8VS7ZrAwEDFxMTo9ddfV+fOnRUQEKBOnTrprrvucsxZvHixPv74Y40cOVJ9+vTR999/rzVr1qhNmzYaP368Y56bm5teffVV3XfffYqNjVVCQoJ69eqloqIibd++XUVFRdq7d2+Dvw+15XSjRHl5uTw9PfX222/z230AAACoE2pJAAAANLaGrEHNZrMkKSIiotrxyMhIZWVl1fgBdV2lpqaqoKBAH330Ec3GAAAA/6dPnz5NncJP+DRqTvPnz5eXl5fWr1+v//3f/1VISIjmz5+vw4cPX7EOXbVqlf7nf/5HL730kkpKShQZGVmlUeLuu+/WkSNH9Ne//lUnT56U0WjUz372M7366qu6+eabq+z1i1/8Qlu3btUf//hHvfXWWyouLlb37t0VFRWladOmNdi9O8PpRomJEyfqtdde044dOzRkyBBX5gQAAIAWjloSAAAAja0ha9AjR45IkuN44fXr12vp0qWaMmWKpk6d6rheVFRU71h79uzR8uXLNWXKFA0cOLDe+0lSenr6FZ9d/WOpqamKiopSWVmZS+4HAABcuwIDA9WhQ4emTsPh4YcfbuoUGoTVaq3VvA4dOmjevHmaN2/eZWO/+93valwXGBiod955p8bxW2+9VbfeemutcpAuNQ+/8cYbtZ7fVJxulFi4cKG++eYbjR07VgEBAfLz85Onp6fc3NxqXGMwGPThhx86GxIAAAAtBLUkAAAAGltD1qA2m02S1L59e0lSWlqaLBaL8vLyNHXqVHl5eVWZ56wffvhBTz75pHx9fZWSklKvvX7s4MGDMplMtZpbUlLisrgAAABAU3G6UWLJkiXaunWrpEud0LXpHuZYZQAAAEjUkgAAAGh8DVmD2u32Kq8nTJigxYsXKz4+vsp4fWvaV199VXv37tUrr7yizp0712uvHwsODlZsbGyt5vr6+kq69BuLoaGhLssBAAAAaExON0qsXLlSBoNBd955p+655x5169ZN7dq145l4AAAAuCpqSQAAADS2hqxBvb29JUnl5eWSpKSkJCUlJTnGy8rKJKleR1Pn5+dr0aJFGjhwoH796187n2w14uPjHU0dAAAAQGvgdKNEmzZt5OnpqXXr1l3xeDoAAADgp6glAQAA0NgasgYNCAiQJB07dqza8crrgYGBTsfYvHmzKioqVFpaqvvvv7/KmMVikSSlp6drx44dGjRokGbNmuV0LAAAAKClc/ongt/97neqqKjQZ5995sp8AAAA0ApQSwIAAKCxNWQNGhERIUkym83Vju/fv1+SFB4eXu9YX375pbKysqp8HT16VJKUl5enrKws7dmzp95xAAAAgJbMYLVa7VefdrnRo0fLbDaruLhYAQEB8vPzk6en5xW7sQ0Ggz788EOnkwUAAEDLQC0JAACAxtaQNWhFRYVCQkJks9m0a9cuhYSEOMasVqvCwsJ09uxZ7du3T0FBQS65nx9LTEzUunXrlJKSounTp7t8fwAAAGcdOnRIktSzZ88mzgStzdW+95x+9IbJZHL8d1FRkYqKiq66xmAwOBsOAAAALQi1JAAAABpbQ9agnp6eSkhI0IoVKzRz5kytW7dOHh4estvtSk5OVkVFhUaPHl1jk0RqaqoWLVokScrMzNSQIUNqFRcAAACAc5xulMjMzHRlHgAAAGhFqCUBAADQ2Bq6Bk1OTlZ2draysrIUHR2t6OhoWSwW5ebmyt/fX2lpaQ0aHwAAAEDtOd0oMXjwYJcl8ac//UmPPvqoy/YDAABA80YtCQAAgMbW0DWoj4+PNm/erEWLFunDDz/Uhg0b1KVLFyUkJOiZZ56Rn5+fy+IDAAAAqB+D1Wq1N3US/v7+Onr0aFOnAQAAgGsQtSQAAAAaGzUoAABA7Rw6dEiS1LNnzybOBK3N1b733BozmZrY7U3eqwEAAIBrFLUkAAAAGhs1KAAAAHBtaxaNEgaDoalTAAAAwDWKWhIAAACNjRoUAAAAuLa1aeoEAAAAAAAAAAAAAACoj1WrVqmwsLCp06iiT58+evjhh5s6DVSDRgkAAAAAAAAAAAAAwDWtsLBQhV+aFezRLB6qoIPnLtZrfWJiotatW3fVecuXL1d8fHy9YrVGNEoAAAAAAAAAAAAAAK55wR5umuPfrqnTkCTNP3q2XuunTp2q22+/3fF68+bN+tvf/qann35a119/veP6LbfcUq84rRWNEgAAAAAAAAAAAAAANCODBg3SoEGDHK+PHDmiv/3tb7r99ts1ZMiQJsysZWge544AAAAAAAAAAAAAAACnGY1GJSYmau/evbr33nsVFBSkXr166Z577nHMSU1NldFo1LfffltlbWJiooxG42V7fvPNN3rkkUcUGhqq7t2765ZbbtFrr73W0LfS4GiUAAAAQItVWlqq5557TgMGDJCfn5/Cw8OVlJSkkydPNljMjRs3ymg0ymg06qWXXqpxXmFhoaZNm6bQ0FD5+flp0KBBWrJkic6fP99guQEAAAAAAABo2Y4ePaoxY8bI399fv//97/Xb3/5WR48edWqvvLw8DR06VFlZWXrwwQe1aNEiRUVF6emnn9bixYtdnHnj4tEbAAAAaJFKS0s1YsQImc1mBQcH6+6775bFYtHq1au1ZcsWbd26Vf7+/i6NWVxcrKeffvqq8ywWi0b+/+3deVTVdf7H8ddlE2QRRAQEccMldxMrRSu1XFJzSsttimyqn7barlnZKorTYpPWNC2Ok2jZYrkvKGq4TGq5QJgCiqC4XxAQZLm/PzyXiQAF7oWL3OfjHM6R7/f7+X7elzMDr3t7fz+fIUOUlZWlHj16qEWLFoqLi9Obb76puLg4LV26VI6OjlatDQAAAAAAAED9Fxsbq48//lhjx44tOfbUU09V617PP/+8CgsLtXXrVrVs2VKSNHHiRLm7u+vdd9/Vww8/XO4qFNcCVpQAAABAvRQZGan4+HgNGDBAu3bt0hdffKEdO3Zo7NixSk9P14svvmj1OWfMmKGcnBwNHDjwitc9+uijysrK0tSpU7Vp0yYtWLBAu3btUseOHbVx48Z6sXQdAAAAAAAAgNrXqlUrjRkzptQxJ6eqr59w7tw5xcbG6pZbbpGnp6fOnj1b8nXjjTfq4sWL2r17t7XKrnU0SgAAAKDeycvL04IFCyRJUVFRcnFxkSQZDAbNmjVLrq6uWr58udLS0qw2508//aR///vfevnll9W0adMKr9u+fbt+/fVXBQcH6/nnny853qhRI73++uuSpI8++shqdQEAAAAAAACwH+3bt5fBYLD4PsnJyTKZTFqxYoXatGlT6mvy5MmSVKNbHNc0tt4AAABAvbN9+3bl5OSoQ4cOCg0NLXXO29tb4eHhiomJUUxMjCIiIiyeLy8vT0899ZS6dOmiv/3tb3r88ccrvHbDhg2SpCFDhpTZXmPAgAFyd3dXSkqKkpKS1KZNG4trAwAAAAAAAGA/fHx8qjWuqKio3OP33nuvxo8fX+65Dh06VGuuuqBONEqYTCZblwAAAIBrVHlZMj4+XpLUqVOncsd07txZMTExSkhIsEoNkZGRSk5O1rp168o0P1SlNkdHR3Xo0EG7d+9WQkICjRIAAAB1FJ9nAgAA4FplXn03Nze31PETJ06U+r5Vq1YyGAwqLCzUrbfeWlvl1Zo60SiRkZFh6xIAAABwjSovSx4/flySFBAQIElatmyZ5s6dq/vvv18TJ04sOZ6enm7x/Hv37tW8efN0//33q1evXle9/s+1vfnmm9qyZYveeust3XjjjdWubdGiRYqOjq7UtZGRkeratatyc3Ot8jMAAADXrqCgIDVs2NDWZVxz+DwTAAAA16qgoCBJ0u7du3XddddJklJTU7Vjx45S1/n6+urmm2/W8uXLFR8fX+bBr5SUFLVq1ap2iq4BdaJRAgAAALCmnJwcSZKbm5skKSoqSgkJCTp8+LAmTpwod3f3UtdVV2FhoZ544gl5eXlpxowZVaqtYcOGOnfunN555x1J0nvvvaclS5ZUu7bU1FTFxcVV6tqsrKwq3RsAAAAAAAC4FqReKtbbJ/JtXYaky7XUxTaCgQMHqmHDhpo+fbrS09Pl6OiohQsXqk2bNkpMTCx17d///ncNHjxYgwYN0v3336/27dvr9OnT2rlzp2JiYnT+/HkbvQrLVbtRYvbs2XJ3d7/i/st/tHDhQp04cUIvvvhidacEAABAPVHTWfLPSyHfe++9mjNnjiZMmFDqvMFgqELVZf3jH//Qvn379MEHH6hx48ZVrs3Hx0dDhw5VXFyc7rnnHotqCwkJUXh4eKWu9fLyknS5WaNt27ZVmgcAAOBaxeeZAAAA9VtdW92glepeTZLk5+enJUuW6KWXXtL777+vli1b6u2339aqVavKNEq0bdtWsbGxioqK0g8//KDTp0/L19dXHTt21N///ncbvQLrMBiNxmptqOfj4yN/f/8yP6yK9O/fX3v37tW5c+eqMx0AAADqkZrOki+99JLmz5+vxx57TG+//XaZ8x999JGmTZum4cOH68svv6xS7WZJSUkKDw9Xly5dtG7dulKNDZMnT9bixYs1Y8YMPf3006XG3Xzzzdq3b58WL16soUOHlrnvhAkTtHLlSs2aNUuTJk2qVm0AAAAoi88zAQAAat+xY8ckSc2bN7dxJbA3V/vfHltvAAAAoN5p1qyZpIr3jjYfN+/HVx1r165VXl6esrOzNXr06FLnEhISJEmLFi3STz/9pBtuuKHkScRmzZpp3759NVobAAAAAAAAAKBitdYoce7cOTk7O9fWdAAAAKhHqpolO3XqJEmKj48v9/yBAwckSR07drS4tt9++02//fZbuecOHz6sw4cPq0GDBqVqW7NmTbm1FRUVlTzhaI3aAAAAUH18ngkAAADUXw61McnPP/+sY8eOKSAgoDamAwAAQD1SnSzZu3dvubu7KzExUUlJSaXOGY1GxcXFyWAwaODAgdWu69FHH5XRaCz3a9y4cZKkGTNmyGg0Kjo6umScec41a9aoqKio1D03btyonJwctWzZUm3atKl2bQAAALAMn2cCAAAA9VulV5RYuXKlVq1aVepYVlaWHnvssQrHFBUV6cSJE9q+fbskWfRBNAAAAK5dtZ0lXV1dFRERofnz5+uFF17Q4sWL5eLiIpPJpGnTpikvL0/Dhw9XcHBwueMjIyM1e/ZsSdLy5cvVr1+/Ss99Nb1791bXrl21b98+zZkzR1OnTpUkZWZmasaMGZKkSZMmWW0+AAAAe8XnmQAAAAAqUulGif3795d6Ek6SLl68WOZYRTp16qTp06dXrTpJ2dnZioqK0g8//KCMjAz5+vpq0KBBmj59uvz8/Kp8v4pkZmbqH//4h1auXKnU1FQ5ODgoKChI4eHhev311+Xh4VHqem9v7yveb8+ePWrdurXV6gMAALiW2SJLTps2TbGxsYqJiVFYWJjCwsKUkJCgxMREBQYGKioqqkr3sxaDwaD58+dr6NChmjVrltatW6cWLVooLi5Op06d0i233KKHHnrIJrUBAADUJ7b6PBMAAABA3VfpRom+ffuW+n727Nny8PC4Yge2g4ODvLy81LlzZ4WHh8tgMFSpuOzsbA0ePFjx8fEKCQnRHXfcoYSEBC1YsEDr16/Xhg0bFBgYWKV7liclJUUjRoxQWlqamjZtqv79+0uSkpOT9dlnn+mZZ54p0yhhZl5W+c88PT0trgsAAKC+sEWW9PT01Nq1azV79mz9+OOPWrFihXx9fRUREaGXXnpJ/v7+1Xot1tC5c2fFxsZq5syZ2rx5c0neffjhh/XUU0/JyanSMR0AAAAVsEUGBQAAAGB7JpPpqtcYjEbj1a8qh4+Pj/z9/ZWYmFid4ZUyffp0zZs3TwMGDNCSJUtKlkuePHmylixZojvvvFMLFy60aI6ioiLdfPPNio+P12OPPabXXntNzs7OJecTExMVEhKihg0blhpnXlHCaDRaND8AAIA9qo0sCQAAAPwRGRQAAKD2HTt2TJIUFBQkBwcHG1cDe1FcXKz09HQZDIYKt1+us/9rzMvL04IFCyRJUVFRcnFxkXR5qeJZs2bJ1dVVy5cvV1pamkXzfPfdd4qPj1f//v319ttvl2qSkKQOHTqUaZIAAAAAAAAAAAAAAFyZ+b+95ufn27gS2JNLly5JkhwdHSu8ps42Smzfvl05OTnq0KGDQkNDS53z9vZWeHi4TCaTYmJiLJrn22+/lSRNmjTJovsAAAAAAAAAAAAAAP7H/ED6+fPnlZubq+Li4kptiwBUh8lkUmFhoTIzMyVJbm5uFV5b7c2Pz58/X92hlRIfHy9J6tSpU7nnO3furJiYGCUkJFg0z549eyRJffr00eHDh/XNN98oIyNDfn5+GjRokHr16nXF8R9++KGSk5Pl6Oio9u3ba8SIETbd7xoAAOBaUNNZEgAAAPgzMigAAEDt8/DwUF5envLz83X27FlblwM74ujoKC8vrwrPV7tRoqYdP35ckhQQECBJWrZsmebOnav7779fEydOLDmenp5e7TlycnJ06tQpNW7cWKtWrdLjjz+ugoKCkvNz5szRuHHj9OGHH1a4LMfLL79c5vu33npLDz30UJVqWbRokaKjoyt1bWRkpLp27arc3FyLXj8AALj2BQUFsU0YAAAAAAAAgDrJwcFBTZo0UXZ2tnJzc1VYWMiKEqhRBoNBrq6u8vLykoNDxRts1NlGiZycHEn/Ww4jKipKCQkJOnz4sCZOnCh3d/dS11XHhQsXJF3eo2TKlCkaNWqUnnvuOfn5+Wnbtm2aMmWKFi9erHbt2unpp58uNXb8+PEaM2aM2rdvL09PTyUnJ+vTTz/VwoULS+4xcuTISteSmpqquLi4Sl2blZVV+RcJAAAAAAAAAAAAADbi4OAgLy+vKz7dD9S2Otso8edOonvvvVdz5szRhAkTSp03GAzVnqO4uFiSlJ2drV69eunjjz8uOTd06FAVFxdrwoQJmj9/vqZMmVJqrvnz55e6V5cuXTR37lwFBQVp5syZeuONN6rUKBESEqLw8PBKXWv+JdKwYUO1bdu20nMAAAAAAAAAAAAAAGDvqt0oce7cOW3evFmurq4aOnRoqXO//vqrZsyYoV9//VVOTk4aOHCgXnvtNTVr1qzS9/fw8JAkXbx4UZI0ZcoUTZkypeR8bm6uJFm01PQfx44bN67M+TvuuEMuLi46ffq0kpOT1aZNm6vec/LkyYqKilJSUpKOHj2qFi1aVKqWCRMmlDSBAAAA1Hc1nSUBAACAPyODAgAAADCreFOOq4iOjtbf/vY3xcbGljp+5MgR3Xnnndq6dauysrJ07tw5ffPNNxo6dKgyMzMrfX/zm5CMjIxyz5uPBwUFVe8FSGrUqFFJs0Tz5s3LnDcYDPL395cknTlzplL39PT0lK+vryTp5MmT1a4NAACgPqvpLAkAAAD8GRkUAAAAgFm1GyXWr18vSRo7dmyp45988okuXLig0NBQrVmzRt99953atGmjY8eOad68eZW+f6dOnSRJ8fHx5Z4/cOCAJKljx47VKV/S5UaI0NBQSZLRaCz3GvObIVdX10rds6CgQGfPnpVk2WoXAAAA9VlNZ0kAAADgz8igAAAAAMyq3SiRnJwsZ2dndevWrdTxdevWyWAw6N1339WNN96o/v37a/78+TKZTFq1alWl79+7d2+5u7srMTFRSUlJpc4ZjUbFxcXJYDBo4MCB1X0JkqRbb71VkhQXF1fmXFJSkrKysuTk5KS2bdtW6n4bN25UYWGhPDw81K5dO4tqAwAAqK9qOksCAAAAf0YGBQAAAGBW7UaJU6dOycPDQw4O/7tFZmamkpOT5efnp759+5Yc79Wrl1xcXHTkyJFK39/V1VURERGSpBdeeEGXLl2SJJlMJk2bNk15eXkaNmyYgoODyx0fGRkpb29veXt7a+vWrRXOExERIScnJ0VHR5dadu/ixYt66aWXJEkjRowotTrE4sWL9dtvv5W516+//qrnnntOkvTggw/KxcWl0q8XAADAntR0lgQAAAD+jAwKAAAAwMypugNdXV2VmZmpwsJCOTldvs1///tfmUwm3XjjjWWud3NzK2l2qKxp06YpNjZWMTExCgsLU1hYmBISEpSYmKjAwEBFRUVVt/wSbdq00YwZM/TKK6/o7rvvVq9eveTn56dffvlF6enpCg4O1syZM0uNWb58uSZPnqxWrVqpY8eOatCggVJSUrR3714VFxfrtttu08svv2xxbQAAAPVVbWRJAAAA4I/IoAAAAADMqr2iRMeOHVVcXKxvv/225NiSJUtkMBh00003lbo2MzNTWVlZCggIqNIcnp6eWrt2rR5//HFJ0ooVK5SZmamIiAjFxsaqWbNm1S2/lCeeeEJfffWV+vXrp4MHD2rt2rVycnLSI488ok2bNikwMLDU9WPGjNGIESMkXd6y48cff1RKSorCw8M1b948ff3116wmAQAAcAW1kSUBAACAPyKDAgAAADAzGI1GU3UGLliwQE8//bRcXFw0YMAAnT9/Xjt37pSLi4t+/fXXUs0FK1eu1F//+lcNGjRIX331ldWKBwAAwLWJLAkAAIDaRgYFAAAAYFbtFSUiIiJ011136dKlS1qzZo127twpR0dHvfHGG2VWYPj6668lSf3797esWgAAANQLZEkAAADUNjIoAAAAALNqryhhtn37du3atUtubm7q16+f2rdvX+p8QUGB3njjDRUWFuqxxx5TcHCwRQUDAACg/iBLAgAAoLaRQQEAAABY3CgBAAAAAAAAAAAAAABwraj21hsAAAAAAAAAAAAAAADXGholAAAAAAAAAAAAAACA3XCyxk3++9//6qefftLx48eVl5enDz/8sORcTk6OTp8+LUlq2bKlNaYDAABAPUKWBAAAQG0jgwIAAAD2zWA0Gk3VHXz06FE98sgj+vnnnyVJJpNJBoNB586dK7nm1KlT6tGjh/Ly8rRx40Z169bN8qoBAABwzSNLAgAAoLaRQQEAAABIFmy9ce7cOQ0fPlz//e9/1aZNGz3wwANyd3cvc13Tpk01YcIEFRcXa9myZZbUCgAAgHqCLAkAAIDaRgYFAAAAYFbtRon3339faWlpGjlypLZv365333233DcWkjR27FhJ0vbt26s7HQAAAOoRsiQAAABqGxkUAAAAgFm1GyVWr14tg8Gg119/XU5OTle8tnv37nJ2dlZaWlp1pwMAAEA9QpYEAABAbSODAgAAADCrdqPEsWPH5O7urhYtWlx9EgcHeXh46PTp09WdDgAAAPUIWRIAAAC1jQwKAAAAwKzajRKurq7Ky8tTUVHRVa/Nzc1VVlaWvLy8qjsdAAAA6hGyJAAAAGobGRQAAACAWbUbJa677joVFRVVap++7777TkVFRerSpUt1pwMAAEA9QpYEAABAbSODAgAAADCrdqPE6NGjZTKZNG3aNJ07d67C63bu3Knp06fLYDBo9OjR1Z0OAAAA9QhZEgAAALWNDAoAAADAzGA0Gk3VGVhUVKTBgwdr9+7datasmUaNGqUFCxYoOztbixcvVnp6ujZu3Kg1a9aoqKhIN9xwg1avXi0Hh2r3ZgAAAKCeIEsCAACgtpFBAQAAAJhVu1FCks6fP6+JEydq8+bNMhgMZc6bTJdv3a9fPy1YsECNGzeufqUAAACoV8iSAAAAqG1kUAAAAACShY0SZmvXrtVXX32lXbt26fTp05KkJk2aqGfPnrrnnnt0xx13lPvGAwAAACBLAgAAoLaRQQEAAAD7ZpVGCQAAAAAAAAAAAAAAgGsBG+wBAAAAAAAAAAAAAAC7QaMEAAAAAAAAAAAAAACwG9VulPDx8dF1111X6ev79+8vX1/f6k4HAACAeoQsCQAAgNpGBgUAAABgZtGKEiaTqUavBwAAQP1FlgQAAEBtI4MCAAAAkGpx642CgoLamgoAAAD1DFkSAAAAtY0MCgAAANRftdIokZ+fr9TUVHl4eNTGdAAAAKhHyJIAAACobWRQAAAAoH5zquyFWVlZyszMLHWsqKhIaWlpFS5BV1RUpBMnTujjjz/WhQsXdNNNN1lWLQAAAK5JZEkAAADUNjIoAAAAgIpUulFi/vz5ioqKKnXs7Nmz6tq161XHmt94TJo0qYrlAQAAoD4gSwIAAKC2kUEBAAAAVKTSjRImk6lMp3VFnddmBoNBXl5e6ty5sx5++GGNHDmyelUCAADgmkaWBAAAQG0jgwIAAACoiMFoNF753UEFfHx85O/vr8TERGvXBAAAgHqOLAkAAIDaRgYFAAAAYOZg6wIAAAAAAAAAAAAAAABqC40SAAAAAAAAAGAF2dnZevXVV9WtWzf5+/urY8eOmjJlik6fPm2V+2/evFmTJ0/WLbfcorZt28rPz0+tW7fW6NGjtWrVKqvMAQAAANgDp+oOfPHFF+Xu7m7NWgAAAGAnyJIAAACobTWdQbOzszV48GDFx8crJCREd9xxhxISErRgwQKtX79eGzZsUGBgoEVzrFixQosXL1arVq3UqVMn+fr66sSJE9q0aZM2bNigRx99VDNnzrTSKwIAAADqL4PRaDTZuggAAACgJmRnZysqKko//PCDMjIy5Ovrq0GDBmn69Ony8/Oz+P6bN2/WkiVLlJCQoOPHj8toNMrT01PXX3+9HnzwQd1xxx3ljvP29r7ifffs2aPWrVtbXB8AAABqz/Tp0zVv3jwNGDBAS5YskYuLi0wmkyZPnqwlS5bozjvv1MKFCy2a45dffpGPj49atmxZ6vj+/fs1bNgwZWVlafXq1erdu7dF8wAAAAD1HY0SAAAAqJf+/ERfz549lZCQoIMHDyooKMgqT/Q9//zz+te//qVWrVqpRYsWJU/07dy5U0VFRRU+0WdulBg3bly5933jjTes0sgBAACA2pGXl6c2bdooJydHu3btUmhoaMk5o9GoDh06KD8/X/v371dwcHCN1PDUU0/p3//+t5599lm98sorNTIHAAAAUF9Ue+sNAAAAoC6LjIxUfHx8hU/0vfjiixY/0Td+/Hg99thjFT7RN3/+fI0YMaLCJ/o++ugji+YHAABA3bB9+3bl5OSoQ4cOpZokpMtNsuHh4YqJiVFMTIwiIiJqpAaDwSBJKioqqpH7AwAAAPWJg60LAAAAAKwtLy9PCxYskCRFRUXJxcVF0uUPj2fNmiVXV1ctX75caWlpFs3To0ePMk0SktSlSxfdddddkqQNGzZYNAcAAADqvvj4eElSp06dyj3fuXNnSVJCQkKNzL9nzx599913kqSbb765RuYAAAAA6hNWlAAAAEC9wxN9AAAAqE3Hjx+XJAUEBEiSli1bprlz5+r+++/XxIkTS46np6dbZb79+/dr/vz5KigoUGpqqn7++WeZTCY9+eSTGjBgQJXvt2jRIkVHR1fq2sjISHXt2lW5ublWez0AAODaFBQUpIYNG9q6DKBaaJQAAABAvVOZJ/piYmJs/kTfhx9+qOTkZDk6Oqp9+/YaMWKE/P39a6QmAAAA1JycnBxJkpubm6TLq5olJCTo8OHDmjhxotzd3UtdZ6n09HQtXry45PsGDRpozpw5uv/++6t1v9TUVMXFxVXq2qysrGrNAQAAANQlNEoAAACg3rlWnuh7+eWXy3z/1ltv6aGHHrJKXQAAAKgdJpOp1Pf33nuv5syZowkTJpQ6b151zFJDhgyR0WhUfn6+kpKS9Mknn+jJJ59UbGysPv7445Kt5yorJCRE4eHhlbrWy8tLktSwYUO1bdu2yrUDAAAAdQGNEgAAAKh36voTfePHj9eYMWPUvn17eXp6Kjk5WZ9++qkWLlyo5557Tn5+fho5cmSVamC5ZAAAUB0sl2wdHh4ekqSLFy9KkqZMmaIpU6aUnM/NzZUkq/+sGzRooI4dO+r999+Xg4ODPv/8c3Xq1EnPPvtsle4zYcKEkqYOAAAAwB7QKAEAAIB6p64/0Td//vxS33fp0kVz585VUFCQZs6cqTfeeKPKjRIslwwAAGA7zZo1kyRlZGSUe958PCgoqMZqGD9+vD7//HNFR0dXuVECAAAAsDd1vlEiOztbUVFR+uGHH5SRkSFfX18NGjRI06dPl5+fn9XmyczM1D/+8Q+tXLlSqampcnBwUFBQkMLDw/X666+XdIX/UUpKimbOnKnY2FhlZWWpRYsWGjNmjJ588kk5OztbrTYAAABUzbX6RN/kyZMVFRWlpKQkHT16VC1atKj03CyXDAAAYDudOnWSJMXHx5d7/sCBA5Kkjh071lgN5oyXlpZWY3MAAAAA9UWdbpTIzs7W4MGDFR8fr5CQEN1xxx1KSEjQggULtH79em3YsEGBgYEWz5OSkqIRI0YoLS1NTZs2Vf/+/SVJycnJ+uyzz/TMM8+UaZRISEjQkCFDlJWVpR49eqhFixaKi4vTm2++qbi4OC1dulSOjo4W1wYAAICqu1af6PP09JSvr69OnjypkydPVqlRguWSAQAAbKd3795yd3dXYmKikpKS1KZNm5JzRqNRcXFxMhgMGjhwYI3VsGPHDklSQEBAjc0BAAAA1BcOti7gSiIjIxUfH68BAwZo165d+uKLL7Rjxw6NHTtW6enpevHFFy2eo6ioSH/961+Vlpamxx57TPHx8fryyy/15Zdfatu2bdqxY4d8fHzKjHv00UeVlZWlqVOnatOmTVqwYIF27dqljh07auPGjfrss88srg0AAADVc60+0VdQUKCzZ89Ksv5qFwAAAKg5rq6uioiIkCS98MILunTpkqTLW75NmzZNeXl5GjZsmIKDg8sdHxkZKW9vb3l7e2vr1q3lXpOdna033nij3Hy5a9cuvf7665Kk0aNHW+MlAQAAAPWawWg0mq5+We3Ly8tTmzZtlJOTo127dik0NLTknNFoVIcOHZSfn6/9+/dX+AajMpYuXaqHH35Y/fv31/fff1+pMdu3b9fQoUMVHBysvXv3llo5Yv369brnnnvUqlUr/fLLL9WuCwAAANX3xyy5e/fuMk/0WStLXsnChQv15JNPqkWLFtq7d2+lxqxdu1ZjxoyRh4eHkpOT5eLiUiO1AQAAwPouXLigwYMHKyEhQSEhIQoLC1NCQoISExMVGBiomJiYkpXP/iwyMlKzZ8+WJC1fvlz9+vUrc43RaFTLli1lMBh03XXXKTQ0VA4ODkpJSSnJm+Hh4Vq6dClNtwAAAMBV1NkVJbZv366cnBx16NChVJOEJHl7eys8PFwmk0kxMTEWzfPtt99KkiZNmlTpMRs2bJAkDRkypMz2GgMGDJC7u7tSUlKUlJRkUW0AAAConrr8RN/ixYv122+/lRnz66+/6rnnnpMkPfjggzRJAAAAXGM8PT21du1aPf7445KkFStWKDMzUxEREYqNja2wSaKyPDw8NGvWLN15553Kz8/Xli1btHz5cqWmpqpv376aO3eufvzxR5okAAAAgEpwsnUBFTEvk2xeNvnPOnfurJiYGCUkJFg0z549eyRJffr00eHDh/XNN98oIyNDfn5+GjRokHr16lWl2hwdHdWhQwft3r1bCQkJpZ5eBAAAQO2ZNm2aYmNjFRMTo7CwsDJP9EVFRVl0/8LCQr377rt67733rvhE37PPPltq3PLlyzV58mS1atVKHTt2VIMGDUrGFBcX67bbbtPLL79sUW0AAACwDU9PT7311lt66623qjRu2rRpmjZt2hWvun7Z2QAASQVJREFUcXJy0qRJk6r0wBcAAACA8tXZRonjx49LkgICAiRJy5Yt09y5c3X//fdr4sSJJcfT09OrPUdOTo5OnTqlxo0ba9WqVXr88cdVUFBQcn7OnDkaN26cPvzww1IrR/y5tjfffFNbtmzRW2+9pRtvvLFatS1atEjR0dGVujYyMlJdu3ZVbm6uRa8fAABc+4KCgnhirALmJ/pmz56tH3/8UStWrJCvr68iIiL00ksvyd/f36L7m5/o2759uw4cOKAtW7bowoUL8vLyUt++fXXPPffor3/9a5kVyMaMGSNHR0cdOHBAcXFxys7OloeHh8LDwzV27FiNGzdODg51duE3AAAAAAAAALjm1dlGiZycHEmSm5ubJCkqKkoJCQk6fPiwJk6cKHd391LXVceFCxckSZcuXdKUKVM0atQoPffcc/Lz89O2bds0ZcoULV68WO3atdPTTz9dpraGDRvq3LlzeueddyRJ7733npYsWVKt2lJTUxUXF1epa7Oysip9XwAAAHtWF5/oGzlypEaOHFmlMQAAAAAAAAAA66mzjRImk6nU9/fee6/mzJmjCRMmlDpvMBiqPUdxcbGky/tL9+rVSx9//HHJuaFDh6q4uFgTJkzQ/PnzNWXKlJK5/libj4+Phg4dqri4ON1zzz3Vri0kJETh4eGVutbLy0vS5UaNtm3bVnoOAAAAAAAAAAAAAADsXZ1tlPDw8JAkXbx4UZI0ZcoUTZkypeR8bm6uJFm01PQfx44bN67M+TvuuEMuLi46ffq0kpOT1aZNm1K15ebmymAwaPHixaXGVae2CRMmlDSBAAAAAAAAAAAAAACAmlFnNz9u1qyZJCkjI6Pc8+bjQUFB1Z6jUaNGJc0MzZs3L3PeYDCU7F195syZWq0NAAAAAAAAAAAAAABYX51tlOjUqZMkKT4+vtzzBw4ckCR17Nix2nMYDAaFhoZKkoxGY7nXZGZmSpJcXV0rVVtRUZESExMtrg0AAAAAAAAAAAAAAFhfnW2U6N27t9zd3ZWYmKikpKRS54xGo+Li4mQwGDRw4ECL5rn11lslSXFxcWXOJSUlKSsrS05OTmrbtm3JcfOca9asUVFRUakxGzduVE5Ojlq2bFmyVQcAAAAAAAAAAAAAAKgb6myjhKurqyIiIiRJL7zwgi5duiRJMplMmjZtmvLy8jRs2DAFBweXOz4yMlLe3t7y9vbW1q1bK5wnIiJCTk5Oio6OVmxsbMnxixcv6qWXXpIkjRgxomSLDulyE0fXrl2VlpamOXPmlBzPzMzUjBkzJEmTJk2q3gsHAAAAAAAAAAAAAAA1xmA0Gk22LqIiFy5c0ODBg5WQkKCQkBCFhYUpISFBiYmJCgwMVExMjJo1a1bu2MjISM2ePVuStHz5cvXr16/Cef7xj3/olVdekYODg3r16iU/Pz/98ssvSk9PV3BwsNavX6/AwMBSYw4cOKChQ4fqwoULuv7669WiRQvFxcXp1KlTuuWWW/Ttt9/KycnJej8MAAAAAAAAAAAAAABgsTq7ooQkeXp6au3atXr88cclSStWrFBmZqYiIiIUGxtbYZNEVT3xxBP66quv1K9fPx08eFBr166Vk5OTHnnkEW3atKlMk4Qkde7cWbGxsRo1apRSU1O1atUqNWrUSNOnT9fSpUtpkgAAAAAAAAAAAAAAoA6q0ytKAAAAAAAAAAAAAAAAWFOdXlECAAAAAAAAAAAAAADAmmiUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAAAAAAAAAAAAAdoNGCQAAAAAAAAAAAAAAYDdolAAAAAAAAAAAAAAAAHaDRgkAAAAAAAAAAAAAAGA3aJQAAAAAAAAAAAAAAAB2g0YJAAAAAAAAAAAAAABgN2iUAAAAQL2VnZ2tV199Vd26dZO/v786duyoKVOm6PTp01a5/+bNmzV58mTdcsstatu2rfz8/NS6dWuNHj1aq1atuuLYlJQUPfzww2rbtq38/f11ww036J133lFBQYFVagMAAAAAAAAAlM9gNBpNti4CAAAAsLbs7GwNHjxY8fHxCgkJUc+ePZWQkKCDBw8qKChIGzZsUGBgoEVzPP/88/rXv/6lVq1aqUWLFvL19dWJEye0c+dOFRUV6dFHH9XMmTPLjEtISNCQIUOUlZWlHj16qEWLFoqLi9Pp06c1YMAALV26VI6OjhbVBgAAAAAAAAAoH40SAAAAqJemT5+uefPmacCAAVqyZIlcXFxkMpk0efJkLVmyRHfeeacWLlxo0Ry//PKLfHx81LJly1LH9+/fr2HDhikrK0urV69W7969S52/9dZb9euvv2rq1KmaOnWqJCkzM1NDhw5VQkKCoqKi9Mgjj1hUGwAAAAAAAACgfHW+USI7O1tRUVH64YcflJGRIV9fXw0aNEjTp0+Xn5+fxfffunWrRowYUeH5Zs2aKSEhocxxb2/vK953z549at26taXlAQAAoBry8vLUpk0b5eTkaNeuXQoNDS05ZzQa1aFDB+Xn52v//v0KDg6ukRqeeuop/fvf/9azzz6rV155peT49u3bNXToUAUHB2vv3r2lVo5Yv3697rnnHrVq1Uq//PJLjdQFAAAAAAAAAPbOydYFXMmfl0u+4447lJCQoAULFmj9+vVWWS7ZrGnTpho4cGCZ4z4+PlccN27cuHKPe3p6WqUuAAAAVN327duVk5OjDh06lGqSkC43vIaHhysmJkYxMTGKiIiokRoMBoMkqaioqNTxDRs2SJKGDBlSZnuNAQMGyN3dXSkpKUpKSlKbNm1qpDYAAAAAAAAAsGd1ulEiMjJS8fHxFS6X/OKLL1q8XLJZ27Zt9dFHH1V5XHXGAAAAoGbFx8dLkjp16lTu+c6dOysmJqbclcOsYc+ePfruu+8kSTfffHOla3N0dFSHDh20e/duJSQk0CgBAAAAAAAAADWgzjZK5OXlacGCBZKkqKgoubi4SLr8ZN6sWbO0bNkyLV++XGlpaTW2XDIAAACuTcePH5ckBQQESJKWLVumuXPn6v7779fEiRNLjqenp1tlvv3792v+/PkqKChQamqqfv75Z5lMJj355JMaMGDAFWt78803tWXLFr311lu68cYbq13bokWLFB0dXalrIyMj1bVrV+Xm5lrtZwAAAK5NQUFBatiwoa3LAAAAAIBaVWcbJerCcskAAAC4NuXk5EiS3NzcJF1uvE1ISNDhw4c1ceJEubu7l7rOUunp6Vq8eHHJ9w0aNNCcOXN0//33V1hbw4YNde7cOb3zzjuSpPfee09Lliypdm2pqamKi4ur1LVZWVlVujcAAAAAAAAA1Cd1tlGitpdLPnPmjGbNmqUTJ07Iw8ND119/vYYNGyZXV9crjvvwww+VnJwsR0dHtW/fXiNGjJC/v79VagIAAED1mEymUt/fe++9mjNnjiZMmFDqvMFgsMp8Q4YMkdFoVH5+vpKSkvTJJ5/oySefVGxsrD7++OOS1dH+XJuPj4+GDh2quLg43XPPPRbVFhISovDw8Epd6+XlJelys0bbtm2rNA8AAAAAAAAAXOvqbKNEbS+XfPDgQc2aNavUscDAQH3++efq3bt3heNefvnlMt+/9dZbeuihh6xSFwAAAKrOw8NDknTx4kVJ0pQpUzRlypSS87m5uZJk9WWmGzRooI4dO+r999+Xg4ODPv/8c3Xq1EnPPvtsmdpyc3NlMBhKrURhSW0TJkwoaQQBAAAAAAAAAFSszjZK1NZyyV5eXnr66ac1cuRItWzZUpJ04MABRUZGKi4uTmPGjNGWLVtKzpmNHz9eY8aMUfv27eXp6ank5GR9+umnWrhwoZ577jn5+flp5MiRla6DPaUBAEB1sKd0+Zo1ayZJysjIKPe8+XhQUFCN1TB+/Hh9/vnnio6OLtUo0axZM+3bt8+mtQEAAAAAAACAPauzjRK1tVxyt27d1K1bt1LH+vbtq+XLl+vuu+9WbGys3n33XX3wwQelrpk/f36p77t06aK5c+cqKChIM2fO1BtvvFGlRgn2lAYAALAe8/Zt5u3c/uzAgQOSpI4dO9ZYDebtLdLS0srUtmbNmnJrKyoqUmJiYo3XBgAAAAAAAAD2rM42SthquWQzBwcHPfbYY4qNjdWmTZsqPW7y5MmKiopSUlKSjh49qhYtWlRqHHtKAwAAWE/v3r3l7u6uxMREJSUlqU2bNiXnjEaj4uLiZDAYNHDgwBqrYceOHZL+t5Wc2cCBA/XOO+9ozZo1mj17thwdHUvObdy4UTk5OWrZsmWpmgEAAAAAAAAA1lNnGyXqwnLJ5u02Tp48Wekxnp6e8vX11cmTJ3Xy5MlKN0qwpzQAAID1uLq6KiIiQvPnz9cLL7ygxYsXy8XFRSaTSdOmTVNeXp6GDx+u4ODgcsdHRkZq9uzZkqTly5erX79+Za7Jzs7Wu+++qwcffLDMfXbt2qXXX39dkjR69OhS53r37q2uXbtq3759mjNnjqZOnSpJyszM1IwZMyRJkyZNsuwHAAAAAAAAAACoUJ1tlKgLyyUfP35cUtVWrSgoKNDZs2erPA4AAADWNW3aNMXGxiomJkZhYWEKCwtTQkKCEhMTFRgYqKioKIvuX1hYqHfffVfvvfeerrvuOoWGhsrBwUEpKSnau3evJCk8PFzPPvtsqXEGg0Hz58/X0KFDNWvWLK1bt04tWrRQXFycTp06pVtuuUUPPfSQRbUBAAAAAAAAACrmYOsCKvLn5ZL/qLaWS96wYYMk6frrr6/0mI0bN6qwsFAeHh5q165dTZUGAACAq/D09NTatWv1+OOPS5JWrFihzMxMRUREKDY2tmQFs+ry8PDQrFmzdOeddyo/P19btmzR8uXLlZqaqr59+2ru3Ln68ccfy22e7dy5s2JjYzVq1CilpqZq1apVatSokaZPn66lS5fKyanO9jMDAAAAAAAAwDXPYDQaTbYuoiIvvfSS5s+fr4EDB5ZaLvnRRx/V4sWLNXz4cH355Zfljq3McsmS9OGHH+ree+9V06ZNSx3/9ttv9X//938qLCzU119/rUGDBpWcW7x4sbp3767rrruu1Jhff/1V9913n44dO6Ynn3xSb7zxhiUvHwAAAAAAAAAAAAAAWFmdflStppdLlqSoqCjNmDFDnTt3VuvWrVVQUKDExEQdPnxYkjR16tRSTRLS5caLyZMnq1WrVurYsaMaNGhQssRycXGxbrvtNr388ssW1wYAAAAAAAAAAAAAAKyrTjdKmJdLnj17tn788UetWLFCvr6+ioiI0EsvvSR/f3+L53j66acVGxurpKQkJScn6+LFi2rSpIlGjhyphx9+WH379i0zZsyYMXJ0dNSBAwcUFxen7OxseXh4KDw8XGPHjtW4cePk4FBndzUBAAAAAAAAAAAAAMBu1emtNwAAAAAAAADgWpGdna2oqCj98MMPysjIkK+vrwYNGqTp06fLz8/P4vsfPXpUP/74o9avX6+UlBSdPHlSnp6euv766/XII4/o9ttvt8KrAAAAAOo/GiUAAAAAAAAAwELZ2dkaPHiw4uPjFRISop49eyohIUEHDx5UUFCQNmzYoMDAQIvmGDZsmOLi4uTm5qaePXvK399fR48e1a5duyRJU6ZM0WuvvWaFVwMAAADUbzRKAAAAAAAAAICFpk+frnnz5mnAgAFasmSJXFxcZDKZNHnyZC1ZskR33nmnFi5caNEcjzzyiG666SaNGTNG7u7uJcfXrl2rcePGqbi4WN9//7369+9v6csBAAAA6jUaJQAAAAAAAADAAnl5eWrTpo1ycnK0a9cuhYaGlpwzGo3q0KGD8vPztX//fgUHB9dIDRMmTNDKlSs1btw4ffTRRzUyBwAAAFBfONm6ANR906dPV3x8vK3LwJ906tRJb7/9tq3LAAAAuCryZN1DlgQAwLq2b9+unJwcdejQoVSThCR5e3srPDxcMTExiomJUURERI3UYJ731KlTNXJ/WyFL1j1kSQAAUB842LoAAAAAAAAAALiWmf9DfqdOnco937lzZ0lSQkJCjdWQmpoqSTW2YgUAAABQn9AoAQAAAAAAAAAWOH78uCQpICBAkrRs2TL1799fX3zxRanj6enpNTJ/enq61q5dK0kaNWpUjcwBAAAA1CdsvYGrYhk1AAAAWII8CQAA6rucnBxJkpubmyQpKipKCQkJOnz4sCZOnCh3d/dS11mTyWTSM888o9zcXA0ZMkQ333xzle+xaNEiRUdHV+rayMhIde3aVbm5uTXW+PFHDzzwQI3Pgao7dOiQrUsAANQBQUFBatiwoa3LAKqFRgkAAAAAAAAAsIDJZCr1/b333qs5c+ZowoQJpc4bDAarz/33v/9da9euVUhIiObPn1+te6SmpiouLq5S12ZlZVVrDgAAAKAuoVECAAAAAAAAACzg4eEhSbp48aIkacqUKZoyZUrJ+dzcXEmy+hOXixcv1syZM+Xj46OlS5eqcePG1bpPSEiIwsPDK3Wtl5eXpMuvpW3bttWaDwAAALA1GiUAAAAAAAAAwALNmjWTJGVkZJR73nw8KCjIanOuXbtWTzzxhBo2bKilS5eqffv21b7XhAkTSla/AAAAAOyBg60LAAAAAAAAAIBrWadOnSRJ8fHx5Z4/cOCAJKljx45WmW/79u164IEH5OjoqOjoaIWFhVnlvgAAAIC9oFECAAAAAAAAACzQu3dvubu7KzExUUlJSaXOGY1GxcXFyWAwaODAgRbPtW/fPo0ZM0aFhYVasGCBbrnlFovvCQAAANgbGiUAAAAAAAAAwAKurq6KiIiQJL3wwgu6dOmSJMlkMmnatGnKy8vTsGHDFBwcXO74yMhIeXt7y9vbW1u3bq1wnqSkJI0aNUo5OTn65JNPNHToUOu/GAAAAMAOONm6AAAAAAAAAAC41k2bNk2xsbGKiYlRWFiYwsLClJCQoMTERAUGBioqKsriOR544AGdPn1aISEhWrdundatW1fmGl9fX7311lsWzwUAAADUZzRKAAAAAAAAAICFPD09tXbtWs2ePVs//vijVqxYIV9fX0VEROill16Sv7+/xXMYjUZJUmpqqlJTU8u9pnnz5jRKAAAAAFdhMBqNJlsXAQAAAAAAAAAAAAAAUBscbF0AAAAAAAAAAAAAAABAbaFRAgAAAAAAAAAAAAAA2A0aJQAAAAAAAAAAAAAAgN2gUQIAAAAAAAAAAAAAANgNGiUAAAAAAAAAAAAAAIDdoFECAAAAAAAAAAAAAADYDRolAAAAAAAAAAAAAACA3XCydQEAqmffvn3KysqSl5eXunbtautyANgIvwsAANXB3w8AEr8LAADVw98PABK/CwBc+wxGo9Fk6yIAVN2wYcMUFxen8PBwrVy50tblALARfhcAAKqDvx8AJH4XAACqh78fACR+FwC49rH1BgAAAAAAAAAAAAAAsBs0SgAAAAAAAAAAAAAAALtBowQAAAAAAAAAAAAAALAbNEoAAAAAAAAAAAAAAAC7QaMEAAAAAAAAAAAAAACwGzRKAAAAAAAAAAAAAAAAu0GjBAAAAAAAAAAAAAAAsBs0SgAAAAAAAAAAAAAAALtBowQAAAAAAAAAAAAAALAbTrYuAED1jB8/Xn379lVISIitSwFgQ/wuAABUB38/AEj8LgAAVA9/PwBI/C4AcO0zGI1Gk62LAAAAAAAAAAAAAAAAqA1svQEAAAAAAAAAAAAAAOwGjRIAAAAAAAAAAAAAAMBu0CgBAAAAAAAAAAAAAADsBo0SAAAAAAAAAAAAAADAbtAoAQAAAAAAAAAAAAAA7AaNEgAAAAAAAAAAAAAAwG7QKAEAAAAAAAAAAAAAAOwGjRIAAAAAAAAAAAAAAMBu0CgBAAAAAAAAAAAAAADsBo0SAAAAAAAAAAAAAADAbtAoAQAAAAAAAAAAAAAA7AaNEgAAAAAAAAAAAAAAwG7QKAHUASaTqcLvTSZTmfMAAACAGVkSAAAAliBPAgAAe0SjBFDLyntjYTAYKvzeYDCUOQ+g/vjzBw7FxcUl35tMJhUVFZWcKyoq4sMJALBzZEkAf0SWBABUFXkSwB+RJwHYM4PRaOS3GlALLly4IE9PT0nSiRMn1LBhQzVq1EjHjx9XZmamAgIClJeXp5SUFDk7O8vX11fHjh2T0WiUi4uLQkJC1KlTJxu/CgAAANgCWRIAAACWIE8CAACU5mTrAgB7cOHCBT300ENKT0+Xt7e3ioqKdPz4cRUXF6tx48Y6e/as0tPTFRAQoAYNGujYsWMl5zIzM1VUVKRXXnmFNyNAPXDq1Cnl5OSoadOmOnHihE6fPq3GjRvLwcFBSUlJKi4uVpMmTXTixAllZGTI3d1dzs7OOnbsmHJzc9WgQQM99dRTcnV1tfVLAQDUErIkADOyJACgOsiTAMzIkwDwPzRKALVg5cqVWrdunZydndWoUSP5+Pjo/PnzunDhggoLC+Xm5qaGDRsqJydHZ8+elST5+PjI399f3bp109GjRzV48GAbvwoA1vDOO+9o8eLFKi4ulpeXl7KyspSTkyMXFxe5uroqKytLkuTm5qbi4mLl5+dLkhwdHUuWunvxxRdtVj8AoPaRJQGYkSUBANVBngRgRp4EgP+hUQKoBUlJSZIu7+nXrl07PfDAA+rbt6/y8/N14sQJ+fr6ql27dtq8ebMefPBBBQUFacuWLTp69KgaNmwoPz8/G78CANbyySefSJL8/f3VsWNHOTo66siRI3J0dFRQUJCKioqUm5urEydOKDU1VT169FDjxo0VHBysBg0aKDQ01MavAABQ28iSAMzIkgCA6iBPAjAjTwLA/9AoAdSCMWPGKCsrS//617+0bds2NWjQQI0aNdKgQYPUsmXLkutyc3N17tw5jRs3TpLUokULSZLJZJLBYLBF6QCsKCMjQ+3bt9eRI0eUm5urVq1aKSIiQp07d5bRaFRubq6aNWsmSXrssccUHR2t6OhoBQQElNpLFABgX8iSACSyJACg+siTACTyJAD8mYOtCwDsQWhoqGbPnq1169Zp2LBh2rp1q8aPH6/77rtPmzdvVk5OjiTpp59+kiTdcccdkqTCwkJJ4o0IUE80adJEf//739W/f39duHBBX375pT744AP9+uuv8vb2Lnkjcv78eSUmJsrT01MBAQGSJE9PT5lMJluWDwCwEbIkAIksCQCoPvIkAIk8CQB/ZjAajfxmA2rYH7uujx07pv/85z+aN2+ecnNz1bZtWz366KO69957dd9992nLli06deoUb0CAei4mJkbvvfee4uLiJEkTJkzQfffdpxtvvFE7duzQ3XffrVtvvVXR0dEqLCyUkxOLQAGAvSJLAvgzsiQAoCrIkwD+jDwJADRKADaTmpqqDz/8UEuWLNGFCxcUEhKi48eP64YbbtDKlSt16dIlOTs786YEqGeKi4vl4HB5Qaf9+/drwYIFWrRokfLz83XjjTdq2rRpio+P1/Tp0/XBBx/ovvvuU1FRkRwdHW1cOQCgLiFLAvaJLAkAsBbyJGCfyJMA8D80SgC1yGQyqbi4WAaDQQ4ODjp9+rS+//57zZ8/X0ePHpUkDRs2TJ999pkaNGhg42oB1JZffvlF7777rlasWCFJ8vLyUlZWlhITE+Xv71/qDQwAwH6RJQGUhywJAKgs8iSA8pAnAdgrGiWAOiAnJ0cffvihoqOjlZqaKh8fHz366KMaO3asgoODbV0egBpQXFxc0o3t4OCg1NRUfffdd/rss8+UlpYmZ2dnvfXWWxo1apR8fX1tXS4AoA4jSwL2hywJALAm8iRgf8iTAECjBFArcnNzlZubq4yMDDVp0kT+/v4yGAwqKCiQg4ODHB0dlZWVpU2bNunjjz/Wjh075OHhoUGDBumf//wn+38BduTQoUOaO3euFi1aJElq3769nnjiCd15553y9PS0cXUAAFsgSwKoLLIkAKA85EkAlUWeBGBPaJQAath//vMfzZs3T5mZmQoKClLLli01cOBAjR07ttw9/oqKivTZZ5/pzTfflLOzs5KTk21QNYCakJGRoYyMDJ06dUoNGjRQq1at1Lx5c0kqtfRlZmamNm7cqE8++UT79u1Tbm6uoqOjNXToUBu/AgBAbSNLAjAjSwIAqoM8CcCMPAkApdEoAdSQoqIi/fOf/9T06dPLPT906FB99NFHatSoUakxjo6OKioq0rZt25SdnU34AOqJVatWafbs2dq3b5+8vLzk5+enrl27avz48brtttvKHZOSkqJPP/1U8+fP1+bNm9W1a9darhoAYCtkSQB/RJYEAFQVeRLAH5EnAaAsGiWAGrJr1y6NGjVKDRo0UEREhO644w4dOHBAq1ev1urVq+Xo6Kg5c+Zo4sSJti4VQA1btmyZXn31VR07dkxNmjRRTk6OLl68WHL+7bff1qOPPlpqjMlkKnmyY//+/erSpUut1gwAsC2yJAAzsiQAoDrIkwDMyJMAUD4HWxcA1FfffvutsrKy9PLLL2v69Onq0aOH7rvvPkVHR+uNN95QUVGRli1bJunyslZ/Vt4xANemf/7znzp27JieeOIJ/fTTT9qzZ48WLFigQYMGSZIWLFigI0eOlBpjMBhkMl3uZezSpUvJvwEA9oEsCcCMLAkAqA7yJAAz8iQAlI9GCaCGrFy5Ut26dVP//v0lSYWFhSooKJAk3XHHHWrWrJmcnZ11/vx5OTiU/b9ieccAXHsOHz6sHTt2aOjQoXrjjTfk7++vgIAAjRw5Up9++qmuu+46HTp0SOfOnSsz9o97hZa3bygAoP4iSwKQyJIAgOojTwKQyJMAcCWkHaAGnDx5UseOHdNNN92k5s2bS5IcHR3l7Oys4uJitW7duuQYgPpt9erVkqSRI0dKuvxEhslkUnFxsTw9PTV27Fg5OTnpxIkTtiwTAFCHkCUBmJElAQDVQZ4EYEaeBICK0SgB1ICNGzdKkoKCgkqOmTsuHRwcdOrUKR0/flwhISHy8fGxSY0Aasfq1avVqlUr3XjjjaWOFxYWSpJyc3Pl4OBQ8uEEy9gBAMiSAMzIkgCA6iBPAjAjTwJAxZxsXQBQH61Zs0bS5RCSk5OjVq1aqV27dgoICFBgYKC2bdsmSerWrZuky6HE0dGR5auAemj37t3q3r27srOzlZeXJ1dXV0mSi4uLJGnbtm3y9/dXSEiILcsEANQhZEkAZmRJAEB1kCcBmJEnAaBiNEoANaR58+b65ZdftH37dnl6eqp58+Zq3769+vTpo2+++UY+Pj4lS985OfF/RaA+2rNnjy5duqTffvtN06ZNU4cOHdSxY0e1bdtWLVq0UGBgoH7++Wfdfvvtat++vaT/dW3z4QQA2DeyJACyJADAEuRJAORJALgyEhBQA2bPnq1Dhw7pt99+0/79+5WYmKgjR44oMTFRy5Ytk8lkUsOGDRUdHa1Dhw6pdevWatWqlQICAuTm5mbr8gFYyYULF9S3b18ZjUbt2bNHP/30kxo0aKCAgAB17NhRnp6eysvLU5MmTZSTk6OGDRvy4QQAgCwJQBJZEgBQfeRJABJ5EgCuxmA0GtlwCKhhx44d08GDB7V//34dOHBAR44cUWpqqs6cOSMnJyf5+/srNDRUnTp1UmhoqO677z4CCVBPZGdn68iRI4qPj9e+ffuUkJCgpKQkZWRkqLCwUCaTSUFBQerTp49CQ0N13XXXqU2bNgoMDGSfUACAJLIkYM/IkgAAayBPAvaLPAkAFaNRArAyo9FYsqRdWFhYyZ5fZvn5+UpOTlZiYqIOHDigAwcO6PDhwzp58qRycnLUvn177dixw0bVA6hp586d06FDh3TgwAHt27dPhw4dUnJysk6fPi2TySQfHx+1bdtWfn5+euKJJ3TDDTfYumQAQC0iSwK4ErIkAOBqyJMAroQ8CQD/Q6MEYGVvvvmm/v3vf2vSpEl6/PHH5erqKpPJJJPJJIPBUGZvr6ysLB0+fFjx8fHatm2bunTpokcffdRG1QOwJvP/7yWpuLhYDg4OZa45duyYfv/995IPJ3777TedOHFC586d04YNG9SzZ8/aLhsAYENkSQBmZEkAQHWQJwGYkScB4MpolACsaP/+/Ro2bJiaN2+u1atXy8vLq9zrzG9Oygsmly5dkouLS02XCqCGZWRkaPny5SosLNTIkSPVrFmzknPFxcXlfjhRUFCgI0eOKCEhQb/99pumTp1a22UDAGyILAnAjCwJAKgO8iQAM/IkAFxd2SQEoNp++OEH5eXlacqUKfLy8lJhYWG51xkMhpI3IoWFhYqLi1N6erok8UYEqCc+/vhjvfDCCzp79qzc3d1LnXNwcCh5I2IymVRcXCyTySRnZ2e1bdtWI0eO5I0IANghsiQAM7IkAKA6yJMAzMiTAHB1NEoAVrRlyxa1adOmZDkqR0fHq465ePGivvvuO7399ts6e/ZsTZcIoBacOnVKCxcuVIcOHfTss8+qUaNGFV5r/nDizx3cAAD7Q5YEIJElAQDVR54EIJEnAaCyaJQArCQ/P19ZWVkqLCxU69atJemq4aKoqEienp7Kzs7W8uXLlZKSUhulAqhhGzZs0Pnz5/XAAw/Izc1NRUVFlRr3ww8/aP369crPz6/hCgEAdQ1ZEoAZWRIAUB3kSQBm5EkAqBwaJQArycvLU0hIiC5evKgzZ85Uaox5iTtnZ2cVFRVVuG8ggGvLTz/9pEaNGun666+XpHL3/CxPamqqXn75ZcXHx9dkeQCAOogsCcCMLAkAqA7yJAAz8iQAVA6NEoAVmEwmNWrUSB06dFB6ero+/vhjFRYWqri4WEVFRSouLi53nMFg0IULF3T27Fm5urqqXbt2tVw5gJqQk5OjvLy8kic4TCbTFa83d3W7ubnp999/18GDB2u8RgBA3UGWBPBHZEkAQFWRJwH8EXkSACqHRgnACszL2D344IPy8PDQu+++q3/84x+SLu8F+MeOTfObFLPffvtNcXFx6tWrV+0WDaDGdOnSRfn5+dq2bZukq3dtm8/n5ORIkho3blyzBQIA6hSyJIA/IksCAKqKPAngj8iTAFA5NEoAVtSyZUu999578vX11RtvvKGuXbvq9ddf19atW5WZmSlJcnJyKgkeBw4c0Jtvvqm8vDyNHz/elqUDsCLzsnZz587Vr7/+WnK8uLi43Kc4zB9oJCcny2AwqGfPnrVSJwCgbiFLApDIkgCA6iNPApDIkwBQWQaj0XjlNXcAVElxcbE+/fRTffDBB0pPT5ckubu7q3nz5mrRooVCQ0PVtGlT7dy5U7/88otOnDih559/Xk888YQ8PT1tXD0Aaxk/frxWr16tW2+9Vc8884z69etX5prCwkI5OTlJkg4ePKjBgwerdevW2rhxY22XCwCoI8iSACSyJACg+siTACTyJABUBo0SQA0xGo2Kjo7Wxo0blZiYqJMnT6qwsLDUNa6urnr66af1wgsv2KhKADXl/PnzeuSRR7RhwwZJUqdOnTRo0CD17t1bXbp0UUBAgCTp5MmT2rdvn+bMmaMDBw4oMjJSERERtiwdAFAHkCUB+0aWBABYijwJ2DfyJABcHY0SQA0ymUzKzMzU4cOHtXfvXp09e1ZGo1FnzpxR//79ddNNN6lVq1a2LhNADfn999/12WefaeXKlSVPcTRo0ECNGjWSp6enQkNDdeLECe3fv18mk0mvvfaaHnzwQZ7gAABIIksC9o4sCQCwFHkSsG/kSQC4MholgFpkMplK9vsCYD927NihmJgY/frrr0pOTtbJkyeVk5MjSWrUqJG8vb31yiuvaNSoUTauFABQl5ElAftElgQAWAt5ErBP5EkAKB+NEgAA1JCCggI5OztLknJycnT8+HEdP35cOTk5cnJy0tmzZxUUFKQ+ffqU7AcIAAAASGRJAAAAWIY8CQBXRqMEAAA16Pz583J3d5eLi4utSwEAAMA1hiwJAAAAS5AnAaBitIgBAGBF5mUsz58/r6+//lo//fSTcnJy5O/vr+7du6t3797q2rVrmXFFRUVydHS0QcUAAACoK8iSAAAAsAR5EgAqjxUlAACwosLCQjk5OenTTz/V888/Lzc3NxUXFys/P1+SZDAY1Lp1a91www26+eab1bt3b7Vo0cLGVQMAAKAuIEsCAADAEuRJAKg8GiUAALCi4uJiOTg46K677tKuXbv0/fffKywsTDt27NC2bdsUFxenvXv36uzZs5IkDw8P+fn56amnnlJERISNqwcAAIAtkSUBAABgCfIkAFQeW28AAGBFDg4OkqTbb79dZ8+eVXBwsCTppptu0k033aRnnnlGmZmZ+vnnn7V582bt2rVLO3bsKOnqBgAAgP0iSwIAAMAS5EkAqDxWlAAAwMqKioq0fPlyPfzww3rooYc0fPhwhYaGysvLSw0aNCh5w2J27NgxNW7cWO7u7jaqGAAAAHUFWRIAAACWIE8CQOXQKAEAgJWY9wD87LPP9P777ystLU3S5SXsOnTooN69e+uGG25Q+/bt5efnJzc3NzVo0MDGVQMAAKAuIEsCAADAEuRJAKgaGiUAALASk8kkg8GgPn366PDhw4qIiJC7u7vS09OVkJCgI0eOKDc3V02aNFH37t0VHh6uzp07q0ePHvL19bV1+QAAALAhsiQAAAAsQZ4EgKqhUQIAACvKz8/XAw88oIKCAn3zzTeSJKPRqPT0dKWkpOjgwYP69ddfdeDAAZ08eVIXL17U119/rdtvv93GlQMAAMDWyJIAAACwBHkSACrPydYFAABQHxQVFcnR0VEHDx5UVlaWsrKydPjwYbVs2VLe3t7y9vZWp06dNHz4cJ06dUppaWk6fPiw9u3bpz59+ti6fAAAANgQWRIAAACWIE8CQNWxogQAAFZQXFwsBwcHPfHEE/ryyy8lSZ6enhoyZIh69uypTp06qV27dmratGmpcea9AwEAAGC/yJIAAACwBHkSAKqORgkAAKwoLS1N27dv186dO7Vp0yYlJydLkho3bqz27durW7du6ty5szp16lTS0W3ePxAAAAD2jSwJAAAAS5AnAaDyaJQAAKCGXLp0Sb///ru2bt2qzZs3a9euXTp79qwkqUWLFvL399c///lPtWzZ0raFAgAAoM4hSwIAAMAS5EkAuDIaJQAAqCF/7sbOysrSgQMHtHXrVsXGxmrfvn1KTU2Vo6OjDasEAABAXUSWBAAAgCXIkwBwZTRKAABgBeY3HoWFhYqJidHx48fl6OgoZ2dnhYaGqnPnznJzcys15vz58/Lx8bFRxQAAAKgryJIAAACwBHkSAKrOydYFAABQHxgMBh05ckSTJk3Szp07S467ublp+PDhev3118u8GeGNCAAAACSyJAAAACxDngSAqqNRAgAAC5i7tVNTU/XQQw9p9+7dGjdunEJDQ3Xu3DnNmzdPRUVF8vPzkyQtXbpUBw8e1OTJk+Xr62vj6gEAAGBLZEkAAABYgjwJANXnYOsCAAC4lhUVFUmSfvjhB+3evVvPP/+85s+fr2eeeUZ9+vSRJIWFhcnJ6XJvoslk0jvvvKM9e/bYrGYAAADUDWRJAAAAWII8CQDVR6MEAAAWcHC4/Kd01apVCgkJ0ejRo0vOrVmzRu7u7urSpUvJsQYNGsjBwUEnT56s9VoBAABQt5AlAQAAYAnyJABUH40SAABYwMHBQYWFhcrIyJCHh4dCQ0NLzm3cuFEdO3ZUu3btSo6lpaXJ0dFR3t7eNqgWAAAAdQlZEgAAAJYgTwJA9dEoAQCAhS5cuKDAwEBduHBBOTk5kqSMjAylp6erW7duatq0acm1SUlJKigo0PXXX2+rcgEAAFCHkCUBAABgCfIkAFQPjRIAAFjAZDLJx8dHvXr10rFjxzRnzhxJUkxMjCSpc+fOJdempaVp/fr1at26tZo1a2aTegEAAFB3kCUBAABgCfIkAFQfjRIAAFjAYDBIkv7yl7/Iw8NDH3/8sebPn68lS5YoMDBQt9xyiyTpxIkTev/995WWlqbx48fbsmQAAADUEWRJAAAAWII8CQDVZzAajSZbFwEAQH3w448/6rnnntPp06clSd7e3ho9erSCg4P11Vdf6bffftM999yjV199VcHBwTauFgAAAHUJWRIAAACWIE8CQNXQKAEAgJUUFBRo3bp1WrBggTZv3qyCgoKSc46Ojpo4caKmTZumxo0b27BKAAAA1EVkSQAAAFiCPAkAVUOjBAAANeDEiRM6ePCg4uPj5e7urn79+ikkJETOzs62Lg0AAAB1HFkSAAAAliBPAsDV0SgBAAAAAAAAAAAAAADshpOtCwAA4FqWk5OjQ4cO6dixYyoqKlLz5s3VunVr+fj4lLrOZDKpuLhYjo6ONqoUAAAAdQ1ZEgAAAJYgTwJA9dEoAQBAFRUXF8vBwUEJCQmaO3euvv76a7m4uMjFxUWNGzdW69at1blzZ3Xt2lUdO3ZUq1at1LBhQ96IAAAAgCwJAAAAi5AnAcA62HoDAIAqKioqkqOjoyZNmqSvvvpKQUFBatu2rdzd3ZWUlKSjR4/q4sWLcnNzU3BwsK677jq1adNGgwcP1o033mjr8gEAAGBDZEkAAABYgjwJANbBihIAAFSSyXS5t9Dcfb169Wq1aNFC69evl5eXl86fP68zZ84oJSVF8fHx2rt3r+Lj47Vu3Trl5eUpMDCQNyMAAAB2iiwJAAAAS5AnAcC6aJQAAKCSDAZDyb8TExNlMpn0l7/8RX5+fpKkgIAABQQEqHPnzho0aJDOnTun48ePKykpSTt37tSQIUNsVToAAABsjCwJAAAAS5AnAcC6aJQAAKAS9u3bJ2dnZwUGBsrb21uBgYFq06aNiouLJUn5+flydnaWwWCQwWBQgwYNFBgYqMDAQPXs2VPDhg2Tu7u7jV8FAAAAbIEsCQAAAEuQJwHA+miUAACgEu677z55enqqV69e6ty5szp16qR27dopOTlZubm5atiwYanrzW9SzG9OeCMCAABgv8iSAAAAsAR5EgCsz2A0Gk22LgIAgLrs1KlTuuuuu3Tu3DmdPHlSJpNJAQEB8vf31969ezVw4EA9+OCD6t69u3x9fdWgQQNblwwAAIA6giwJAAAAS5AnAaBm0CgBAEAlpKenKzk5Wfv27dP+/fuVkJCgjIwM5eXl6cKFCwoICFD37t3VvXt3derUSa1atVJAQIAaNWokJycWcAIAALBnZEkAAABYgjwJANZHowQAAFVUVFSkI0eOKD4+XvHx8UpISNDBgwd17Ngx5eXlyc3NTS1btlSXLl3UsWNH9erVS3369LF12QAAAKgDyJIAAACwBHkSAKyDRgkAACrBZDLJZDKV7Ov3R7m5uUpOTlZCQoL279+vAwcO6NChQzp79qzy8vL02GOP6a233rJR5QAAALA1siQAAAAsQZ4EAOujUQIAgCo6d+6cfv/9dwUHBys4OLjM+fPnz+v3339XQkKCtm7dqkmTJumGG26wQaUAAACoa8iSAAAAsAR5EgCsg0YJAAAqobi4WA4ODjpy5IhmzJihs2fP6vXXX1fPnj1lMl3+U2oymeTg4GDjSgEAAFDXkCUBAABgCfIkAFgfvzEBAKgE8xuO//znP1q5cqUGDBignj17SlLJknfmNyJGo1EHDhxQdna2zeoFAABA3UGWBAAAgCXIkwBgfTRKAABQCY6OjpKkr7/+WmFhYXrooYck/e9Nyh8VFBRo3rx5+vHHH2u1RgAAANRNZEkAAABYgjwJANZHowQAAFdhfsORlJSktLQ0hYWFycvLS9Llju0/X+vn56effvpJ3377rbKysmq9XgAAANQdZEkAAABYgjwJADWDRgkAAK7C/GYkMTFRkuTt7S1JKiwsLHOtwWBQXl6eAgMDdfr06ZI3LQAAALBPZEkAAABYgjwJADWDRgkAAK7CvL+fh4eHPD09lZaWJklycnIqdV1RUZEk6dChQzp9+rQCAgJqt1AAAADUOWRJAAAAWII8CQA1g0YJAAAq6YYbbpCzs7NWrVql5cuXl7z5MDPvFRgTE6MjR47o9ttvt0WZAAAAqIPIkgAAALAEeRIArItGCQAAKsnNzU3PP/+8Tp8+rUcffVTz58/X/v37debMGZ07d06FhYVaunSpPvzwQ7Vs2VLDhg2zdckAAACoI8iSAAAAsAR5EgCsy2A0Gk22LgIAgGtFTk6OIiMjtWjRIhmNRgUFBalTp05ydHTUvn37dOrUKTk5OemDDz7Q6NGjbV0uAAAA6hCyJAAAACxBngQA66FRAgCAKsrLy9P69es1f/587dy5UyaTSa6ursrLy1O3bt309NNPa+TIkbYuEwAAAHUQWRIAAACWIE8CgHXQKAEAgAWys7OVlJSkY8eOqXXr1goMDJSPj4+tywIAAMA1gCwJAAAAS5AnAaD6aJQAAAAAAAAAAAAAAAB2w8HWBQAAAAAAAAAAAAAAANQWGiUAAAAAAAAAAAAAAIDdoFECAAAAAAAAAAAAAADYDRolAAAAAAAAAAAAAACA3aBRAgAAAAAAAAAAAAAA2A0aJQCghn399dfy9vaWt7e3brnllgqvO3r0aMl1FX0NGTKk0vOmp6crKChI3t7eateu3RWv3bx5s8aOHavQ0FA1bdpU1113nR588EHt2bOn0vMBAADAcosWLSrJfhU5dOiQQkND5e3trXHjxqmwsNAqWTInJ0fvvPOObr31VoWEhKhZs2bq0aOH/u///k+7du0qc/2lS5e0bNkyPfLII+rZs6cCAgIUEBCgsLAwPf/88zpy5IiFPw0AAABUxR+z37p168qcLy4uVrt27UquiYyMLPc+mZmZmjNnjvr3768WLVqoWbNmCgsL08MPP6zNmzeXuX7r1q1XzaLmL6PRWDKuS5culR6XmppqtZ8TAACS5GTrAgCgvlu7dq0kycXFRXv37tXx48fVrFmzK45p2rRpucd9fHwqPe+0adOUk5Nz1evef/99vfbaa5IkR0dHeXp6KiMjQ999951++OEHzZs3T2PHjq30vAAAAKg5aWlpuuuuu3TmzBmFh4friy++kJNT6bf21cmSKSkpGjlyZMkH0C4uLnJxcVFKSopSUlIUGBiosLCwUmNefPFFffHFFyXfu7q6ysHBQYcPH9bhw4cVHR2tzz//XIMHD67uywUAAEA1LVu2TIMGDSp1bOvWrTp16tQVx+3Zs0fjxo3TyZMnJV3Oha6uriUZb+nSpTpy5EiFjb2+vr5ydHSs8P4ODv97frdJkybKz8+v8NqcnBzl5OTIz8/vqp+nAgBQVTRKAEANKiwsVExMjFxdXTV27FgtWLBA69at0wMPPHDFcb///rtF827cuFE//vij2rZtq0OHDlV43c8//6zXX39dkjRp0iRNmzZNjRo10qlTpzR16lR99913evLJJ9W7d2+1aNHCopoAAABgmbNnz+ruu+9WWlqaunXrpsWLF8vV1bXMdVXNknl5eRo1apRSU1PVvXt3zZw5U71795bBYNDZs2e1YcOGUh9omxUWFqp58+b629/+puHDhys0NFQmk0n79+/X008/rd27d2vixIn673//q+Dg4Gq/bgAAAFRNy5YttWrVKhUUFMjZ2bnk+LJly2QwGBQSEqKjR4+WGXfkyBHdddddyszMVOfOnTVr1iyFh4fLYDDo9OnT+v777/Xee+9dce6NGzdW+nPETZs2XfH8XXfdpU2bNmnUqFFlmoMBALAUW28AQA3asWOHjEajbrrpppKljtesWVOjc166dEnPP/+8goODNWnSpCte+69//Usmk0ldunTRrFmz1KhRI0mXn0L85z//qRYtWujSpUuaN29ejdYMAACAK8vOztY999yj33//XaGhofr222/l5eVllXt/9NFHSk5OVocOHbRixQr16dNHBoNB0uUnAseMGaN77rmnzLgHH3xQu3fv1pQpUxQaGipJMhgM6tq1q6Kjo+Xl5aXc3Fz9+9//tkqdAAAAqJy//OUvMhqNio2NLTlWVFSk5cuXKywsrMIm1hdeeEGZmZlq1aqVVqxYob59+5bkQj8/Pz3yyCPatm2b3N3da/w1pKenl2zzwWq3AICaQKMEANQg87Yb/fv3V9++feXs7KwtW7YoLy+vxuacO3eukpKSNGPGjHKfMPyj7du3S5LuvffeMuecnZ113333SZJWrVpl/UIBAABQKfn5+Ro/frz27NmjoKAgff/992rSpInV7v/ll19KkmbMmCEPD49Kj+vRo4dcXFzKPefv76+ePXtKkvbt22d5kQAAAKi0ESNGyNHRUcuWLSs5tnXrVp05c0YjR44sd0xycrLWrVsnSZo6dWqFW2v4+PiUWqWipixevFjFxcW67rrr1L179xqfDwBgf2iUAIAaZF494pZbbpGHh4fCwsKUm5tb0g1tbUePHtW7776rsLAwjR49+qrXm/ckDAkJKfd869atJV3eC/tq+xcCAADA+oqKivTQQw9py5Yt8vX11ffff6/mzZtb7f4pKSlKSkqSp6enbrvtNqvdV1LJihfmpxABAABQO5o0aaI+ffpo5cqVKigokCR9//33klRho8Ty5cslSS4uLho2bFjtFHoF0dHRklhNAgBQc2iUAIAakpKSokOHDsnX11fdunWTJN16662S/rfSREUGDhyoZs2aKTAwUL169dLUqVOVlpZ21TmnTp2qixcvKjIyslIfSJuvKSoqKvf8H48nJSVd9X4AAACwrilTpmj58uXy9PTUN998o3bt2l11TFWy5IEDByRJHTt2lCRFRUWpR48eatq0qdq3b68HH3xQ+/fvr3LdJpNJu3fvliR16dKlyuMBAABgmT9uv1FYWKgVK1YoLCyswqbbX375RZLUtm3bKq0yVhO2bdum5ORkOTg4lLsFHAAA1kCjBADUkNWrV0u6vJqEuSGhf//+klSyjF1F9uzZIxcXF126dEmHDh3Sxx9/rD59+lxxJYq1a9dq9erVGj16tHr16lWpGgMDAyVdXomiPIcOHSr597lz5yp1TwAAAFjHq6++qv/85z+SpPvvv189evSo1LiqZMkTJ05IurxVxoQJEzRz5kwdO3ZMDRs21MmTJ/Xdd99p4MCBVd6K7ZtvvlFaWpqcnJw0bty4Ko0FAACA5f64/caWLVt09uzZCleTkP73+WBFK89W1oABA9SuXbtyvzZs2FCpeyxatEjS5c9VmzVrZlE9AABUhEYJAKgh5lUjzKtISFLPnj3l5eWltLS0Mk/mubq6atKkSYqNjdWJEyd05MgRpaena+HChQoKClJWVpbuu+8+paenl5krLy9PL774otzc3DRjxoxK1xgeHi7p8p5/JpOp1Lnc3Fz9+9//LvU9AAAAas8HH3xQ8u/PP//8iit8VTdLZmdnS5K2bNmi9evX6+WXX1ZqaqqOHDmiffv26dZbb9WlS5c0efJkGY3GStV9+vRpvfzyy5KkSZMmlWznBgAAgNrTtGnTku03vv76a0mXV5moyIULFyTJ4tUkzp49q1OnTpX7lZeXd9XxOTk5+uGHHySx7QYAoGbRKAEANSArK0vbtm2TVLpRwtHRUX379pVUdvsNf39/zZo1S927d5erq6ukyx9433nnnVqxYoXc3d2VlZWlefPmlZnv3Xff1ZEjR/TYY49Vac/qRx55RI6Ojvr99981adIkHTlyRAUFBUpISNC4ceN04cKFkjdHDg78yQAAAKhNDg4O+uijj9S+fXtdvHhRjz/+eJnmVrPqZsni4mJJktFo1N13363nnntODRs2lHT5acJPP/1Ubm5uyszM1NKlS69ac2FhoR566CGdPHlSPXr00KuvvmrJjwAAAAAWMG+/8fXXX19x240/qsx2vleyd+9eGY3Gcr+GDx9+1fHLli1Tdna2PDw8NGLECItqAQDgSvivXgBQAzZu3KiCggK1bt26zHJ15saJNWvWVPp+rVq10qhRoySpzBJ1KSkp+uCDDxQQEKCnn366SnV27dpVs2bNksFg0FdffaXu3bvLz89Pffr00ZYtW/T222/L2dlZkuXd5AAAAKiaqKgojRs3Tu+//74MBoO2b9+uTz75pMr3uVKWdHNzK/n3Aw88UGZskyZNNHDgQEnSzp07rzrXE088oc2bNys4OFjR0dFycXGpcr0AAACwjhEjRsjBwUHFxcVX3HZDkjw9PSX9b2UJWzFvuzFixIiSBl4AAGoCjRIAUAPMTRApKSny9fUt9TV16lRJl/eOPn36dKXv2bVrV0nSsWPHSh1/9dVXlZeXp1deeUXu7u5VrvXhhx/W+vXrde+996pdu3YKCQnRbbfdpqVLl2rMmDElSyyzHyAAAEDteuihhyRJvXv3VkREhCTpjTfe0JEjR6p8r4qypK+vb8m/K9oiw/zkYUZGxhXnmDFjhhYvXiwfHx99++23CgwMrHKdAAAAsJ6mTZvqlVde0cMPP6y77777ite2aNFCkpSamlobpZUrJSVF27dvl8S2GwCAmudk6wIAoL4pLi4ueVLPZDKpqKiowuvWrVunCRMmVOq+5mXv/rz8XUpKiiTpscce02OPPVbu2FOnTsnb21uS9OWXX5ZZ5i4sLExhYWFlxu3cuVMmk0nOzs5q3759peoEAACA9b322mtavXq1Tp48qSeeeEI//vhjlZZFrihLtmrVqsw1V7tHeT788EPNnTtXDRs21FdffUV2BAAAqCMquwJt9+7dtWzZMh06dKhk64vatmjRIplMJgUHB6tfv361Pj8AwL6wogQAWNmuXbt05swZOTk5KS0trdz9+CZOnChJWrt2baXvGx8fL0lltvKoSd9++60k6eabb2bZZAAAABvy9vbW7NmzJUlbt27VF198UaXxFWXJzp07l+S85OTkcseaV6EICAgo9/ySJUv0yiuvyNnZWQsXLtQNN9xQpdoAAABge+YHqy5duqRVq1bV+vzFxcVasmSJJOnee++VgwP/+QoAULP4SwMAVmbeduP666+vsPP65ptvliRt2rRJly5dkqQKV56QpOPHj+ubb76RJN1+++2lzv3000/lNmMYjUbNmzdP0uVl9szH/ryaREUSEhK0cOFCSdL9999fqTEAAACoOX/5y180ZMgQSZe3ufjjNhrVzZLu7u4lT+stWLCgzNgzZ84oJiZGknTTTTeVOb9mzRo9/vjjMhgM+vjjj3XbbbdV7UUBAACgTggNDS3JcpGRkcrMzCz3OqPRqIKCAqvPv3nzZqWlpUli2w0AQO2gUQIArMzcKHGl5eH69esng8GgCxcuKC4uTpJ0xx136J133lFiYqKKi4slSQUFBVq/fr2GDx+urKws+fj4VLi9RnW9//772rx5s3JzcyVJ+fn5+uabb/SXv/xFeXl56tevn0aOHGnVOQEAAFA9f//73+Xh4aELFy5oypQpJcctyZJPPfWUpMurib333nu6ePGipMv7Uz/88MO6ePGiGjdurNGjR5cat337dk2cOFGFhYWaM2eORo0aVUOvGgAAALVhzpw58vLyUkpKioYPH66ffvpJJpNJknTu3Dl98cUX6tOnj3Jycqw+96JFiyRdfvisXbt2Vr8/AAB/5mTrAgCgPjl27JgSEhIkXblRokmTJrruuuuUkJCgNWvWqH///jp+/LjefPNNvfnmm3JxcSn5ANzcoe3r66tFixZVuORxda1fv16vvfaaJKlRo0bKzs4ueSLx+uuv13/+8x+rzgcAAIDqCw4O1vTp0zVt2jTFxMToP//5j+677z6LsuTNN9+s559/XnPmzNHrr7+umTNnysPDQ+fPn5ckubm56ZNPPlGjRo1KjZs5c6YuXrwoBwcHzZ49u2RrkD8LCgrSpk2brPyTAAAAgLW1atVK3377rcaPH6/9+/dr+PDhcnFxkZubW4UrTFhDZmamVqxYIYnVJAAAtYcVJQDAitauXStJcnFxuerezOZGCvOY1157Tffcc4/atm0rT09PZWVlqUGDBurSpYuee+457dixo9zlji31yCOPaMiQIQoODtbFixfVqFEj9enTR++++67Wr18vb29vq88JAACA6vu///s/XX/99ZKk6dOn6/jx4xZnyenTp+vrr7/WbbfdJk9PT2VnZ6tZs2YaM2aMNm3aVO6WGuaVK4qLi3Xq1KkKv86cOVMzPwgAAABYXa9evfTzzz9r2rRp6tatm1xdXXXp0iW1adNG99xzj5YtW2b1zwu//fZb5eXlydnZmVXKAAC1xmA0Gk22LgIAAAAAAAAAAAAAAKA2sKIEAAAAAAAAAAAAAACwGzRKAAAAAAAAAAAAAAAAu0GjBAAAAAAAAAAAAAAAsBs0SgAAAAAAAAAAAAAAALtBowQAAAAAAAAAAAAAALAbNEoAAAAAAAAAAAAAAAC7QaMEAAAAAAAAAAAAAACwGzRKAAAAAAAAAAAAAAAAu0GjBAAAAAAAAAAAAAAAsBs0SgAAAAAAAAAAAAAAALtBowQAAAAAAAAAAAAAALAb/w+7qkvwOK8PCAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows = 2\n", "cols = 3\n", "fig, ax = plt.subplots(rows, cols, figsize=(10 * cols, 7 * rows), sharex=True)\n", "\n", "max_entangle = [0.1, 0.8]\n", "for i, y in enumerate(\n", " [\"result.test_mean\",\n", " \"result.test_mean_de\",]\n", " ):\n", " for j, (ct, df) in enumerate(best.groupby(\"config.dataset.data_params.split_key\")):\n", " sns.boxplot(\n", " data=df,\n", " x=\"config.model.embedding.model\",\n", " y=y,\n", " # inner=\"point\",\n", " # kind='violin',\n", " ax=ax[i,j],\n", " hue=\"config.model.load_pretrained\",\n", " )\n", " axis = ax[i,j]\n", " # ax[i].set_ylim([0,1])\n", " axis.set_xticklabels(['CPA', 'chemCPA'])\n", " axis.set_xticklabels(axis.get_xticklabels(), rotation=75, ha=\"right\")\n", " # axis.axhline(max_entangle[i], ls=\":\", color=\"black\")\n", " if i == 1:\n", " axis.set_xlabel(ct.split('_')[-1])\n", " else: \n", " axis.set_xlabel(\"\")\n", "\n", " axis.set_ylabel(y.split(\".\")[-1])\n", " axis.get_legend().remove()\n", "ax[i,j].legend(\n", " title=\"Pretrained\",\n", " fontsize=18,\n", " title_fontsize=24,\n", " loc=\"center left\",\n", " bbox_to_anchor=(1, 0.5),\n", ")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACxoAAAHRCAYAAABXMy5JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU5doG8Hu2ppOekNB7L1IsgBQFpAgcEBuWgwLHwhGwflhQFAWCSAdROASULkjvXTABgtRAaBIgjdRN2c1uNrvz/bFkIAZSILuzSe7fdeW69p2dcoeSzM4887yCTqcTQURERERERERERERERERERERERERERHQXhdwBiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPmw0JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKYKExERERERERERERERERERERERERERERFcFCYyIiIiIiIiIiIiIiIiIiIiIiIiIiIiqChcZERERERERERERERERERERERERERERUBAuNiYiIiIiIiIiIiIiIiIiIiIiIiIiIqAgWGhMREREREREREREREREREREREREREVERLDQmIiIiIiIiIiIiIiIiIiIiIiIiIiKiIlhoTEREREREREREREREREREREREREREREWw0JiIiIiIiIiIiIiqhKlTp2Lu3LmlXn/ZsmWYOnWqHRMRERERERERERERETk3QafTiXKHICIiIiIiIiIiIrI3Hx8fBAUFISYmplTrd+/eHadPn0Z6erqdkxEREREREREREREROSd2NCYiIiIiIiIiIiIiIiIiIiIiIiIiIqIiWGhMREREREREREREdA/p6elQq9VyxyAiIiIiIiIiIiIikg0LjYmIiIiIiIiIiIj+4fjx47h58yaCg4PljkJEREREREREREREJBuV3AGIiIiIiIiIiIiI7GHr1q3Ytm1boWVZWVl4991377uNxWJBYmIiIiIiAABPPfWUXTMSERERERERERERETkzQafTiXKHICIiIiIiIiIiIipvU6ZMwdSpUx94++bNm2Pjxo3w8/Mrx1RERERERERERERERBUHOxoTERERERERERFRpdS5c+dC46lTp8LDw6PYjsYKhQJeXl5o0aIFOnXqBEEQ7B2TiIiIiIiIiIiIiMhpsaMxERERERERERERVQk+Pj4ICgpCTEyM3FGIiIiIiIiIiIiIiCoEhdwBiIiIiIiIiIiIiIiIiIiIiIiIiIiIyPmw0JiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKEHQ6nSh3CCIiIiIiIiIiIiIiIiIiIiIiIiIiInIu7GhMRERERERERERERERERERERERERERERbDQmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIpQyR2AiIiIiIiIiIiIyNEyMzNx/fp16PV6WK3WYtft1KmTg1IRERERERERERERETkXFhoTERERERERERFRlbFr1y5MmTIFp06dKtX6giAgLS3NvqGIiIiIiIiIiIiIiJwUC42JiIiIiIiIiIioSti4cSPeeOMNiKIIURSh1Wrh7+8PhUIhdzQiIiIiIiIiIiIiIqfEQmMiIiIiIiIiIiKqEqZPnw6r1YoOHTogLCwMbdq0kTsSEREREREREREREZFTE3Q6nSh3CCIiIiIiIiIiIiJ7Cw4ORl5eHs6dO4eQkBC54xAREREREREREREROT12NCYiIiIiIiIiIqIqoVq1ajAajSwyJiIiIiIiIiIiIiIqJYXcAYiIiIiIiIiIiIgcoWvXrsjJyUFKSorcUYiIiIiIiIiIiIiIKgQWGhMREREREREREVGV8Pnnn8PHxwdjx45Fbm6u3HGIiIiIiIiIiIiIiJyeoNPpRLlDEBEREREREREREdnbypUrcePGDcyaNQsuLi4YPHgw6tSpAz8/v2K3e+mllxyUkIiIiIjoDh8fHwQHB+PChQulWr979+44c+YM0tLS7JyMiIiIiIiqEhYaExERERERERERUZXg4+MDQRAgirZLooIglGq79PR0e8YiIiIiIronHx8fBAUFISYmplTrd+/eHadPn+b5KxERERERlSuV3AGIiIiIiIiIiIiIHOGJJ54odXExEREREVFFYzab5Y5ARERERESVEAuNiYiIiIiIiIiIqErYunWr3BGIiIiIiOzCZDLhxo0b8PDwkDsKERERERFVMiw0JiIiIiIiIiIiIiIiIiIikllWVhYyMzMLLbNYLIiLi4MoivfcxmKxIDExET/++COys7Px2GOPOSIqERERERFVISw0JiIiIiIiIiIiIiIiIiIiktn8+fMRFhZWaFlaWhpatWpV4rYFhchvvfWWXbIREREREVHVxUJjIiIiIiIiIiIiqnKOHTuGw4cPIyEhAUajEXPnzpXe0+v1SElJAQDUqVNHpoREREREVNWIolikc/H9OhkXEAQBXl5eaNGiBUaOHImBAwfaMyIREREREVVBgk6nK/6TCREREREREREREVElcf36dYwaNQrHjx8HYCvcEAQB6enp0jrJyclo27YtjEYj9u3bh9atW8sVl4iIiIiqMB8fHwQFBSEmJkbuKEREREREVIUp5A5ARERERERERERE5Ajp6eno378/jh07hvr16+Pf//433N3di6wXGBiIYcOGwWq1YsOGDY4PSkRERERERERERETkJFhoTERERERERERERFXCzJkzERcXh4EDByIiIgI//PDDPQuNAeDFF18EAERERDgyIhERERERERERERGRU1HJHYCIiIiIiIiIiIjIEbZv3w5BEDBx4kSoVMVfGm3Tpg3UajXi4uIclI6IiIiIqLBPPvnkvg/GEREREREROYqg0+lEuUMQERERERERERER2VtwcDDUajVu3rwpLWvcuDFSUlKQnp5eZP169epBr9fj1q1bjoxJREREREREREREROQ0FHIHICIiIiIiIiIiInIEFxcXGI1GWCyWEtc1GAzIysqCl5eXA5IRERERERERERERETknFhoTERERERERERFRldC0aVNYLBZERESUuO769ethsVjQsmVLByQjIiIiIiIiIiIiInJOKrkDEBERERERERERETnCc889h8jISIwfPx4bN26Er6/vPdc7evQoPvvsMwiCgOeee87BKYmIiIiICtu1axcOHDiA2NhY6PV6WK3W+64rCAI2bdrkwHRERERERFTZCTqdTpQ7BBEREREREREREZG9WSwW9O7dGydOnEBISAiGDBmC8PBw5OTkYOXKlYiPj8e+ffuwY8cOWCwWdOzYEdu3b4dCwYnhiIiIiMjxMjIy8MILLyAqKgoAIIol39oXBAHp6en2jkZERERERFUIC42JiIiIiIiIiIioysjIyMDw4cNx8OBBCIJQ5P2C4o0uXbogPDz8vl2PiYiIiIjsbfTo0Vi+fDkUCgV69uyJRx99FP7+/lAqlcVu9/LLLzsoIRERERERVQUsNCYiIiIiIiIiIqIqZ+fOnVi9ejWioqKQkpICAPD390e7du0wdOhQ9O3b956FyEREREREjtKgQQOkp6djzpw5GDZsmNxxiIiIiIioimKhMRERERERERERERERERERkZMJCQmB1WpFfHx8iV2MiYiIiIiI7EUhdwAiIiIiIiIiIiIiIiIiIiIqrH79+lAqlSwyJiIiIiIiWankDkBERERERERERETkaPHx8UhNTYXJZEJ+fj5E8f4Tv3Xq1MmByYiIiIiIbEaOHIkxY8Zg8+bNePbZZ+WOQ0REREREVRQLjYmIiIiIiIiIiKhKuHXrFj799FPs2rULer2+VNsIgoC0tDQ7JyMiIiIiKuq1117D1atX8e677+Lq1at45ZVX4O/vL3csIiIiIiKqYgSdTnf/Vh1ERERERERERERElcSzzz6LI0eOQBRF1KxZEwEBAdBoNCVORb1lyxYHJSQiIiIiuqN169YAbA/M5eXlAQDc3d3h6+t7320EQcCpU6ccEY+IiIiIiKoIFhoTERERERERERFRlVC9enXk5eVh7969aNOmjdxxiIiIiIiK5ePjU+ZtBEFAenq6HdIQEREREVFVpZI7ABEREREREREREZEj1K1bF9euXUPLli3ljkJEREREVKLNmzfLHYGIiIiIiIgdjYmIiIiIiIiIiKhqOHr0KF577TU0b94cgwcPRlBQEFxcXKBQKIrdrlOnTg5KSERERERERERERETkXNjRmIiIiIiIiIiIiKoEPz8/BAcH48CBAzhw4ECpthEEAWlpafYNRkRERERERERERETkpFhoTERERERERERERFXCf/7zH5w9exaiKKJGjRoICAiAVquFUqmUOxoRERERUYmsVivS09ORm5uLmjVryh2HiIiIiIiqCBYaExERERERERERUZVw/vx5AMCuXbvQoUMHmdMQEREREZXOvn37MHfuXERGRsJoNBaZdePatWuYMmUKFAoFvv/+e7i7u8uYloiIiIiIKhuF3AGIiIiIiIiIiIiIHKFdu3ZwcXFBu3bt5I5CRERERFQq3377LZ577jns378fubm5EEURoigWWqdu3bq4fPkyVq9ejU2bNsmUlIiIiIiIKit2NCYiIiIiIiIiIqIq4bXXXkN0dDSef/55DBo0CEFBQXBxcYFCUXw/hk6dOjkoIRERERHRHbt27cL3338Pb29vfPvtt3j66afRpUsXpKSkFFn3zTffxOjRo7Fz50689NJLMqQlIiIiIqLKStDpdGLJqxERERERERERERFVbD4+PhAEAaIoQhCEUm3zz2mpiYiIiIgcZciQIdi/fz8WLVqEwYMHAwAaN26MlJQUpKenF1o3NTUVDRs2RJMmTRARESFHXCIiIiIiqqTY0ZiIiIiIiIiIiIiqhCeeeKLUBcZERERERHL766+/IAgC+vfvX+K6/v7+8PT0RHx8vAOSERERERFRVcJCYyIiIiIiIiIiIqoStm7dKncEIiIiIqJSMxgMcHd3h0ajKdX6VqsVosgJjYmIiIiIqHwp5A5AREREREREREREREREREREhQUFBSEnJwepqaklrhsTEwO9Xo/Q0FAHJCMiIiIioqqEhcZERERERERERERU5Rw7dgw//PADPvzwQ7z77ruF3tPr9YiNjUVsbKw84YiIiIiIAHTp0gUAsHDhwhLXnThxIgRBQNeuXe0di4iIiIiIqhhBp9Nx7hQiIiIiIiIiIiKqEq5fv45Ro0bh+PHjAABRFCEIAtLT06V1kpOT0bZtWxiNRuzbtw+tW7eWKy4RERERVWGXLl1Cp06dIIoixo8fj5EjR6JDhw5ISUmRzl/PnTuHr7/+Grt374ZGo0FkZCTq1q0rc3IiIiIiIqpM2NGYiIiIiIiIiIiIqoT09HT0798fx44dQ/369fHvf/8b7u7uRdYLDAzEsGHDYLVasWHDBscHJSIiIiIC0KhRI8ycOROiKOLbb79FgwYNkJaWBgDo1q0bGjVqhCeffBK7d++GQqHAjBkzWGRMRERERETljoXGREREREREREREVCXMnDkTcXFxGDhwICIiIvDDDz/cs9AYAF588UUAQEREhCMjEhEREREVMmzYMGzatAmtWrWC2WyGxWKBKIo4ffo0UlJSIIoiWrZsid9//x0vv/yy3HGJiIiIiKgSEnQ6nSh3CCIiIiIiIiIiIiJ769ChA65evYqTJ0+idu3aAIDGjRsXmnq6gNVqRXBwMAIDA3Hu3Dk54hIRERERFXLp0iVERUVJBcYBAQFo164dmjRpInc0IiIiIiKqxFRyByAiIiIiIiIiIiJyhJs3b8Ld3V0qMi6OQqGAh4cHUlJSHJCMiIiIiKhkjRo1QqNGjeSOQUREREREVYxC7gBEREREREREREREjuDi4gKj0QiLxVLiugaDAVlZWfDy8nJAMiIiIiIiIiIiIiIi58SOxkRERERERERERFQlNG3aFEePHkVERAQ6d+5c7Lrr16+HxWJBy5YtHZSOiIiIiKioS5cuYefOnbh06RJSU1NhMpmQn58PURTvub4gCNi0aZODUxIRERERUWXGQmMiIiIiIiIiIiKqEp577jlERkZi/Pjx2LhxI3x9fe+53tGjR/HZZ59BEAQ899xzDk5JRERERGTz888/4//+7/8giuJ9C4v/SRAEO6ciIiIiIqKqRtDpdKX7REJERERERERERERUgVksFvTu3RsnTpxASEgIhgwZgvDwcOTk5GDlypWIj4/Hvn37sGPHDlgsFnTs2BHbt2+HQqGQOzoRERERVUGNGzdGSkoK+vTpg379+iEgIAAajQZKpbLY7UqavYOIiIiIiKgsWGhMREREREREREREVUZGRgaGDx+OgwcP3rPbW0GnuC5duiA8PPy+XY+JiIiIiOytVq1ayM/PR3x8PDsVExERERGRbNiKg4iIiIiIiIiIiKoMHx8fbNiwAatWrcKgQYNQo0YNaLVaaLVahIaGYuDAgfj111+xceNGFhkTERERkaxeeOEFGI1GHD58WO4oRERERERUhbGjMRERERERERERERERERERkZOxWCx48cUXsXfvXoSEhCAoKAguLi5QKO7fT0wQBGzatMmBKYmIiIiIqLJTyR2AiIiIiIiIiIiIiIiIiIiICps+fTr27NkDAIiPj0d8fHyJ2wiCYO9YRERERERUxbDQmIiIiIiIiIiIiIiIiIiIyMksWLAAgiCgZ8+eGDBgAAICAqDVaqFUKuWORkREREREVYig0+lEuUMQEREREREREREROZucnBxYrVZ4eXnJHYWIiIiIqqCGDRtCr9cjLi4OCoVC7jhERERERFRF8dMIERERERERERER0T20a9cOdevWlTsGEREREVVRH330EYxGIyIjI+WOQkREREREVZhK7gBEREREREREREREzkoUOSEcEREREclj06ZNqFatGvr374+QkBAEBQXBxcWl2O7GgiBg06ZNDkxJRERERESVnaDT6XilnIiIiIiIiIiIiOgf6tati6ysLKSlpckdhYiIiIiqIB8fnzJvIwgC0tPT7ZCGiIiIiIiqKnY0JiIiIiIiIiIiIvqHEydOQKfTITAwUO4oRERERFRFbd68We4IRERERERELDQmIiIiIiIiIiKiymflypUPtF1ubi4uXryI1atXQxAE9OnTp5yTERERERGVTufOneWOQEREREREBEGn04lyhyAiIiIqTkZGBqKjo2G1Wu+7jo+PD5o1awalUunAZERERERU2WVnZ+Ps2bPIz8+/5/tqtRotW7aEh4eHg5NRSXx8fCAIwgNvL4oiWrVqhY0bN8Lb27v8ghEREckgPT0d58+fL/b6mlarRZs2baDVah2YjIjKwmq1Ij09Hbm5uahZs6bccYiIiErFZDLhzJkzyM3Nvef7KpUKLVq0gJeXl4OTERFRabGjMRERETm1nJwcvP/++8jIyChx3WHDhmHo0KEOSEVEREREVYHZbMb//d//IT4+vtj1atWqhRkzZvChNyekVqvRoUOHMm2j0WhQvXp1dO3aFYMHD4ZK9eCXUHNychAWFoaNGzciKSkJfn5+6NWrFz777DMEBAQ88H7vdvDgQRw5cgRRUVE4ceIEMjMzUbNmTZw9e/ae61+7dg0LFizAmTNncOPGDaSmpkKr1aJRo0Z47rnnMGLECKjV6nLJRkREziE9PR3jxo1DZmZmies2b94cX3/9Nc9riJzMvn37MHfuXERGRsJoNEIQBKSlpUnvX7t2DVOmTIFCocD3338Pd3d3GdMSEREVNn36dBw7dqzYdYKCgjB79mw+9EZE5KRYaExEREROLSIiolRFxgCwY8cODBkyBAqFws6piIiIiKgqOHfuXIlFxgBw48YNXLhwAS1atHBAKioLHx8fbNmyRZZj5+TkoHfv3oiOjkatWrXQt29fnD9/HuHh4di9ezf27NmD6tWrP/RxRo8ejZs3bwJAqTo4nzlzBj/99BMCAgLQoEEDPPbYY8jKysKxY8cwfvx4bNy4EevXr4ebm9tDZyMiIvlZLBbMmjWrVEXGABAdHY01a9bgpZdesnMyIiqtb7/9FtOnT4co3n+i4rp16+Ly5cs4deoUnnzySf4fJiIip5GQkFBikTEA3Lp1C5GRkejatasDUhERUVmxCoeIiIic2p9//llo/Ji7stBXB7c7pzNpaWm4ePGioyMSERERUSUVGRlZaPzPc9Hi1iWaPHkyoqOj0aNHD0RFRWHJkiWIjIzEiy++iPj4eHzyySflcpxevXph4sSJ2LZtGzZu3Fji+m3atMGBAwdw6dIlbN++Hf/73//w22+/4fTp02jVqhUiIyMxb968cslGRETyW7p0KU6fPi2NTZ6ByA5uVuTLqrjTm2jNmjU8tyFyErt27cL333+PatWqYd68ebh48SICAwPvue6bb74JURSxc+dOB6ckIiK6v927dxca//M89G67du1yZDQiIioDQafT3f/RRyIiIiIZpaenY8SIEbBarQCAGTW18FcVfU5qcWoeDmRbAADPPPMM3nrrLYfmJCIiIqLKx2KxYPjw4cjKygIAfBasQRPXwsXF53ItmJqUBwDw9fXFokWLOLuGE/Hx8UFQUBBiYmIcfmyj0Yj69etDr9cjKioKDRo0kN7T6XRo0qQJTCYTzp49ixo1apTbcY8fP46ePXuiZs2aOHv2bJm3X7t2LUaOHIlHH32UBSpERJXA77//jqVLl0rjtHqdkN7gPh3irFaEnlgJt4zrAACNRoMJEyZwxgYimQ0ZMgT79+/HokWLMHjwYABA48aNkZKSgvT09ELrpqamomHDhmjSpAkiIiLkiEtERFSIyWTCiBEjkJ2dDQBIaDMU+sCGhdZRGrNR94+5EG537p85cybq1Knj6KhERFQC3vkgIiIip3XgwAGpyLiJi+KeRcYA0OmubnKHDh2CyWRySD4iIiIiqrxOnjwpFRn7KIFGLkXPRZu6KOB5e3F6evoDFXaS/Rw6dAgbNmyQ5dgRERHQ6/Vo0qRJoSJjAPD29kanTp0giiL27t0rS777EQQBgK3QnoiIKrb169cXKjLOCWyE9PpP3n8DhQKJrf+FPFdvAEBeXh4mTZpUqBsyETneX3/9BUEQ0L9//xLX9ff3h6enJ+Lj4x2QjIiIqGT79u2TiozNLtWgD6hfZB2LiydyAhtL49LM1kRERI7HQmMiIiJySlartdBUOl08lPddt5GLAoEq2w1xg8GAI0eO2D0fEREREVVu+/btk14/7qGC4nYB5t2UgoDH7jpPvXsbkl/Lli3RpEkTWY4dHR0NAGjevPk93y/oDnn+/HmHZSpJSkoKZsyYAQB48sliCtGIiMipWSwWLFq0CMuWLZOWGXxqIqnlQOAe5zN3s2rckNDuJeRrPQDYOvR/8803OHjwoF0zE9H9GQwGuLu7Q6PRlGp9q9XKh8aIiMgpmM1mrF+/XhrrancAhHuXqelqPyq9PnjwIBITE+2ej4iIykYld4D7SU5Oxvbt23H8+HFERUXh4sWLEEUR8+bNw7Bhw8r1WAcOHMCMGTNw8uRJWK1WNGvWDG+99ZY0/QwRERE53smTJ6UPkW4K4FH3+xcaKwQB3TyVWJORDwDYtm0bunfvLnXjIiIiIiIqC51Oh6NHj0rjzsU89Pakhwq7s2w38v/880+8+eab8PLysntGcm4JCQkAgODgYADAhg0bMGvWLLz22msYPny4tFzObnMmkwljx46F1WpFcnIyIiMjkZubi65du2LcuHFl3t/y5cuxYsWKUq07efJktGrVCgaDgR33iIjKkV6vx4oVK3Dp0iVpmcGnFhLaPg9RqS7VPsxuPohrPwyhUSugNmUjPz9fuof2zDPPQKm8/3kRUUUQGhoKNzc3uWOUWlBQEOLi4pCamgp/f/9i142JiYFer0fDhg2LXY+IiMgRdu/ejZSUFABAvtoVmaFt7ruu0TsUBt/acEu/DqvVitWrV2Ps2LGOCUpERKXitIXGu3fvxpgxY6SxvQqFVqxYgXfffRcKhQJdu3aFVqvF/v378cYbb+DKlSv4+OOP7XJcIiIiKt6mTZuk1096KKFVFH8u0NVThd91+TCLwJUrV3DhwgU0a9bM3jGJiIiIqBLauXOn1AWsoVaBmpr7TwpWR6tAXY2Aa3kizGYz9uzZw4fXCXq9HgDg6uoKAAgLC8P58+dx5coVDB8+HO7u7oXWk4PZbMbKlSsLLXvzzTfx3XffQavVlnl/N27cKPXsMllZWWXePxERFe/atWtYsWIFdDqdtCw7sDFutRwIUVm224Fmdz/EdXwNIX+thlafCsDWtOf69et46aWX4OPjU57RiagYXbp0wcqVK7Fw4UJ89tlnxa47ceJECIKArl27OigdERHRvRkMBqxevVoaZ9R9AqKq+O78afW7wC39OgBbV+MBAwagXr16ds1JRESl57SFxiEhIRg1ahQ6duyI9u3b44MPPsDevXvL9RjJycn48MMPoVAosH79eulDV3R0NHr16oXJkyejb9++0lSGRERE5BhXrlzB6dOnAQACgJ5eJZ+yeCkFdHJX4kCOrSBk/fr1LDQmIiIiojIzm83YsWOHNH7aq+SufU97qfBzqhmAbXaNAQMGQKVy2stuVdqzzz5bpvUFQYCbmxtCQ0Px2GOP4dlnn4WLi0uJ24miWGj8/PPPY9q0adJMbQXvyzkLi4eHB3Q6HaxWK27cuIHNmzdj6tSpiIiIwNq1axEaGlqm/dWqVQudOnUq1boFXb/d3NzYcY+I6CHl5eVh1apV2LBhA6xWq7Q8rV4npNd/EnjA3zX5rtUQ1/E1BJ/dBPfUKwBsxcwzZ87EyJEj0a1bN84mRuQAY8aMwZo1azBjxgy4uLhg5MiRRdY5d+4cvv76a+zevRsajQbvvPOODEmJiIjuWLNmDTIzMwEAZhcvZNZ8pMRtjD61kOPfAB6pVyCKIhYtWoRvv/2W55xERE7Cae94dO/eHd27d7frMZYuXQqDwYChQ4cWerKzefPmGDFiBGbNmoWFCxdizpw5ds1BREREha1Zs0Z6/Zi7EoHq+3eQu1vfaioczLFABBAVFYUrV66gQYMGdkpJRERERJXRgQMHkJGRAQDwUQId3UsuNH7MXYlV6WZkW4HU1FT88ccfdr+uRQ/m8OHDAO4U+P6zILjAvd5fsmQJJkyYgIULF+LJJ58s9jgeHh4AgNzcXADA2LFjC035aTAYAMAppu1WKBSoU6cO/vvf/yI0NBRvvPEGRo8ejd9//71M+xk2bJhUSE1ERI5x/vx5zJ8/H3FxcdIyi8oFt1o8C33gwz/IYVW7IKHtUPhc+xN+Vw5BgAiDwYBZs2bhjz/+wFtvvYXAwMCHPg4R3V+jRo0wc+ZMvPfee/j2228xdepU6aGCbt26ISEhAampqRBFEQqFAjNmzEDdunVlTk1ERFVZbGwsNm/eLI3TGnaHqFSXatvUxj3gnvY3BNGK8+fPY//+/ejRo4e9ohIRURmUrmqnktqzZw8AoF+/fkXe69+/f6F1iIiIyDGuXLmCY8eOSeP+3qV/Lqq6RlGoEGTFihXlmo0qnuTkZCxduhSjR4/GY489Bh8fH3h7e2P58uXlfqwDBw5g4MCBqFWrFmrUqIFevXph/fr1xW5z7do1jBw5Eg0bNkRQUBA6duyI6dOnw2w2l3s+IiIiKpnFYsG6deukce9qKqhK0TVFoxDQ665ZONatWweLxWKXjPRw5s2bhxEjRgCwFfn+61//woQJEzBr1izMnDkTX3zxBQYOHAhXV1doNBqMGTMGs2bNwqeffoq2bdsiKSkJL730Ei5fvlzscUJCQgAASUlJ93y/YHlZuwbb26BBg+Du7o79+/cjMTFR7jhERHQfOp0Oc+bMwaefflqoyNjgWxs3nhhRLkXGEkFARr1OiOv4Ksyu3tLiv/76C//973+xbt06XscgsrNhw4Zh06ZNaNWqFcxmMywWC0RRxOnTp5GSkgJRFNGyZUv8/vvvePnll+WOS0REVZjFYsH8+fOl62K53jWRHVz6GWjN7v7IqN1RGi9ZsgQ6na68YxIR0QNw2o7GjnDhwgUAtg7G/9SiRQsAQGJiInQ6Hby9vR0ZjYiIqEoSRRFLly6Vxo+6K1FLU7bnov7lrcIxva2r8V9//YWzZ8+iZcuW5ZyUKordu3djzJgx0the0yutWLEC7777LhQKBbp27QqtVov9+/fjjTfewJUrV/Dxxx8X2eb8+fN45plnkJWVhbZt26J27do4cuQIvvnmGxw5cgRr166FUllyB0UiIiIqPwcOHJAKQN0VQA/P0l866+mlwrbMfOSKQFxcHA4fPlxoBi1yDg0aNMC4cePQuXNnLFmyBH5+fvdcLyUlBf/+97+xaNEibN68Ga+99ho++ugjvPvuu1ixYgVmzZqFuXPn3vc4Bdcbo6Oj7/n+uXPnAADNmpX+ZpsjKBQKuLu7Q6/XIy4uDtWrV5c7EhER3cVsNmPbtm1YvXq11B0fAKxKDVIbdrdNSW2nax9G7xq4/vgI+F/ej2o3T0AAYDKZ8Msvv2DPnj0YPnw4OnTowKmtieykU6dOOHDgAC5duoSoqCipwDggIADt2rVDkyZN5I5IRESEjRs34tKlSwAAUVDgVrM+ZT4/Ta/XGZ5JF6A2ZiI7Oxs//vgjPvnkE55nEhHJrMp2NM7KykJWVhYAIDg4GHq9Hq+++iqGDh2K5ORkuLq6olq1agBQ6GlwIiIisp+oqCicPXsWgO0kZUgZuhkXCNUo0MnjTnHmkiVLpKnkqOoJCQnBqFGjsGjRIpw6dcou0yslJyfjww8/hEKhwPr167F+/XqsXLkSe/fuhbu7OyZPniwVktztnXfeQVZWFv7v//4P+/fvR3h4OKKiotCsWTPs27cPixcvLvesREREdH9msxmrVq2Sxs94qeCqKP0NDHelgN7V7py/rly5Evn5+eWakR7epEmTkJ+fj59++um+RcYAEBAQgEWLFsFgMOCbb76Rln/xxRcAgIMHDxZ7nMcffxzu7u6IiYnB1atXC72n0+lw5MgRCIKAp5566iG+m/J37do1JCcnA7BdMyUiIucgiiKOHDmC//73v1iyZEmhIuOcwEa43mkUMmu1s1uRsZRDpUFK096I6/gaTB6B0vLExER89913mDBhAq5cuWLXDERVXaNGjfDyyy9jzJgxGDt2LIYNG8YiYyIicgp///13odlm0+p3gdnDv8z7EVUaJDfvK40jIyOxb9++cslIREQPrsp2NNbr9dJrNzc3bNmyBZs3bwYArFmzBqNHj4a7uzsyMzMLrVuS5cuXl3qa9smTJ6NVq1YwGAyIj48v2zdARERUyeTn5+PHH3+Uxt09lahexm7GBZ7zUeGo3gKzeOdD7aOPPlpeUSuN0NBQuLm5yR3Drrp3747u3bvb9RhLly6FwWDA0KFDC3UtbN68OUaMGIFZs2Zh4cKFmDNnjvReREQETp06hRo1auCjjz6SllerVg0TJ07E0KFDsWDBAowaNcqu2YmIiOiObdu2ISUlBQDgqUChouHSesZLhd1Z+dBbgaSkJOzatQt9+/YteUNymFOnTsHLy6tURbTVq1eHl5cXoqKipGXBwcHw8PCQinHvx8XFBa+//jrmz5+Pjz/+GCtXroRGo4Eoihg/fjyMRiP69++PGjVq3HP7yZMnY+rUqQCAzZs3o0uXLmX4LosXFhaGXr16oU2bNoWWx8fH4z//+Q8A4NFHH0XNmjXL7ZhERPTgzpw5g19++QWXL18utDzPzRcpjXvCEFDf4ZmM3jVw47E3UO3mCfhd/QPKfCMA4OzZs/jwww/RqVMnvPzyywgNDXV4NiIiIiJyPKPRiB9++EF66N7oVR0ZdR574P0Z/OpCV+MReMf9BQD4+eef0aRJE55fEhHJqMoWGouiWGj82GOPoWHDhsjNzcXTTz9daJ2ytN+/ceMGjhw5Uqp1CzoqExEREbB//36kpaUBANwUwBAf9QPvy0+lQL9qKmzQ2T7Mbtu2DS1atIC7u3u5ZCW62549ewAA/fr1K/Je//79MWvWLGmdf27zzDPPQKlUFnqvR48ecHd3x7Vr13D16lXUr+/4G4ZERERVTVZWFtasWSONB3qry9TNuIC7UsCz1VRYlWE7D125ciWefPJJeHh4lFtWejiCICArKwu3bt1CUFBQsevGxcUhKysLnp6e0rL8/Hzk5uZKM6EVZ/z48Thw4AD27t2L9u3bo3379jh//jxiYmJQvXp1hIWFPfT3A9gKh3ft2gXgTnOFW7duSdc4AeD777+XCos3bdqE7777DjVq1ECLFi3g4eGB+Ph4nDx5EkajESEhIZg/f365ZCMiogd38eJFLF++HGfOnCm03KJyQXr9ztDVbAcolPfZ2gEUCmTW7oDs6s3hd/UPVIv7C8Lt+2pHjhxBREQEevTogRdeeAEBAQHy5SQiIiIiuxJFET/++KM0W7xVqUZSywEPfa6a2vgpuKXHQmNIh9FoxLRp0zB16lRotdryiE1ERGVUZQuN777BYzAYEBQUhOPHjxdap2DqqbJ0+qtVqxY6depUqnW9vLyk/Tds2LDUxyAiIqps4uPjC01585yPGp7Kh5vqsX81FQ7nWJCaL8JgMODAgQMYO3bsQyYlKurChQsAbB2M/6lFixYAbFOI6nQ6eHt7AwCio6Pvu41SqUSTJk1w4sQJnD9/noXGREREDrB8+XKpQDNIJeAprwe/EdLTS4U92bbz0OzsbKxatQojRowor6j0kDp27Ii9e/di9OjRCA8Pv+/DiNnZ2XjnnXcAoNDsKBcvXoTFYrlvJ+K7eXp6YufOnZg6dSo2bdqELVu2wM/PD6+//jo+/fTTEgudS+vatWuFui4DQF5eXqFl2dnZ0uuPP/4Yu3fvxokTJ3DixAnodDpotVo0atQIzzzzDN555x3pvJWcS05ODv766y+YTKZ7vq/RaNC2bVvpujMRVUxXrlzBypUrceLEiULLrQolMmu2R3q9J2BVu8qUriirxg0pTXtDV6s9/C8fgEfyRdtyqxV79uzBgQMH0LNnTzz33HPw8/OTOS1R5Td58mTk5OTg22+/lTsKERFVETt37sSBAwekcXKT3jC7P/x5n6hUI7HVv1DzWDgUVgtiY2OxcOFC/Pe//y1Tw0giIiofVbbQ2MvLC15eXsjKykJSUlKhziQAkJubi8zMTAAo1Y2DAsOGDcOwYcPKNSsREVFlZrFYMGfOHGkqnXoaAU95Pnw3Fq1CwOt+aky/lQcAOHDgALp06YJ27do99L6JCmRlZUmzVAQHB0Ov1+Ott96C0WjEvHnzEBgYiGrVqiEzMxNxcXFSwUZCQoK0DQB88803OHToECZNmoRHH31UWh4fH+/4b4qIiKiKuXz5stQNFgBe9lND9RA3KzQKAS/5qjEn2XYeum3bNvTo0QP16tV76Kz08MaPH4+DBw9i7969aNu2LQYNGoQ2bdrA398foigiNTUVp06dwvr165GRkQGVSoXx48dL2//+++8AgCeeeKJUx/P09MSkSZMwadKkMue8+7jFWbBgARYsWFDqfQ8YMAADBgwoUx6SnyiK+Prrr3Hp0qVi16tTpw5++OEHKBQKByUjovJy9epVrFq1qkhTHFEQkBXSCun1uyDfxXkfJDC7+yGxzRBoMxPgf/kA3NJjAdhmA9i+fTv27NmDXr16YciQIfD19ZU3LFElFh4ejpSUFBYaExGRQ8TExGDRokXSOCukFbJDW5Xb/vO8gpDSuCeCLuwAAOzbtw8NGjRA3759y+0YRERUOlW20BgAmjZtiqNHjyI6OrpIR+Fz584BAKpXr84OHkRERHa0efNmxMTEAACUAN7w10BRTk+htnFT4jF3JSL1FgDA/PnzMXPmzCIPGBE9qILOh4BtlootW7Zg8+bNAIA1a9Zg9OjRcHd3R2ZmZqF1C167ubkhPT0d06dPBwDMmDEDq1atkjrr3b1NaSxfvhwrVqwo1bqTJ09Gq1atYDAYWNBMRERVVsFDb+Ltab5buyrQ1vXhi/M6uCnQ3EWBaKMVVqsVM2fOxLvvvsvCv9tCQ0PLNINYeXrkkUewcuVKvPXWW0hJSSl0M+xuoijCz88PCxYsQNu2baXlQUFBGDt2LIYMGeKoyEQAgNTU1BKLjAEgNjYWCQkJZWqeQUTyunr1KlavXo1jx44VWi4CyA5ujvT6XWB2rziFuaZqIYhv/zJc02Phd+UQXHW2KbTNZjO2bt2KXbt2oVevXhg8eDA7HBMRERFVYGlpaZg6darUTMroGYTkpr3L/ThZNdrCNTMeXglnAQCLFy9GrVq1pFlFiYjIMap0ofFTTz2Fo0ePYtu2bRg0aFCh97Zs2QIAePrpp2VIRkREVDXExsbi119/lcYDvFWorS3f4otX/dSIzrUg22r7wLtw4UJ88MEHnFKHykVBUVKBxx57DA0bNkRubq50Hlmwzt3/5u7ezsfHB3369MGRI0cwdOjQ+25TGjdu3MCRI0dKtW5BJ2YiIqKq7PDhw9IDN2oBeM1PXS7niYJgm13j03gT8mH7HR0REYFOnTo99L7p4T311FM4ceIEVqxYgV27duHChQtIT08HAPj6+qJp06bo1asXXnrpJVSrVq3QtiNHjpQjMhGuXLkivTa7eMHgV7fQ+67p16HJ1UnrstCYyPkVV2CcE9wU6fU6I88jQJ5w5SDXtw7iOtSGW9o1+F49BNdM2+xO/yw4ZodjovJjMpmQkZEBrVb7wPvIyclBWFgYNm7ciKSkJPj5+aFXr1747LPPEBDw8D+TStvg6+zZs6hZs+ZDH4+IiOzDZDLhu+++Q0ZGBgDAonZFYushEJXq8j+YICC56TPQ5KTAJSsJFosFU6dOxbRp06QZQomIyP4qZaHx5MmTMXXqVAC2LoldunS553qvv/46ZsyYgXXr1mHYsGHo2rUrACA6OhqLFi2CIAgYNWqUw3ITERFVJSaTCdOnT5eecq2rETDAu/xPTbyUAt7w12DW7amrDx8+jLZt2+Kpp54q92NR1ePh4SG9NhgMCAoKKjLFqcFgAIBCXfsKtjMYDBAEAStXrixxm9KoVatWqQuYvLy8pGP8c3YPIiKiqiAxMRG7du2SxoO8VQhUl99Db9U1CjzrrcLvOtv57o4dO9CnTx8EBQWV2zHowXl5eeGtt97CW2+9JXcUolK5u5txdnAzpDXqUeh93yuH4Pf3YWndbt26OTIeEZVBbGwsVq1ahcjIyCLvZQc1sRUYewbKkMwOBAEG/3ow+NWFW+pV+F09DJeswgXHu3fvxjPPPIPBgwdzhlGih5Ceno4JEybAbDY/cIfHnJwc9O7dG9HR0ahVqxb69u2L8+fPIzw8HLt378aePXtQvXr1h8r50ksv3fe92NhYREREoE6dOnxoiojIiVmtVsyaNQtXr14FAIiCAomt/4V8N2+7HVNUqpHY5jnUjFwCVZ4e2dnZmDRpEqZOnSrNEkpERPbltIXGSUlJeOWVV6RxwYXUadOmYcmSJQCA1q1bS9NMP4igoCCEhYXhvffew+DBg9GtWzdoNBrs378fRqMRn3zyCVq2bPlw3wgRERHd06JFi3Dz5k0AgEYA3grQQGWnLsPt3ZXo6qHEwRwLAOCnn35Co0aN2BGBHpqXlxe8vLyQlZWFpKQkeHp6Fno/NzcXmZmZAFDo4nhISAjOnDmDpKSke+63YHloaGiZ8gwbNgzDhg0r0zZERERVkdVqxZw5c5CXZ3sYraZGQN9q5X+Z7FlvFY7qLUgwizAajZg3bx6++uorKBTlO4sHEVV+MTEx0mtjtaKfE4zeNe65LhE5j/j4eKxYseKeMxFVugLjfxIEGAIawOBf/3bB8R9wyUoEAOTl5WHTpk3YuXMn+vXrh0GDBkkPRxNVNa1bt36g7XJzc5GWlgZRFCEIAt5///0H2s/kyZMRHR2NHj16YNWqVdBoNBBFEW+//TZWrVqFTz75BMuWLXugfRdYsGDBfd8bNWoUIiIi8PLLL3NGQiIiJ7ZixQr8+eef0jilSU/k+tax+3HzXbyQ2GYIQqOWQ2G1IC4uDtOmTcMXX3wBpVJp9+MTEVV1TltobDKZEBUVVWR5bGwsYmNjAeChpn0p8OqrryI0NBQzZszA8ePHYbFY0KJFC7z99tsYMmTIQ++fiIiIitq/fz92794tjV/1UyNEY99ii1f81LhksiLRLMJkMiEsLAzTpk2Di4uLXY9LlV/Tpk1x9OhRREdHF+kMfO7cOQBA9erVC3Xlad68OXbs2IHo6Ogi+7NYLFJhQLNmzewXnIiIqArbvHkzzp8/DwBQABjlb5+H3tSCgJH+GnydaIII4MyZM9ixYwf69u1b7sciosrLbDZLnaIAwOh9j0LjaiEQAQiwXUPPzc2Fq6ur40IS0X2lpKRg1apV2L9/P6xWa6H3sgMbI71+l8pbYPxPxRQcm0wmrF+/Hjt27MCgQYMwYMAAXrejKufGjRsQBAGiKD7Q9vXq1cOECRPQv3//Mm9rNBoRHh4OAAgLC4NGowEACIKAKVOmYMOGDdi8eTPi4uLs0m1Yp9Nh8+bNUCgUxXY9JiIiee3duxe//fabNNbVao/Mmu0cdnyjdw0kN++P4LMbAQCnTp3CTz/9hLfeeosPqRAR2ZnTFhrXrl0bOp3ugbYdP348xo8fX+r1e/TogR49epS8IhERET202NhY/Pjjj9L4sdvdhu3NRSFgdKAGXyWYYBaBmzdvYv78+Rg3bhw/eNJDeeqpp3D06FFs27YNgwYNKvTeli1bAABPP/10kW2mT5+OHTt2YOrUqYWetN63bx/0ej3q1KmD+vXr2z0/ERFRVXPjxg38+uuv0vhZbxXqaO330FsDFwX6VlNha2Y+ACA8PBytW7cu88wFVP4yMzNx/fp16PX6IoVf/9SpUycHpSIq6tKlS1IH9jw3H1i0HkXWsapdkOcRCG1OMqxWK2JiYtC2bVtHRyWiu+j1eqxbtw5btmyR/g8XyAlohLQGXZDnGSRLNsFihkfyRahydch39UFOYCOISrUDA9wpOHZPuQy/q4egzU4GABgMBqxYsQLbt2/Hiy++iKeffpod6qhK8fb2LnPXYI1Gg+rVqz/UDH4RERHQ6/Vo0qQJGjRoUCRTp06dsHfvXuzduxevv/76Ax/nftasWYPc3Fx069aNMxESETmps2fPYv78+dJY718fKY2eLmYL+8iu3hxqfRr8/j4MANi5cyeqV69e5B4dERGVL6ctNCYiIqLKJzs7G5MnT4bJZAIAhKgFvOmvdlihby2NAv/2U+PnVDMA4NChQ2jQoAEGDBjgkONTxTJ58mRMnToVgK3rYZcuXe653uuvv44ZM2Zg3bp1GDZsGLp27QoAiI6OxqJFiyAIAkaNGlVom8cffxytWrXCmTNnMG3aNPzf//0fAFuxy5dffgkAeOutt+z1rREREVVZZrMZM2bMgNlsOx+srREwyNv+l8cGe6tw2mBBnFlEXl4eZs6cicmTJ0Ol4qU5OezatQtTpkzBqVOnSrW+IAhIS0uzbyiiYtw9E0quT637rpfrWwvaHFuh3rlz51hoTCQTi8WCPXv2YPny5cjKyir0nt6vLtIadIWpWohM6QBtZgJCTq6FKk8vLcvXuCOh7VDH5xIE6AMbQR/QEB63YuB35SA0hnQAQEZGBhYsWICtW7fizTffROvWrR2bjUgmGo0GnTt3dvhxC843mjdvfs/3W7Rogb1790ozw5S3X375BQAwbNgwu+yfiIgezs2bNzFlyhRYLBYAgMkjEImtBgEK+85Yez/p9btAnZsBr0Tb76+lS5ciKCgIjz/+uCx5iIiqAt7NICIiIoewWCz4/vvvcevWLQCAiwC8F6iBi8Kx3YSf9FThismK/dm2D8Lh4eGoVasW2rRp49Ac5BhJSUl45ZVXpPGlS5cAANOmTcOSJUsAAK1bt8b06dMf+BhBQUEICwvDe++9h8GDB6Nbt27QaDTYv38/jEYjPvnkE7Rs2bLQNoIgYP78+ejTpw+mTJmCXbt2oXbt2jhy5AiSk5PRtWtXjBgx4oEzERER0b2tWLEC165dAwCoBeCtAA1UDnjoTaMQ8FaABl8mmGABcPnyZaxZswYvv/yy3Y9NhW3cuBFvvPEGRFGEKIrQarXw9/eHQqYbY0SlcebMGel1rk/t+65n8KkN7xtRRbYhIse5ePEifvzxR+l8o4DRqzpSG3ZHrl8deYLdJljMRYqMAUCVp0fIybWI7fKOYzsbS8EE5AQ3RU5gY3glnIHf1UNQmXIA2Gaj+PLLL/H444/jjTfeQEBAgOPzEVUBCQkJAIDg4GAAwIYNGzBr1iy89tprGD58uLQ8Pj6+3I996tQpnD17Fl5eXujfv3+Zt1++fDlWrFhRqnUnT56MVq1awWAw2OV7ISKqjHJycjBnzhzo9bZzyHytBxIeeR6iSitfKEFAcvN+UOdmwlUXB1EU8cMPP+Dtt99mZ3xyaqGhoXBzc5M7BtEDYaExEREROcSSJUtw+vRpafyfAA1CNfLczH/VT42beVZcMYmwWq2YNm0awsLCOH11JWQymRAVFVVkeWxsLGJjYwEAWu3DXwh59dVXERoaihkzZuD48eOwWCxo0aIF3n77bQwZMuSe27Ro0QIHDhzAd999h4MHDyI6Ohq1atXCyJEjMWbMGHY4JCKqpFJTU/H333/f931/f3/UrVvXYTM+VCVnzpzBhg0bpPHzPmrUcOD5aG2tAs/5qLA6Ix8A8Ntvv6F169b37RhG9jF9+nRYrVZ06NABYWFhfOCQnJ7JZEJMTIw0NhRTpJjrWwsiBAgQcfXqVeTk5MDDw8MBKYkoNzcXv/zyC7Zv3w5RFKXlZhcvpDbsjpzgZoATnN95JF8qUmRcQJWnh0fyJWRXl/HcRKFAVo02yK7eHN7Xj8H32p9QWGwzUURERODkyZN45ZVX0LdvXz4kRJVSnz594OPjI8uxC4rHXF1dAQBhYWE4f/48rly5guHDh8Pd3b3QeuVp2bJlAIAhQ4ZIxy+LGzdu4MiRI6Va95+d5omIqHhmsxnh4eFIT7fNOmFVqpHQ9nnku3jJnAwQFSoktHkONY8thcaQAbPZjP/973947733ZPt9SkRUmbF6gYiIiOxu+/bt2LJlizT+l7cK7d2VsuVRCwLGBGoxIcGIDIvt4ui3336LqVOnwtPTU7ZcVP5q164NnU73QNuOHz8e48ePL/X6PXr0QI8ePcp0jPr162Px4sVljUZERBXUzZs38f7778NsNhe73qhRo9C3b18HpaoasrKyMGPGDKnwp6WrAr28HH8+2reaCmdyrbhgtMJqtWLGjBmYOXMmCwEd6NKlSxAEAeHh4QgJkW/aeqLSOnv2LPLzbQ8omDwCYNHe/+eFVe0Kk1d1uGQlwGq14vTp0+jUqZOjohJVWWfPnsXs2bORkpIiLbMqVMio+wQy6jwqT4fg+1DlZjzU+44iKtXIqNcJWSGt4H95P7wSzwEAjEYjFi1ahIiICLz33nsICgqSOSlR+SptV157uPshCQB4/vnnMW3aNAwbNqzQ++X9UKzBYMBvv/0GANKxyqpWrVqlPufx8rIVxrm5uaFhw4YPdDwioqpCFEXMnDkT169ft40BJLUcBJNXsLzB7mLVuCGh7fOoeXQplPlG5OTkYMWKFZg8efIDPbxCRET3x0JjIiIisquTJ0/i559/lsYd3BQY5C3/KYi3SsDYIC0mJZpgFm1Tw02ZMgVfffUV1GrnuQFERERElcfOnTtLLDIGgM2bN6NPnz7salxORFHEnDlzkJFhK5zxVACj/DVQyPDnqxAEvBWgwafxRuittg7X8+bNw8cff8y/bwepVq0ajEYji4ypwjhx4oT02uBXr8T19f714JKVIG3LQmMi+7FYLFi5ciXWrVtXqEBP798AyU17Id/VW75w95HvWnxnt5LedzSLiydutRyAzBptEHh+O7T6NABAdHQ0xo0bh3feeQedO3eWOSVR5VDw8GNubi4AYOzYsRg7dqz0vsFgAIByn+p7w4YNyMrKQuPGjdG+ffsH2sewYcMeuEiZiIjub/369Th48KA0Tm38NPSBzveQhtndD4lthiD0xEoIohWxsbGYOXMmPvnkE86CQURUjuSv8iEiInIgnU6H2bNnIzExsdj1GjdujHfffZcFpw8pNjYWYWFhsFqtAIC6GgH/CZCnqONe6mkVeCtAgznJeQBsNynmzZuHMWPGsNCDiIiIypXFYik0latVoYLBt440Vljz4ZYeCwBITEzE1atX0aBBAwenrJy2bduG48ePS+NRARp4q+Q71/NVCRjhr8Gs2+egERER2LVrF3r37i1bpqqka9euWLduHVJSUhAQECB3HKJiiaKIqKgoaaz3r1/iNvqABvD7+zAAW6GxxWKBUinfjEJElVVWVhamTZuGs2fPSsssalckN+mFnOBmgJNeV8oJbIR8jTtUefoi7+Vr3JET2EiGVCUz+tTCzcffhM/fR+B77U8IogiDwYDvv/8ely5dwuuvv86fdUQPqeBBvKSkpHu+X7A8NDS0XI/7yy+/AHjwbsZERGQfx48fx6+//iqNM0PbQFerg4yJipfrWxvJzfogKHorAODo0aNYvXo1XnrpJZmTERFVHiw0JiKiKuXXX3/FX3/9VeJ6iYmJqFevHgYMGOCAVJVTSkoKvvnmG6kDgp9SwPtBWmgVznWjpaO7EkN9VFibYZuK9sCBAwgMDMTLL78sczIiIiKqTM6cOSN11M3XuOHak+8B/+ioEXR2kzQt9IEDB1hoXA6uXbuG8PBwadzbS4k2bvIXobR3V6KHpxL7si0AgMWLF6NZs2aoWbOmzMkqv88//xz79u3D2LFjsWjRIk6jSU7t2rVrSElJAQBYVFrk+pT8M8LkVV0qIszMzMTly5fRpEkTe0clqlJu3bqFiRMnIiEhQVpm8K2DpJYDYNF6yJisZKJSjYS2QxFycm2hYuN8jTsS2g6FqHTepguiQoX0Bl2hD2iI4DMbocm1nVtv2rQJCQkJ+Oijj6DVamVOSVT+7n5gtTQEQYCbmxtCQ0PL9GBd8+bNAdiacdzLuXO2z6rNmjUrU57iXL58GREREVAqlXjhhRfKbb9ERPRwEhISMGPGDGnWDoNPTSQ37e20D9MVyAptDU1OCnyuHwMArF69GvXq1cOjjz4qczIiosqBhcZERFRl5Obm4vDhw6Vef8+ePXj22WfZ2fYB5OTk4JtvvkFamm06Q1cB+CBY3s5xxXm2mgopZhEHcmyFHmvWrIG/vz969eolczIiIiKqLHbv3i29zg5uXqTIGACyQ1pKhcYHDx7Ea6+9Bo1G47CMlY3JZML06dNhNpsBALU0Ap73cZ7imWG+alw0WhFvFpGXl4fp06cjLCyMf+d2duTIEYwcORKzZs1C8+bNMXjwYNSpUwd+fn7FbscOOCSHo0ePSq8N/vUBRSkelBAE6AMaolr8KQBAZGQkC42JylF8fDw+//xz6QEyAEir3wXp9To7feFFAVO1EMR2eQceyZegys1AvqsPcgIbOXWR8d1M1UJw87HhCIreAo/kSwCAqKgofP311/jiiy/g4uIic0Ki8tW/f/8HvkdRt25djBgxAv/5z39KnDr+8ccfh7u7O2JiYnD16lXUr39nJgWdTocjR45AEAQ89dRTD5TlXpYtWwYAePrppxEUFFRu+yUiogdnNBoxZcoUGAwGAIDZxQtJrQeX7vOoE0ht2AOanBS4p10DAMyaNQvTp09H9erVZU5GRFTxCTqdTpQ7BBERkSNs3boVP//8MwDAqlDixuMjABS+QKewmFArcok0njRpElq0aOHImBWe2WzGxIkTpQ4HSgAfBWvQ3NW5P4DmiyJm3MrDmVwrAEChUGD8+PHo0MF5pwEiIiKiiiE9PR0jR46ExWJ7qOn6EyOR53GPzlKiiDp/zIfamAkAGDNmDLp37+7IqJXKggULsHPnTgCARgC+CdEiRFP8zXVHu5lnxZcJJphvX53r378/RowYIW+oSs7HxweCIEhdeUpbtJGenm7PWET39N577+HGjRsAgMRW/0JOcNNSbeeWcgWhJ9cAAIKCgvDjjz/yIWqicpCWloZPPvkEqampAGzXF2+1HIicIBbzy0IU4Xf5AHxjI6RFbdq0weeffw6Vin2WqPJo2bIlBEFAXFycdA7r4uICHx8fiKKIjIwMmEwmAIBWq0VgYCAsFgvS0tJgMpkgCAJ69uyJlStXllhs/Omnn2L+/Pl46qmnsHLlSmg0GoiiiHfeeQcrV65E//798euvv95z28mTJ2Pq1KkAgM2bN6NLly7FHstsNqNZs2ZISUnBsmXLOLskEZGTmD17Nvbt2wfAdr4b1/F1mLyCZU5VNoo8A2pFLpGusdatWxdTp07lw/0P4MaNG0hOTr7v+6GhoSziJqpC+EmbiIiqBIvFgs2bN0vj1EZPwex+745VmTXaolrcSQC2qfdYaFx6VqsVM2fOlIqMAWBkgNrpi4wBQCUI+G+gBt8mmhCbJ8JqtWLatGn45ptv0LhxY7njERERUQW2fft2qcg417vmvYuMAUAQkFmzLfwvHwBgOxft1q0bi8MeQGRkpFRkDACv+qmdrsgYAGpqFHjZV42labauy1u2bEGbNm3Qvn17mZNVXk888QT/T1GFcPPmTanI2KpQQe9fv4Qt7sj1qwOLSgtlvgm3bt3C1atX0aBBA3tFJaoSzGYzpkyZcleRsRoJjzyPXN/aMierwgQBaY26w6JxRcAlWzHMqVOnEB4ezge3qFL566+/MHz4cCQmJuLdd9/Fyy+/jEaNGknvi6KIixcvYvny5Vi4cCGefPJJzJ49G6IoYu/evRg7dix2796NpUuXYvjw4cUea/z48Thw4AD27t2L9u3bo3379jh//jxiYmJQvXp1hIWFldv3tW3bNqSkpMDPzw99+vQpt/0SEdGDO3DggFRkDAApTXpXuCJjALBq3JDYejBqHFsGhWjBtWvXEB4ejlGjRskdrUI5ePAgZsyYUew6CoUCEyZMQJs2bRwTiohk5Xx3WIiIiOzgzz//RFJSEgDAonJBVkjL+66bUetOB9tjx44hNjbW3vEqBVEUsXjxYhw5ckRa9oKPCp08Ks5zTS4KAR8EaRGgshUe5OXlYdKkSYiLi5M5GREREVVUubm52L59uzTW1Sq+gDQztA2sCtv507Vr13D69Gm75quM0tPTMW/ePGncwU2Brh7O++DbU55KPOJ25xLdnDlzoNPp5AtUyW3duhVbtmwp8xeRo/3xxx/Sa71/fYiq0ndeEhUq6AMa3nNfRPRgVqxYgcuXLwMAREGBxDZDWGTsJHR1HkNavc7SeMuWLYiKipIxEVH5mjJlCrZt24Z58+bhq6++KlRkDNhm6GjSpAm++eYbzJ49GytWrMDUqVOhVCrRq1cvzJgxA6IoYtWqVSUey9PTEzt37sTo0aMB2P4/ZWZm4vXXX8eBAwcQEhJSbt9XQWfkoUOHQq1Wl9t+iYjowdy6dQsLFy6UxlnVWyArtLWMiR6OqVp1pDZ+Whpv27aN54hlkJWVhcWLF5e4ntVqxY8//ijNrkBElRsLjYmIqNKzWCxYvXq1NNbVagdRpb3v+mYPf+QE3rlYV5oLcASsW7cOW7dulcY9vZToV63iFBkX8FYJ+ChYA8/bZ0nZ2dmYOHEi0tLS5A1GREREFdK2bduQk5MDAMhz9UFOUPEzJVg1boUu4q9Zs0aaHpdKZrVaMXv2bGRnZwMAfJUC3vTXOHUHW0EQMMJfA+/btdCZmZmYO3cu/96JqjBRFAsVB+dUb17mfWQH39nm8OHDUmd9Iiq7mzdvYuPGjdI4tVEPGPzryZiI/im9fpdC13N/+ukn5OXlyZiIqPysXbsWbm5ueP7550tc94UXXoCrq2uhexo9evSAUqnEhQsXSnU8T09PTJo0CWfOnEFycjIuXLiAWbNmISgoqNjtxo8fD51OB51Ohy5dupR4nLVr10Kn02HKlCmlykVERPZTcD0tNzcXAJDn5oPkps8ATnw9rTQyaz5S6Bxx7ty5yMrKkjFRxSCKIn7++edCf1ZNXRRo5Xrnq4H2TrlhUlISli9fLkdUInIwFhoTEVGlt2/fPqkjrUWlha52xxK3Sb+rC0ZkZCQuXrxot3yVwd69e6UOBADQ0V2JV3zVTl3QUZzqagU+CNZCczt+SkoKJk6cKBUJEREREZWGXq/Hhg0bpHFG3ccBoeRLMRl1HoV4e73z58+zq3EZ7NixA6dOnQIACADeClDDXen856SeSgGj/O90K42KisKePXtkTEREcrp48SISExMBABalBnr/+mXeh8GvDvLVrgCAtLQ0nDt3rlwzElUla9asgdVqBQAYfGpBd9dsaOQkBAG3mvWF5fbPveTkZOzdu1fmUETlIzk5GaIolupBRFEUYbVacevWLWmZWq2Gq6srzGazPWMSEVEFtm3bNkRHRwMAREFAUsuBZZpVx2ndPkfM17gDAHQ6HRYtWiRzKOe3Z8+eQg8/jwvS4NPqWnwUfOfryxAt3vC7MyPBpk2bcPz4cTniEpEDsdCYiIgqNb1eX+gJuow6j8J6+4JzcUxewcgOaiqNFy9eLN1QoMKOHz9eaGrqpi4KvBWghqKCFhkXqK9VYEygBgWTbN+4cQOTJ09mNxQiIiIqtQ0bNkiddc2u3sgKaVmq7fJdvZEV2koa//LLLzwXLYWEhASEh4dL4z7VVGjqqrz/Bk6mpZsSvbzu5F28eHGhAgEiqjoOHDggvc4JbgpR+QDTiSuUhToh79+/vxySEVU9mZmZ+PPPP6VxauOnKnxnt8rKqnFDer1O0njHjh0ypiEqP6GhocjNzcXvv/9e4rpr1qyB0WhEaGiotCw9PR05OTkIDAy0Z0wiIqqgUlJSCjWTSq/7BEzVQux6TMFihmfiOfj8fRieidEQLPZ7GMaqcUNy877S+NChQ4iKirLb8Sq6mJgYLFy4UBo/6aHEI273vr7azVOJ1q53yg5nzJiBmzdv2j0jEcmHhcZERFSprVy5EjqdDgBg1npCV/vRUm+b2rAbrILtxPnSpUvsgnEPMTExmDZtmlT4UksjYGyQBupKcsOllZsSI/zv3NCNjo7GDz/8wClniYiIqEQpKSmFpthOq/8koCh90Wt6vc6wKlQAgKtXr+LgwYPlnrEysVgsmD17tvRQWE21gOd8VDKnKrsXfNQIUdvOpY1GI+bMmcMiczvZtm0b3nzzTXTv3h0dOnRAmzZt0Lp163t+tWnTRu64VIWYTCYcOnRIGmdVL91DKvdy9wMuERERMBgMD5WNqCqKioqSrgPleteAyau6zInKhyOLOxwpK7S1dA59/fp1JCUlyZyI6OG98MILEEUR7777LubMmYP09PQi66SmpuL777/H2LFjIQgCXnjhBem9gs+SzZo1c1hmIiKqOBYtWgSj0QgAMLn7I+OuB7fsQZuZgDp/zEfw2U3wv3IIwWc3os4f86HNTLDbMfUBDZFVvYU0/vnnn2Eymex2vIrq5s2b+Pbbb5Gfnw8AqKEW8Krf/R98FgQBowI08Ls9m5zBYMDEiRORkpLikLxE5HgsNCYiokrr0qVL2Lp1qzRObfxUmboA5bv5QFfnTmFyeHj4PS/iVVVxcXH49ttvpWKOAJWAj4K0cFNUjiLjAp09VXjR906RSmRkJBYtWlSqqeqo9I4dO4YffvgBH374IUaPHl3oPb1ej9jYWMTGxsoTjoiI6AEsXbpUOk8yegYj+66ukqWR7+IFXe2O0njZsmXIzc0t14yVydatWxETEwMAUAL4T0DFfPhNoxDwnwCNdMHu3Llz7MZnB59++ileeeUVrF+/HqdOncKVK1dw/fp13LhxQ/q6efNmoTGRo9xdEJzn6gOjT80H3pfJMxgmjwDba5Op0NSnRFQ6BecXAKAPaCBjkvIjR3GHo1hVWuT61pbGFy9elDENUfkYN24cnnzySRiNRnz55Zdo2LAhWrVqhR49eqB79+5o2bIlGjdujO+++w4mkwmdO3fGuHHjpO1Xr14NAOjevbtc3wIRETmpkydP4ujRo9I4uVkfiAr7PbgvWMwIObkWqjx9oeWqPD1CTq6168NvqY2fgkXlAgC4desWNmzYYLdjVUTx8fGYMGGCNDufpwIYF6SBSwn3/b2UAsYFaaC9vVpqaiomTJiAtLQ0e0cmIhmw0JiIiColk8mE2bNnS8Wger+6yAlqWub9pNfrhDxXb9s+9HosWLCABaawTbc2ceLEQh82Pg7WwFtV8Yo5SqNfNTX6eN35YL19+3asW7dOxkSVx/Xr19G7d28888wzmDRpEhYvXowVK1YUWkev16NTp05o164dTp8+LVNSIiKi0jt9+jQOHz4sjVMaP/1AU2yn130c+VoPAEBGRgZWrlxZbhkrk6SkpEJTPA7wVqG2tuJe8qqnVaB/tTvnnsuWLWMnkHK0c+dOLFiwAO7u7vj888+xZs0aAICPjw82bNiAxYsXY8SIEXB3d4eXlxdmz56NTZs2yZyaqpLdu3dLr7NCWz/Q7w+JINj2cY99E1Hp3N0R1+QRKGOS8iFncYej3P33xI7GVBmo1WqsW7cOX3zxBfz8/GC1WnHz5k2cPHkSp06dQlxcHKxWK/z8/PD5559j3bp1UKvvNFxZtmwZkpKSMHLkSBm/CyIicjYWiwWLFy+WxlkhrR7qQdfS8Ei+VOQ8tIAqTw+P5Et2O7ZF447Uht2k8bp165Cammq341Uk165dw2effYaMjAwAgIsAfBisRaC6dNdXa2sVGBOoQcFcfomJifj00095Lk5UCVXcuy5ERETFWLp0KeLi4gAAVqUayc36PNDNOVGpRnKzvtL4+PHjVf7GXG5uLiZNmiQVO2gE4INgLYJL+WGjonrRV4XH3e9Md/7rr79i//79Miaq+NLT09G/f38cO3YM9evXx7///W+4u7sXWS8wMBDDhg2D1WrlE8ZEROT0TCYTfvzxR2mcFdwcRt9aD7QvUaVFaqMe0njLli24evXqQ2esTERRxIIFC6Tu0TXVAgZ426/ziqMM9FYhRG37/GI0GrFw4UI+8FhOwsPDIQgCZs2ahQ8++AA9e/YEAGg0GnTt2hWDBw/GtGnTcOTIEfj5+WHSpElo0KBydLAk53fz5k1ER0cDAERBQFZIy4feZ1b1FrAqbJ9lr1y5gitXrjz0PomqkoJppAHAqnaVMUn5kLO4w1GsahfpNWcEocpCpVLh/fffR0xMDHbu3ImZM2diwoQJmDBhAmbOnImdO3ciJiYGH3zwQaEiY8B2nqvVaiFUwBlfiIjIfvbs2SPdS7coNYWKcO1FlZvxUO8/rKwabWD0DAIA5OXlFWl8VBWdPXsWn332GXQ6HQBAKwAfBmtQr4xNHFq6KTH6rmLjW7duYfz48byWTVTJVO6KICIiqpKOHTuGbdu2SeOUxk8j/3ZX4geR61cHuprtpPGiRYuq7NS5+fn5CAsLw99//w3AdiLx30AN6lfgjnGlpRAEjApQo5nLne917ty57LD7EGbOnIm4uDgMHDgQERER+OGHH+5ZaAwAL774IgDbNMJERETObOXKlUhMTAQAWFRapDZ+6qH2lx3cHIbb0z9brVbMnTsX+fn5D52zsvjjjz+k8zEBwIgADVSV4Aa6RiHgTf87BQJRUVGIjIyUMVHlcfLkSQDAs88+W+x6tWrVwowZM5CcnIywsDBHRCPCzp07pdf6gEawuHg+9D6tGrdCMzzdfQwiKtndBXuVoduv3MUdjnD339M/Cy6JKjqlUomOHTvi9ddfx7hx4zBu3Di8/vrr6NixI5RKZck7ICIigq1RwqpVq6RxRt3HYbk9q5o95bv6PNT7D01QFLpWu3//fly/ft2+x3Rie/fuxcSJE2EwGAAAbrdnMG7s8mDnFO3dlRgTpMHt3gnIyMjAZ599hqNHj5ZXZCKSWeWvCiIioiolMTERM2fOlMY5AY2QFdrmofeb2qgHTO7+AGxPOE6dOlU66a4qRFHEwoULpRvzADDcX402blXnAqZKEDAmSIOaGtsnJIvFgqlTp1bpD6EPY/v27RAEARMnToRKVXznwTZt2kCtVktPVxMRETmjixcvYtOmTdI4tVGPh79ILwhIbtYHVoXtd+W1a9ewbt26h9tnJWEwGLBkyRJp3NNLWeZuG86skYsSPTzvnGsvXry4UFdFejAZGRnw9vYuVHikUqmg1xft7vjkk0/C1dW1ys9qQ46Rm5uLffv2SePMGm3Lbd937+vgwYPIyckpt30TVXZ+fn7Sa3UlKMKVvbjDAe7+e7r774+IiIiIbLZu3YqMDNs5U77WA7raHR1y3JzARsjX3LvhUL7GHTmBjeyeIde3DvT+9QHY7n2vXLnS7sd0Nvn5+Vi8eDHmzJkjNbTwVgKfBmvR6AGLjAu0dVPi4yAN3G5fojUajZgyZQrWrFkDq9X6sNGJSGaV5+4LERFVebm5uZgyZYpUAGx28cKtFv2AcuhoJirVSGr9L6nAIz4+HrNmzapSJ8QbNmwodIN9kLcK3Twr/rTUZeWmEPBhkBY+tz9nGQwGTJo0SfpATqV38+ZNuLu7o3bt2iWuq1Ao4OHhgZSUFAckIyIiKjuj0Vjo/NDgW7tcHngDALObL9IadJXGa9aswZUrV8pl3xXZmjVrpHMwbyXwnE/l61j3vI8anrev3qWmprLIvBz4+PgUmUbd19cXer1emiaygCAIUCgUSE5OdmBCqqoOHjwoXc/Ic/OFwa9uue3b6F0DJs9A277z8rBnz55y2zdRZVe37p3/i64ZN2VMUj6cobjDrkSx0N/T3X9/RERERGS7n/77779L4/R6nSEqHXNNTVSqkdB2aJHz0XyNOxLaDnVYjruvs0ZGRkoz+VYFOp0OX331FTZv3iwtq6kR8GWIFrXLqYFDE1clJlTXIkBlq9EQRRErVqzA1KlT7/mgPxFVHCw0JiKiSsFisWDGjBlSZ1mroERi6yGwql3L7Rh5HgFIbt5XGh89erTKPOUYGRmJZcuWSeNOHkoM9q56RcYFfFUCPgzWwuV2DXtKSgq+++47mEwmeYNVMC4uLjAajbBYLCWuazAYkJWVBS8vLwckIyIiKrvw8HAkJCQAACxKDW41718uD7wV0NXugFzvGrb93z73rcrnHgkJCdiyZYs0ftFXDVdF+f15Owt3pYAXfe/cZNmwYQNu3bolY6KKr0aNGjCZTIiNjZWWNW/eHIDtz/duJ0+ehF6vh7e3t+MCUpVktVoL/UzLrPlIuf4OgSBAV7O9NNy2bVupPocREdCyZUvptXvKFQiWfBnTPDxnKe6wF21WEtTGLACAm5sb6tWrJ3MiovKza9cufPrpp3j55ZcxcOBAPPvss/f9GjBggNxxiYjISW3btg3Z2dkAALNLNWSGtnbo8U3VQhDb5R0ktRyI1AZPIqnlQMR2eQemaiGOy+AVjOzAxtJ49erVDju2nM6fP4/3338f586dk5a1c1Pgi+pa+KvKt3wwVKPAxBAtmrrc2e/Ro0fx4Ycf4tq1a+V6LCJyHBYaExFRpbB06VIcO3ZMGic36wNTterlfpzs6i2Qcdf0MWvXrsXevXvL/TjO5O+//8aMGTMgiiIAoLGLAm/6qyGU503PCqiWRoF3AzUo+FO4fPky5s6dK/05UcmaNm0Ki8WCiIiIEtddv349LBZLoRt8REREziIyMhI7duyQxqlNeiLftVr5HkRQ4FaLZ2G9XfwRHx+P//3vf+V7jApk2bJl0tR+DbUKPOH+cNP6ObPOHkrU09jOOs1mM3799VeZE1VsnTt3BgDs27dPWjZo0CCIoogvvvgCy5YtQ0xMDLZv346RI0dCEAR0795drrhURZw+fRpxcXEAbA+rZNnhRm929eaw3H4YOzk5GcePHy/3YxBVRvXr10dgoK0juDLfCI+k8zInenjOUNxhL9VunpBed+zYEWp1xS6cJgKAjIwM9OrVCy+++CJ+/PFHbN++HYcOHcLhw4eL/SIiIvono9GIjRs3SuP0ep0AheOvqYlKNbKrN0dGvc7Irt5clofd0ut3kV4fPXq0Uhe/Wq1WrF+/Hp9//jnS09MBAAKAId4qvBeosVvzBk+lgI+DNejtdeffWGJiIj755BPs3r2b99SJKqCq24qQiIgqjc2bN2PTpk3SOKN2R2SHtrLb8VIb9oBGnwb31KsAgPnz58PHxwePPPKI3Y4pF51Oh8mTJ0vd8gJVAsYEaqCu4kXGBdq4KfGKrxq/pJsBAH/88Qfq1KmDIUOGyJysYnjuuecQGRmJ8ePHY+PGjfD19b3nekePHsVnn30GQRDw3HPPOTglERFR8VJSUjBv3jxpnB3YGFkh9jkXNbv5IKVJLwRFbwUA7Ny5E61bt8YTTzxhl+M5q5iYGERGRkrjV/wc8xCcySoiymBBillEoFpAezclNA7ooqwQBAzzU+ObxDwAtnPOgQMHokGDBnY/dmX07LPPYtasWQgPD8cbb7wBAHjllVewcuVKREZGYuzYsdK6oijC398fn376qUxpqaq4+5pGVmhrWFXacj+GqFQjs0Zb+F77UzrmY489Vu7HIapsFAoFevXqJT3o43vtCLKrN5elIKM8FRR3VCZqQzq8Eu90Z3vmmWdkTENUfr744gscP34cCoUCPXv2xKOPPgp/f38olRX75xARETnejh07kJVlm/3B7FINWSFVt7lPnmcgcgIbwyP5IgBgzZo1+OSTT2ROVf6ysrIwc+ZM/PXXX9IyDwXwToAGLd3sfy6hEgS84qdBA20+FqeaYRSBvLw8zJs3D2fPnsXbb78NV9fym6GaiOyLhcZERFShHTp0CIsXL5bGOYGNkNqoh30PqlAgqdUg1Dj2C7Q5ybBYLAgLC8PXX3+NRo0a2ffYDpSfn49p06YhJSUFAOAqAO8HaeCpZJHx3Xp6KRFvtmJftm3a2V9//RW1a9dG+/btS9iS/v3vf2PlypU4ceIEunTpgiFDhiA3NxeArXAqPj4e+/btw44dO2CxWNCxY0e8+OKLMqcmIiK6w2Kx4IcffrhrukEvJDfvW77T3f9DVkgruKVeheetGADA3LlzUb9+fQQFBdntmM5EFEX88ssv0vgxdyXqae0/YdffJit+SDIh03pnWTWFGe8Hax1y/EYuSrR3UyDKYAvwyy+/YOLEiXY/bmXUrl07qXNsAYVCgd9++w3ff/89fv/9dyQkJMDLywvdu3fHZ599hlq1asmUlqqC2NhYnDx5EgAgQoCulv0+S+pqtoNPbCQE0Yrz58/j0qVLleo6BpG9PPPMM1i/fj0MBgM0hgz4XD+GjLqPyx2L7iaKCIjZA0G0nSs1b94cTZo0kTkUUfnYsWMHBEHA7NmzMWzYMLnjEBFRBWUymbBhwwZpnFH38Qr/8NzDSqvXWSo0joiIwPXr11G7dm2ZU5WfCxcu4Pvvv0daWpq0rKFWgXcD1fBT2f965t0e81ChlkaBOcl5iDPbOhkfOnQIV65cwccff4w6deo4NA8RPRjH/uQgIiIqR8ePH8esWbOkca53DSS1HAgI9v/1ZlVpEf/ICzC7eAGwTTXz9ddfIzY21u7HdpSlS5ciOjoagG36lHcCNQjVyH/qYLKKOJKTjw0ZZvyZk488q7zTqgiCgFf91Gh8u8BEFEXMmDEDiYmJsuaqCJRKJdauXYuuXbsiISEBc+fORU5ODgDgpZdewocffoitW7fCYrGgS5cuWLlyJRQK+f8NEhERFVixYgUuXLgAABAFAUktB8KqtnMHBkFAcrO+MLtUAwAYDAZ8//33MJvN9j2ukzh9+rR0jqoE8JyP/Z+hz7OKRYqMASDTCvyQZHLY+ehQHzUKSthPnz6Nc+fOFbs+3Z+7uzvc3d2LLPvyyy9x6tQpJCcn48qVK/j5558f+kZHTk4OJkyYgNatWyMoKAjNmjXD2LFjpQc6y8PBgwfx3XffYfDgwahduza8vb3RsuX9uxLpdDqsXLkSr7zyCjp06IDq1aujZs2a6NmzJ37++WdYLJZyy0Ylu7ubcU5gI+S7+djtWBYXT2QHN5PGd99kJqL78/DwwAsvvCCNfa/+AU1O+f0cp4fnlXAG7qlXANiu1b3++usyJyIqPwaDARqNhg0YiIjooezcuRM6nQ4AYNZ6IsuOswNXFHleQcgJaCiNV69eLWOa8iOKIjZs2IDPPvusUJFx32oqfFpd4/Ai4wIhGgW+CtGiq8edAveEhAR8/PHH2LNnjyyZiKhsWKlBREQV0smTJxEWFibdADW5+yOh7VCISrXDMlhcPBHf7kVYbheT5OTk4KuvvirSHasiOnz4MDZv3iyNn/NRoY0Dpk8pyd8mKz64acSPKWas0+VjQYoZ79804m+TteSN7UglCPhvkAa+t7s96/V6TJ06FSaTSdZcFYGPjw82bNiAVatWYdCgQahRowa0Wi20Wi1CQ0MxcOBA/Prrr9i4cSN8fX3ljktERCSJiorCunXrpHFa/Sdh9KnpkGNb1S5IbP0viLcfsLt8+TLCw8Mdcmw5iaKIlStXSuOunkoEqe1/aSvKYClSZFwg02p73xFCNAp0vutC/N1/FuSccnJy0Lt3b8yePRuiKKJv377w9PREeHg4unXrVm4PJ44ePRphYWHYt2+fNAVqcRYsWIC3334b27Ztg7u7O/r06YNHHnkEZ8+exUcffYRBgwZJM42QfaWlpeHQoUPSWFfnUbsfM+OuY0RGRiIpKcnuxySqDPr164e6desCABTWfASfXg9FPq/7OANNdjICLuyUxn369GG3dqpU6tevD6VSCaVS/uvzRERUMRmNxkLXMTPqPgFRYf+H9yuC9Pqdpdd//vlnhW8qptfrMXnyZISHh8NqtV3Q9FAAHwRp8JKvGio7zsRXGlqFgBEBGrwVoIb2dpS8vDzMnTsXc+bM4b11IifHQmMiIqpwzpw5g8mTJ0td2/JcvRHf/mX7d4+7B7O7v63YWKUFYOsM9cUXXyA+Pt7hWcpLQkIC5s2bJ40fcVOgfzX5P2w6Sye5+6mmFPBekAYFf1KxsbFYvHixrJkqkt69e+N///sfzpw5g8TERCQmJuLs2bMIDw9Hv379IMj8wZeIiOhuycnJhWbW0PvVQ0bdJxyawVQtBKmNekjjrVu34siRIw7N4GhnzpzBxYu26QxVAAZ4O+YcNdlc/HlmSe+Xp0HeKhSUF0RHR0vdnck5TZ48GdHR0ejRoweioqKwZMkSREZG4sUXX0R8fDw++eSTcjlOr169MHHiRGzbtg0bN24scX13d3e8//77OHfuHA4cOID//e9/2LhxIyIjIxEcHIw//vgD33//fblko+Jt3rwZ+fn5AGyzNBm9a9j9mHmeQdD72YolrVZrqf7NEBGgUqkwbtw4aDQaAIBWn4bg078DVnaBl5PSmI2Qk2ugsNp+ltaoUQOvvfaazKmIytfIkSNhMBgKNQYhIiIqi61btyIzMxMAYHbxQlaN1jInch4mr+qFuhqvWLFCxjQP5+bNm/joo49w7NgxaVkDrQKTQrVO0VDsbp08VPg6RItQ9Z37v3v37sWnn35arrOAEVH5YqExVUgWiwUZGRn3/aoqU8YSVUVnzpzBpEmTkJeXB8D2YSi+/cuwaD1ky2Tyqo6Ets/DerubckZGBj7//PMKWWxsNpvx/fffS92rAlUC/hOggcIJijydpZNcceprFRjmd6er9q5du3D48GEZExEREVF5M5vNmDZtGrKzs21jrSeSWg4AZDhf0tXqgJzAO93a5syZUyHPQUtr7dq10uuunkqHTfMXqC7+77ak98tToFqBTnd1Nf7tt98cdmwqG6PRKHUaDwsLkwrTBEHAlClT4OLigs2bN5fLjDjTp0/HmDFj8MQTT8DVteQHcN977z1MmDABISEhhZbXqVMHY8aMAQCsWbPmoXNR8XJycrBz550OnBl1HnPYse8+1t69e6Xpc4moeLVq1cI777wjjd3T/kbw2U2AVd6ZtqoqpUmP0BMroTbauvm7urrik08+gYuLi8zJiMrXa6+9hvfeew/vvvsuZs6cidTUVLkjERFRBZKVlVWom3F6vU7sZvwPaQ2elF4fO3YMMTExMqZ5MFFRUfj444+RkJAgLevtpcRn1TUOu4ZaViEaBb4K0Ra61nn16lV8+OGHFfLvgKgqcM6fJkTFuHHjBoYPH17s12uvvYazZ8/KHZWIytnJkycLFxlrPRHf/mXku3rLGwyA0aemrdhYUbjY+ObNmzInK5tffvkFf//9NwBbl7j/BmrgppC/yBhwrk5yxXnKU4nH3O98IJo/fz5u3bolYyIiIiIqT0uWLMHly5cBAKKgQFLrf8GqcZMnjCDgVvP+yHP1AWArbJw6dWqlnGLu4sWLOHfuHABACTh0xo32bkpUu88VtGoK2/uONMBbhYIz9JMnT+Lq1asOPX5F5+Pjg6ZNm5Z6/e7du8PPz6/Mx4mIiIBer0eTJk3QoEGDQu95e3ujU6dOEEURe/fuLfO+7akga3JyssxJKr8dO3ZID/ma3P2gv6uDkr3l+taB0TMYgG2K0q1btzrs2EQVXbdu3fDCCy9IY89bFxB85ncItzvqkmMojdkIjfoVWr2t4FKpVOKjjz5CzZo1ZU5GVP5at26NDRs2IC8vD19//TUaNWqEmjVronXr1vf9atOmjdyxiYjISaxZswYGgwEAkOfmi6yQVjIncj55nkHIDm4mjZcsWQJRdI77zqWxZcsWfPfdd9I1Bo0AvBOgxit+GqicoJlYcVwUAv7jr8brfmppFrfMzEx8/vnnOHjwoKzZiKgoPqZCFc7mzZuRlZVV7Dq5ublYv349WrZs6aBURGRvx44dQ1hYmDSlqFnrifgOw2B285U52R25vrWR8MjzCPlrDRRWs1Rs/NVXX6Fu3bpyxyvRmTNnsGnTJmn8oq8adbTO80ySM3WSK44gCHjDX42rJitS8kUYDAbMnj0b33zzDRQK5/nzdLTynMq9U6dO5bYvIiKisjh8+DC2bdsmjVMb9XDINPfFsapdkNh6MGoeC4fCasGNGzfw448/4r333oPg5BeSy+L333+XXj/moYS/2nHnVRqFgPeDtfghyVRoho1qCuD9YC00Dn4wL0itQEd3JY7qbTN6/P777/jwww8dmqGiK+vNoge5uRQdHQ0AaN68+T3fb9GiBfbu3Yvz58+Xed/2dOPGDQC2qefJfkwmU6HpzzPqPO7YzviCgIy6j6P6GdvP1m3btuFf//oX3NxkenCGqIJ58cUXkZOTIxXpeyZfhPLEKiS2GQKruuTO8vRwNNnJCDm5RupkrFAoMG7cODzyyCMyJyOyj4Lzs7vl5OQgJyfnvttUps+CRET04G7evInt27dL49SG3QCFYx+YryhSG3SD+62LUIgWXLx4EQcPHkS3bt3kjlUsURSxbNmyQtdN/VUCxgZqUNuJ7vGXRBAEPO2lQk2NgFm38pBtBfLz8zFjxgxkZGRg0KBBckckottYaEwVzt2divPVroBw9y9IEao829NYFy5cQH5+PlQq/jMnqugOHz6MGTNmwGKx3Ug3u3ghvv0wmN18ZE5WVK5vbcS3ewGhf62BwpKHzMxMfPHFF5gwYQIaNWpU8g5kotfrMXv2bGnc2lWBXl7O9UHT1knOXKi4o4AcneSK46oQ8E6ABt8kmmCFrchg8+bNGDhwoNzRZNO/f/9yucAtCALS0tLKIRHRg7l06RJWrVpV7M2cBg0a4I033uB5KFElEx8fj7lz50rjnMDG0NXqIGOiO/K8gpDSpDeCztuKoPfv349mzZqhZ8+eMicrHwkJCTh69Kg07ufAbsYF6mkV+KGmC6IMFiSbRQSqBbR3Uzq8yLhA/2oqqdD4zz//RHJyMgIDA2XJUtmZzeYH2q5gqsrgYFvX2A0bNmDWrFl47bXXMHz4cGl5fHx8+QQtB1arFeHh4QCAIUOGyBumktu7dy8yMzMB2K5xZFe/d0G6PeUENUaemy80hnTo9Xrs3LkT//rXvxyeg6giEgQBI0aMgFKplB7ad8u4gZpHlyKxzRDkeQTInLBkgsUMj+SLUOXqkO/qg5zARhCVarljlcj91kUEn9sMhcU2451SqcS4cePQuXNnmZMR2c/dDycRERGVliiK+Omnn6T76wafWtAHNpY5lfPKd/OGrnYH+MZGAgCWLl2KDh06wN3dXeZk92axWPDjjz9i9+7d0rIGWgFjg7Sopiz/65Umq4gogwUpdrwu2thFiYkhWky/lYf42zMZh4eHIycnB8OGDeODVEROgHe+qUK5desWkpKSAABWhRqxXf8LUVH4n3GdQ/OgNmbCaDTi4sWL9+0cQ0QVw+7duzF//nypg1Seqzfi2w9Dvms1mZPdn9GnFuLbvYiQv1ZDmW9CTk4OJkyYgM8++8xpO60vXboUqam2qQY9FMAIf43Tnaw7Wye5kjRwUWCAtwobdLYu3MuXL0eHDh0QEhIiczJ51KhR477/pm7evCm9dnFxgbe3NwBAp9PBaDQCsN3EY1c1cgZz5869ZyeZu126dAm1a9dG7969HZSKiOzNZDJh2rRp0u+lPDcf3Grez7HdJ0uQFdoarrqb8EqwPZz7888/o2HDhqhTp468wcrB5s2bpc8DrVwVqKmRpyOHRiHgCQ/nuJRWR6tAcxcFoo1WWK1WbNmyBW+88YbcsSodk8mEGzduwMPDo8zb6vV6AICrq62zZVhYGM6fP48rV65g+PDh0o2qgvWcwZw5c3D27FmEhIRg9OjRZd5++fLlWLFiRanWnTx5Mlq1agWDweBUxdaOYLFYsHbtWmmcUftReTpKCQpk1HlMekhl/fr1aNy4MdRq5y80JHIWnTt3htlslrrEaQzpqHk0HMlN+yA7pIXM6e5Pm5mAkJNrocq78zsoX+OOhLZDYarmpNetrBb4Xz4An+t3Hj7TarV49dVXERQUhMuXL8sYjiqa0NDQCtXFn4X0RET0IPbt2yc18RMFASlNejnVtUxnlF6vE7wSz0FlykFGRgaWLVuGt99+W+5YRVitVsybNw/79u2Tlj3ipsC7ARq73C//22S9x/15M94P1qJeOXdODlAr8EV1LWYk5+Gi0XbA3377DVarFa+++qrT1S8QVTUVp1c6EYC//vpLep3rW6tIkTEAGPzrSq9PnjzpkFxEZB+bNm3CvHnzpKICk7sf4jq86tRFxgWM3jVsBdG3p0s0Go34+uuvcfz4cZmTFXX27Fns2rVLGv/bTw1vlXOepBd0kns7QI0h3iq8HaDGDzVdyv1DTHkZ6K1CbY3tzzIvL6/Qv+eq5uzZszhz5kyhr+PHj6NJkyZQKpUYPXo0IiIikJCQgAsXLuDChQtISEhAREQE3n33XSgUCjRt2hQnTpyQ+1uhKiwlJaXEIuMC/LdKVLksXrwYsbGxAACrQonEVoNhVbvIG+qfBAHJTZ+Byd0fgO3cY9q0acjNzZU52MPJzs7G3r17pXFfGboZO6s+d/1Z7N69GwaDQcY0zisrKws3b96UvgBboWdcXFyh5Xd/xcbGIiIiAqNGjUJ2dvYDPcT+z/P+559/Hu7u7hg2bFih953lBskff/yBb775BhqNBuHh4fDy8irzPm7cuIEjR46U6isrK8sO30XFcPLkSWRkZACwzdaWFdpatizZIS1g1nraXmdnIyoqSrYsRBWRIAjo0aMHXnnlFalIX2ExI/jcJgSd3QSF2ShzwqIEi7lIkTEAqPL0CDm5FoLlwTr525Nan4aax5YVKjL29fXF6NGj0bgxu/IRERER/VN6ejqWLFkijXW1OiDPkzNhlURUaZHS+M4McTt37sSZM2dkTFSUKIpYtGhRoSLjzh5KvBdonyLjPKtYpMgYADKtwA9JJuRZy/++t7tSwMdBGrRxvXP/f/369YUe2iYiefDuDFUod1/s1vvVu+c6er/6qBZ3Slr/lVdecUQ0IipHoihixYoVhU4WjZ7BSGj3Aiwa55ye5F5MXsGI7/AKQk+shMqUA7PZjClTpuC9995D165d5Y4HwDYN8IIFC6RxezcFOrrL0EmpDJypk1xJVIKAEf4afJlgghVAdHQ09u3bh6eeekruaE5hypQp2LNnD2bNmoVXX321yPuCIKBJkyaYNGkSGjVqhLFjx2Lq1Kn4/PPPZUhLBJw+fVp6netdA6mNCv9fVppyEHJ6HQDg3LlzyM/Ph0pVMX5eEdH9HT58uNBDWSmNeyLPK0jGRPcnKtVIbD0YtSKXQGE1Iz4+Hj/99BPGjBkjd7QHtnPnTuTl2abGrqUR0MzFOR8wk0NLVwVC1AISzCJyc3OxZ88eDBgwQO5YTmf+/PkICwsrtCwtLQ2tWrUqcduCYuC33nqrzMct6IJcUOw/duxYjB07Vnq/oDDcGbrpRUdH45VXXoHFYsHChQvRsWPHB9pPrVq10KlTp1KtW1DI7ObmhoYNGz7Q8Soiq9WKWbNmSWNd7Y4QVRrZ8ogKFXR1HkXAxT0AbL/zhg0bBqXSua8LEDmbhg0bon379ggLC0NCQgIAwCvxHFzTryO5eT8Y/O99L0MOHsmXihQZF1Dl6eGRfAnZ1Z1klkjRCu8bUfC7fAAKa760uF27dhg7diw8PT1lDEdERETknERRxNy5c5GTkwMAMLt6I63+kzKnqjhygpogJ6AhPFJsM2bMmTMHM2fOlGamktvatWuxbds2afykhxJv+quhsNOD7FEGS5Ei4wKZVtv79rhvr1EIGBOkwZzkPPxlsAVYsWIFfHx80LNnzxK2JiJ74V1vqjByc3MLPS2kD7j3TQiDX11YBSUUogWxsbG4desWgoKc8yYwERVltVqxaNGiQifIud41kND2eefrGlcKeR4BuNnhVYSeWAlNrg4WiwUzZ86EXq9H37595Y6HDRs2SDdAXAXgNT+N03TUqizqaBXoU02FrZm2GyJLly7Fo48++kDTL1c2a9euhYuLi9TVrTjDhg3D//3f/2H16tUsNCbZ3P3QW05gYxi9QwuvIIowu1SD2pgJg8GACxcuoGXLlg5OSUTl6datW5g/f740zg5uiqwabWVMVDKzhz+Smz2D4HObAQD79+9HmzZtnOZBt7Iwm82FPhf09lLxXPUuCkFAby8VlqTZOg9u3rwZ/fr1Y4HgP4iiWKS7cEmzjAiCAC8vL7Ro0QIjR47EwIEDy3zckBDb1PNJSUn3fL9geWho6D3fd5Tr169jyJAhyMzMxLRp0zBkyJAH3tewYcNKdW5flR07dgxxcXEAAItSg8ya7WROBGSGtoHv30egNOciOTkZf/zxB7p16yZ3LKIKp06dOpg+fTp++ukn7N+/HwCgNmUj9K9VyKreAqmNn3KKBgqq3IyHet9RNNnJCDy/Da6ZCdIylUqFV155BQMGDIBCwYfPqGq6fPky/v77b+Tk2BqbFHde+9JLLzkwGREROYtt27YVmin8VvN+sj7gWuHcnjXONeMmlPlGpKSk4KeffsLYsWNlvy556NAhrFixQho/7m7fImMASDYXfw2tpPcfhkoQMDpQgx+S8nDOaCs2XrBgAQIDA9G6tXyzQxFVZSw0pgrjxIkTMJttN89MHgHId/O+53qiSoNcvzpwT70KAIiIiMCgQYMclJKIHkZ+fj7mzJmDgwcPSsv0/vWR2HowRKVaxmQPJ9/NB3EdXkXoX6ugzUmBKIr46aefkJOTg6FDh8r2oSQ1NRW//fabNH7ORw0fFQs37GGQtwpH9Rak5ovIysrCihUrMGrUKLljyS41NRVqtbpUN4eUSiUUCgVSU1MdkIyoqLy8PJw6dUoa6/3rF11JEKD3rw/vONtFvOPHj7PQmKgCK3hArKDrqNnVG8lN+wAVoNA1O6Ql3NKuwSvxHABg4cKFaNq0KQIDK9YUiX/++SfS09MBANWUwOMeLKD9p04eSqzNMCPHCqSkpODo0aN44okn5I7lVMaPH4/x48dLYx8fHwQFBSEmJsaux23e3NYNMjo6+p7vnztn+//ZrFkzu+YoTnJyMv71r38hKSkJX3zxBUaOHClblqpAFMVCn8Eza7ZzigeqRZUGulod4Hf1EADbdKRPPvkki/iIHoCrqyvGjBmDDh064Mcff0RWVhYAW3dj99SrSG3YDVmhbWQ9n8x39Xmo9+1NyDfB7+pheN84BuGuAso6depgzJgxqFu3rozpiORz5coVvPHGG9I5ZGmw0JiIqOr5+++/sWTJEmmcUbsjcn1ry5ioYrK4eCK52TOofmYDAODgwYNo1aqVrDPWXrlyBXPnzpXGzV0UGBVg3yJjAAhUF7//kt5/WGpBwHtBGnybaML1PBFWqxXTpk3DtGnTUL16dbsem4iKeqhC48zMTFy/fh16vR5W6316pd9W2mnziO7nyJEj0uucoCbFrpsT1EQqND5y5AgLjYkqAJPJhGnTphXqFpkd3AxJLZ4FFBW/oMDi4om4Dq8g5K/VUieOFStWICcnB8OHD5el2Hj58uUwmUwAgJpqAU95Vfw/Z2flohDwsq8as5Nt037v2LED/fr1k717mdxq1KiBv//+Gzt27MAzzzxT7Lrbt2+HXq9HgwYNHJSOqLDTp0/DaDQCAPLcfGB297vnevrARlKhcWRkpGw/44no4f3++++4cOECAEAUBCS1HOgUBWGlldy0N1x08dDkZsBgMGDWrFn45ptvKkzhmCiK2LRpkzR+2lMFNX+eFqFVCOjhqcKm27NnbNq0iYXGTuLxxx+Hu7s7YmJicPXqVdSvf+chJZ1OhyNHjkAQBNluUul0OgwePBh///03xo0bhw8++ECWHFXJmTNncOXKFQCAVaGErnYHmRPdoavVDj6xkVBY8nDjxg1ERUWhY8eOcsciqrCeeOIJNGvWDIsWLcLhw4cBAEpzLoLOb0e1uFNIadITRu8asmTLCWyEfI07VHn6Iu/la9yRE9hIhlQARBGeidHwv7wPKlOOtFilUmHo0KEYPHgw1OqK24iC6GFkZGSgX79+SE5OhqenJxo1aoQTJ05Ao9HgkUceQVpaGq5evQqr1QovLy8+9E52sW/fPvz222/SPaX7qV27Nt5//33O6EgkA71ej7CwMOTn264RmTwDkdagm7yhKrCc4GbISv0bXgm2WdcXLlyI+vXro06dOg7PkpWVhalTpyIvz3afOUQt4L+BGqgccK20vZsS1RRmZN6jJLCawva+vbkqBHwQpMWXCUZkWICcnBxMmTIFU6dOhYtLxbleT1QZPNDdpV27dqFHjx6oW7cuunXrhn79+uHZZ5+979eAAQPKOzdVMTk5OYWLD4OaFr9+YCOIgu2f9+XLl5GYmGjXfET0cAwGA77++utC/891NdoiqeWASlFkXMCqdkV8u5dh8K0jLdu0aRPmzp0Li8Xi0CzXrl3DgQMHpPEwPzWULNywq/ZuCjR1sf1uslqtWLZsmcyJ5Dd06FCIooiRI0fi559/hk6nK7KOTqfDTz/9hP/85z8QBAFDhw51fFAi/OOht8DG9+1AZfCtDYtKC8DWJbCgmISIKpbY2FisWrVKGqfX6wKjd8V6QEhUaXGr5QCIt39eRUdHY/PmzTKnKr3z58/j6lXbA8RqAejhxUm57qenlwoFn5piYmJw8eJFWfOQjYuLC15//XUAwMcffyzdDBJFEePHj4fRaES/fv1Qo8a9C80mT54Mb29veHt7448//ijXbAaDAS+++CLOnTuHUaNG4csvvyzX/dO93d3NOCu0NSxa5ym+sKr/n737Do+i3B44/p3dzaY30kgloffee5GOiqhYsN6f3nvVq2K5NrCAIAqiYkGvICCKIL1L7xBKICCEEnogIb23rfP7Y82QlQDpm03ez/PwsDOzu3M2m+zOvHPec5zJDO2oLK9YseKOrdgFQbg7Ly8v3nzzTSZOnGjVVcIp+wahhxcS8OcaNAVZ1R6XrHYgocPDGLWuVuuNWlcSOjxsk65yTpnxhBxeSP1Ta62SjFu1asWXX37JI488IpKMhTrt66+/Jjk5mVGjRnHu3Dm2bdsGWDp1/PHHHxw+fJizZ8/y3HPPkZ2dTfv27Vm/fr2NoxZqk4KCAn744QcSEhJIS0u7479jx46xatUqW4csCHWO2Wxm1qxZJCYmWpbVWm60fQBZLcbTKiK5+RB0fxWd0ev1TJ8+ndzc3Ls8qnKZTCa++OILUlJSAHBRwfgALa7q6rmur1VJvF7fEc+/ZRd6quD1+o5oVdUTh7dG4tUAR4oKKF+9epUffvhBjF0IQjUr87fKmjVr+Mc//oEsy8iyjKOjI76+vnZTEUewT5GRkRgMBgAK3etjcPO94/3NDs7k+TbCLeU8ALt27RItggShhsrOzmbSpElKEgFAekRP0hr3s4u21GUla7QkdBxL/T/X4JZsSQDYvn07BQUFvPbaa9U2aL5o0SLlwLu9s4pWzrUnobumkiSJx+o58EGCZcb/oUOHiI2NpWlTG1WKqQFee+01du/eTWRkJG+//TbvvvsuwcHB1KtXD0mSSEtLIz4+HrPZjCzL9OjRg/Hjx5d5P7m5uUyfPp01a9aQmJiIj48PQ4YMYcKECfj5+VX4dXh5eZXqfidPniQ0NLTUjzt27BgNGzasQGRCZdHpdBw6dEhZzq1/h0lvKjV5/k3xSDgJwN69e2nSpElVhygIQiUyGo18/fXXSvWPAs8g0iPss0JsoVcw6RE98blkmSyxaNEiunTpQlBQkI0ju7viFyZ7u6nxqKbBc3vkpZHo4aZmX65l8uLq1at5++23bRxVzfX222/j6up69ztWgnfffZddu3axfft2OnfuTOfOnTl9+jRnz54lMDCQ6dOnV8p+pk+fzpYtWwBLBSOApKQk7rnnHuU+n3/+Oe3btwfg448/5uDBgzg7O5Odnc0LL7xQ4vNOmTIFH5+SuzgIZRMbG8vJk5bjQ1mSyAjvbuOIbpUZ1gWvq0dQySbOnTtHTEwMrVu3tnVYgmD3OnfuTJs2bVixYgWrVq1SrnN4JMbglnyOzAZdyYjogfmvCavVQecZxJU+L+KWHIumIAOjs7eleEs1Jxlr8jPwPb8L96QzVuu9vb15+umn6devn+gQJAjA5s2bkSSJjz/+GGdn5xLv4+fnx4wZM9BqtcyePZt27dqJgg1CpTl8+LAycbI09u/fzxNPPCE+wwWhGi1btozDhw8ry0mtRty2K6NQerJGy412DxJ2aD4qk4GEhAS++uor3n33XdTq6rm2vnTpUo4fP64s/9tPS6BD9ebnNXRU8UWoE1H5JpINMv4OEp1d1NWWZFykkaOKp3wc+CnVck61a9cumjdvfteuuYIgVJ4yJxrPnDkTs9lMly5dmD59ujJALQhVqWh2LkBOUOkGuHMCWyuJxjt27OCRRx4RCfGCUMOkp6fz0UcfERcXp6xLaTKQzIiad8GtMskqDTfaPkDA6Y1Ku5UDBw5QWFjI22+/jaNj1V5YOH/+vFI9WgLG1hMVQapLhKOKbq5qDuVZkkCWLFnCBx98YOOobEer1bJq1SpmzpzJ3LlzycjIIC4uzuozASwXmJ5//nlef/11tFptmfaRm5vL0KFDiYmJISwsjBEjRnD69GkWLFjA1q1b2bZtG4GBgRV6HXeazHTlyhUiIyMJDw+/bbW62z3e3d29QnEJlefw4cMUFBQAoHfxRude/473z6nfUkk03rNnD08//XS1DToJglBxa9as4dKlSwCYVRqSWt8Ldnwumd6wN24p53HMSUav1/Pdd9/x8ccf1+jz47i4OKvj1eGimvFdjfDUKInGBw8eJD4+nuBg+6rCXV3eeeedatuXu7s7mzdv5rPPPmPt2rWsX78eHx8fnn76ad577z0CAgIqZT+XL1+26hAElko7Vt3BcnKU20WdRAoKCqyqt//dO++8IxKNK8nKlSuV2zn1W2J09rJdMLdhcnInJ7gNntePA5aYRaKxIFQOR0dHHn/8cQYNGsSCBQuIjIwEQGU2Uu/yATyuR5PeqDdZIR2rrbubrHYgJ7BVtezr71T6fOpd2o/XtaNI8s0ezBqNhnvvvZexY8feNplSEOqi69ev4+TkdEur9pK6JL7++ut8//33zJs3TyQaC5Vm9+7dyu30iJ5kFeuEoZDNhEX+hNqoIzExkfPnz9fpIiuCUJ0OHjzI4sWLleWMBt3Ird/ShhHVLgY3X5JajSLwT0tRhKioKH777TeefPLJKt93VFQUS5cuVZbv89TQwcU215q0KomebrYfo+3vruF8oZk9f42Dzp07l4YNG4rvHEGoJlJmZmaZ6ojXr18fvV7PqVOn7KICjmD/4uLieOWVVwCQJRWX+72MSXv3yjOS2UjE7m9QGyxJIR9++CEdOnSo0lgFQSi9lJQUPvzwQxISEgCQgeQWw8guaYCitpJlfM9twzvuiLKqTZs2vPfee1U6mD516lSOHLHss7urmpf8y5a4KVTMDb2Zt+N1FB2AzZgxQ1Q7BQwGA1FRUZw9e1ZJfPD29qZFixZ06tQJjaZ8J68TJkzgu+++Y+DAgSxZsgStVossy7zwwgssWbKE++67j4ULF1biK7H2z3/+k6VLl/Lee+/x1ltvWW0rqmhc9HqFmmvSpElER0cDkNaoD+mN+tz5AWYzEXu+QaO3VBScOHEinTt3ruowBUGoBImJibzyyitKpZ7UJgPIiOhh46gqzjE7kdBD85H+6mjx0ksvMXjwYBtHdXtfffUVu3btAqCji4rXAqqvwp89m5Go488CS7LO4MGDeemll2wckSAIAPHx8fznP/9Rugpd7fEcend/G0dVMof8dBrs+x/SX2esX375JRERETaOShBqn5iYGObNm2fV4Q1A7+xNWpN+5Aa0qJWd3iSTAa+rR/C+EonaqLPa1rNnT5566inq17/zxF5BqItCQkJwcHDg8uXLVusKCwtJSUm5pWpsREQEZrOZq1evVneoQi2Unp7Oc889h9lsOde83OfF206a84/ZgGf8CQCGDRvGv//97+oKUxDqrKtXr/L2229TWFgIQH69cOI7PmrXRRNqKp/YndS7Eqksv/HGG/Tpc5drRRUQHx/Pf//7X/Lz8wFo6aTi7fpaVLXwPKGs9GaZyTd0XNVbxi58fHyYMWMG9erVs3FkglD7lfnbxdPTE3d3d5FkLFSbTZs2Kbdz/ZuWKskYLBVDs4PaKMt//PFHpccmCEL5JCUlMXHixJtJxpJEUpv761aSMYAkkdrsHtIa9lJWnTx5ksmTJyuVMytbXFyckmQMcL+X7Wce1jWBWktV4yLF24LXZQ4ODvTo0YNnn32W1157jddee41nnnmGbt26lTvJuLCwkAULFgCWdtJF1ZAlSeLTTz/FycmJdevWcf369cp6GVYyMzNZt24dKpXqjlWPhZotKSlJaUslg9Xx5W2pVFb3K2plLghCzSbLMnPmzFGSjAvdA8ho0M3GUVUOnUd9Mhrc7BqycOFCsrOzbRjR7SUmJrJnzx5l+V5P0X2jtO71vHnMtHPnTlJSUmwYjSAIRdasWaMkGef5NqqxScYABpd65AY0U5ZXr15tu2AEoRZr1aoVM2bM4LXXXsPPz09Zry3IIPDP1YQemo9z2uU7PIOdMZvxuH6c8H3f43thl1WScfPmzfn000956623RJKxINxGYGAg2dnZSqIRQGhoKGazmT///NPqvvn5+WRlZSnntYJQUVu3blWSjPO9w+7YmSM78OZ46O7du6vsOpcgCBbZ2dl88sknSpKxwdmLG21HiyTjKpLWpB95vo2U5W+++YYLFy5Uyb6ys7OZOnWq8t3vo5Z4yV8kGRfRqiRe8dfi+tevelpaGtOmTVP+FgRBqDpl/obp168fubm54mKFUC3y8/PZuXOnslxiK5Y7yAq5WcE4KiqKpKSkSotNEITyKUoyLvp7lCUVN9qNsVmrPpuTJNIb9yO1SX9l1ZkzZ/joo4+sBg4ry5o1a5TbnVxUhGjFyaYt3FcswfvgwYMkJibaMJraoXHjxresi4yMJC8vj+bNm9+y3cvLi169eiHLMtu3b6+SmJYuXUpBQQF9+/YlNDS0SvYhVL2tW7cqiSH5Pg1L3eY6O7idcjsqKkqcPwmCHYiKiuLo0aPAX902Wg6vVQPz6Y16Y3DyBCAnJ4fffvvNxhGVbMWKFcpFzJZOKho71Z73oKo1c1LR1NHy8zIajWJC211s2bKF9957j8cff5z777+fe++997b/7rvvPluHK9ipzMxMq7HN9PCaXyU/I/zmxJS9e/eK41hBqCIqlYp+/frx3Xff8cwzz+Dm5qZsc8pOJOToYoKOLkGbY8fXNGQZ1+RYGkTOIeD0RjS6XGVTUFAQ77zzDtOmTaN58+Y2DFIQar7mzZsjyzJRUVHKuqJxzU8++QSDwaCsnzlzJrIs06xZs5KeShDKxGg0WhVQKH7dvSSF3qHoXX0AKCgoUDoVCYJQ+YxGIzNmzFCut5vVWhLaP4RZ62LjyGoxSUVim/vRu1iq5ur1eqZNm0ZGRkal7qawsJCpU6cqBdu0ErwaoMVDLZKMi/N3UFmSr/9aPn/+PJ9//jlGo9GmcQlCbVfmqzUTJ07E29ub8ePHV/kstNzcXD744APatWtHQEAALVu2ZPz48ZU6uFlYWMjMmTPp3bs3QUFBBAQE0LFjR9555x0xiFoDbNu2Tfk907n6UODdoEyPN7j6kOdjae9nNpvZsGFDpccoCELpFSUZF32+mlVqEto/RJ6/GPTKiOhJSrN7lOVz584xadKkSk02zs7OtqoON8JTVDO2lVCtijbOlsMws9nMxo0bbRyR/cvNzb1lXUxMDGCpFFSS1q1bA3D69OkqiemXX34BYNy4cXe837fffsvrr7/Of//7X+bOnSsmRtUger2+TIPpxRlcfcivZzl2NZvNVl06BEGoeQwGA/Pnz1eWs0Pao/OsXZ2cZLUDKc0HK8tbtmzhypUrtguoBElJSezYsUNZHi26b5SJJElWHUu2bNlCamqqDSOqmTIyMhgyZAiPPvooP/zwA3/88Qd79uxh3759d/wnCOWxceNGJfmn0COIQu+aPwFR5xlEvncYYDmOXb9+vY0jEoTaTavVMnr0aH744QceeOABpRsTgGvaJcIifyLg5Do0hTWzG8XtOGbGE3LkF4KOL0ebl6as9/b25oUXXuCbb76he/fuSKIqmyDc1bBhw5Bl2arTwL/+9S+0Wi1bt26lS5cuPPPMM/Tr148vv/wSSZL4xz/+YbuAhVrjwIEDpKVZPsONWhfyAu5yLU+SyAy5WTRs3bp1ykRiQRAq14IFCzh58iRgKZiQ2Oa+Gt09p7YwOziR0OFhTBonwFJJd/r06VaTfiqiKHn53LlzAEjAv/20RDiKQgwlaeOs5kmfm93woqKimDVrFiaTyYZRCULtVuYrNvv37+f5559n1qxZtGrVijFjxhAeHo6Pj88dH1fWdtG5ubkMHTqUmJgYwsLCGDFiBKdPn2bBggVs3bqVbdu2ERgYWNbwrRQWFjJy5EiOHj2Kh4cHffr0wcHBgaioKH744QfWrFnDli1bRAU6GzGZTFYD2ZlhXaAcg06ZYV1w/avN2LZt23jkkUdwdXWttDgFQSid1NRUPvjgA6sk4xvtHybft6GNI6s5Mht0RZZU+J+1JLWdO3eOKVOm8MEHH+Dk5FTh59++fbtyohOhlWgiTkpsaqiHhpMFlhZ227dvZ9y4cTg6Oto4KvtV0oWpotm+Ra03V69ezaxZs3jqqad49tlnlfXx8fGVHs/x48c5efIkHh4ejBo16o73nThx4i3LU6ZM4bnnnivzfhctWlTqCpXTpk2jbdu25OfnV8nPoDY4fPgw2dmWi7kGJw/y/JqU6fGZoZ1xSb8KwB9//EHHjh2tLhoLglBz7Nu3T/neMGmcSG3cv8r3KZkMuCWfQ1OQidHZm1z/pshqh7s/sALy/JqQ5xOBa9plzGYz33//fbm+b6rK0qVLlYHg5k4qWjirbRyR/WnjrKKxo8QFnYzRaGTu3Lk8+OCDtg7rFsHBwbi42KbKzvvvv8+RI0dQqVQMHjyYbt264evri1otft+EyqXT6fjjjz+U5YzwruUa27SFzPBuuGTEAZZJC4888ojN/mYFoa5wc3Pj6aefZuTIkSxevJidO3diNpuRAI8bJ3FLOkNmg66kR/RA1tTc8SNNQSa+53finnjGar2zszNjxozh3nvvrZRxzrogPT2dDRs2KOcpd+Lo6Ejv3r3p1KmTSN6uhUaOHMnZs2dxdnZW1jVp0oQffviBV155hatXr3L1qmX8SZIkXnzxRZ566ilbhSvUErIss3LlSmU5K7QTsuruqSXZwW3xubgHtVFHQkIChw4dokePmt/VQxDsye7du63yaNIa9yPPv6kNI6pbDK4+JLYdTdCx35GQOXPmDPPnz+ef//xnhZ63sLCQadOmceLECWXduHoOdHEV41V3co+HhnSjzLosSyXjvXv3AvDqq6+i0YgiFoJQ2cr8V/Xiiy8iSRKyLFNQUMC8efNK9biyJhpPmzaNmJgYBg4cyJIlS9BqtciyzAsvvMCSJUt4++23WbhwYVnDt/Lzzz9z9OhRGjVqxNatW6lXz1LivqCggMcee4xdu3bxySef8P3331doP0L57Nu3j+TkZABMDs7kBLUp1/Pk+zZC7+qDNi+N/Px8Nm/ezJgxYyozVEEQ7iIzM5MPPvjgZvuWGpJkbIvkjrvJCusMoCQbnz59mk8++YSJEydWKDlNlmW2bt2qLN/joRGDzjbWxlmFv0Yi2SiTl5fHwYMH6devn63DqlXy8vIAlEH46dOnc/r0aS5cuMCzzz6rTDwqul9lKjpOffDBB60uAhT3+OOP88gjj9CsWTPc3d25dOkSc+fOZeHChbz55pv4+flx//33l2m/cXFx7N+/v1T3LUqgFUpmNpvZvXu3spwV2glUZZugkeffBIOTJw6FWeTn5xMVFUXPnj0rO1RBECqosLCQbdu2KcvpDXtWeZtBx6wEgqKXodHf/A4yal1J6PBw1VZSliRSmw7CJfInJGTOnTvHhQsXaNy4cdXts5SSk5OtWgE/KKoZl4skSYzxcmB6kmVC2+HDh+nXrx++vr42jqzm2LRpE5Ik8fXXX9+184QgVMTu3bvJyckBwODkSa5/cxtHVHp5vo2V8dSCggK2b9/Ovffea+uwBKFO8PX15eWXX+a+++7jl19+UY6PVGYj9S4fwCP+BGlN+pMd1LZGTV6QjDrqXY7E6+ohVOabFcQ0Gg1Dhw5l7NixeHp62jBC+xEXF8fGjRvZsWMHer2+1I/btWsXTZo04d5776VHjx44ONh2nFuoPF5eXnz88ce3rH/ggQfo168fW7ZsISEhAQ8PD/r3718jzu8E+3fkyBGlC5JZpSErtOOdH/AXWeNIVkhH6l2JBCwTikUFe0GoPNeuXWP27NnKcq5/MzIixDWH6pbv25C0Jv3xPb8TsHQzatmyJb179y7X8+Xk5DB16lTOnj2rrHvQS8NQ0Z24VB721lBgltmWYzkP2bt3LwUFBfz3v/8VRb4EoZKV+VOpZ8+eVX4gWFhYyIIFCwBLQkhRYpUkSXz66aesXr2adevWcf36dUJCQsq9n6IkjKeeekpJMgZLMsrzzz/Prl27OHbsWPlfiFBuZrOZFStWKMuZYZ3Ln/wnSWSEdycgZgMAa9euZeTIkeILRRCqSW5uLpMmTVIqL8iSihvtHrR5krHNkjtKISusM5Jsxu+cJeHlzz//ZObMmbz11lvlrrJ17tw55T1wlqCrmP1ocypJop+7mmUZlhmW27dvF4nGlUyWZavlsWPHMmPGDCWhpGh7ZR/b5ufns3z5coA7Jq8UHwwCaNOmDbNmzSI4OJhPPvmEyZMnlznROCwsjF69epXqvh4eHgC4uLjQpEnZKvXWBYcOHbo56U2tJSukQ9mfRFKR0aAr/ucsEz3279/PuHHjxCxqQahhli5dqkw6MTh5kBXauUr3J5kMtxyHAmj0eQRFL+NKnxerdPKb3t2f7KA2eCb8CVgSEoYNG2bzi37Lly9XvpvbOKtoLqoZl1trZxXNnVScLTRjNpvZv38/b775pq3DqjHy8/PRarU8+uijtg5FqMVkWWbdunXKcmaDLmWetGZTkkRGWBcCzmwCYP369YwYMUJU/haEatSgQQMmTpzIyZMnWbBgARcvXgQsx4wBMRvwvHaM5OZD0HkF2zZQWcY98TS+sdvR6HKtNvXs2ZMnn3yywt1J64KUlBQOHjzInj17OH/+fLmf5/z583zxxRe4u7vTq1cvevXqRcuWLcXndy1Wr149cVwrVDqz2WzVNS8rtBMmbem7BWc26IpXXBQqs4HLly8TGRkpii8IQiXQ6/V8/vnn6HQ6y7JLPRJbj6pRk8/qkozw7jhmJeCefA6wXPNr0qQJAQEBZXqepKQkPv74Y65fv66se9BLw2hvMWmstCRJ4ikfy8+rKNk4KiqKiRMnMmHCBLy8vGwYnSDULmW+wr1hw4aqiMNKZGQkeXl5NG/e/JZZl15eXvTq1Yvt27ezfft2nn766XLvp6g9k6qEQd6idcUTkIXqc+jQIeLiLO35zGotmaGdKvR82YGtqXdhDw66HDIzM9m6detd25gLglBxer2eadOmcfnyZQBkJBLbjibfz7Yz6m2d3FEamQ26IpkM+F6wVNM8dOgQP/zwg9JZoKyKV+Xs5qrGSSVOOmuC3m4almcYkYGTJ0+Snp4ujj0qkZubG2DpVgEwfvx4xo8fr2zPz88HqPQWwKtXryY7O5tmzZrRuXPZk9VeeOEFpk+fzsWLF7l69SoNGjQo9WPHjRsnKvNVAlmWWbZsmbKcHdIBs0P5WrtmB7fD59I+1IYCkpOT2bNnDwMHDqysUAVBqKC8vDzWrFmjLKc36oOsrtrJAG7JsbcchxbR6PNwS44lJ7BVlcaQ3qgP7jdiUMkmzp07x/Hjx+nQoRwTKirJ6dOnOXTokLI8VgykV4gkSTzi7cCkG5YLT/v27eO+++6jaVPRRhOgUaNGXLp0SSTcCFXqzz//5Nq1a4BlbDM7qK2NIyq7nKA2+J7fhdpYSFJSEkePHqVr1662DksQ6pw2bdowY8YM9uzZwy+//EJaWhoATtk3CD38M9khHUht0h+zQ8ndlKqSQ14a/qc34ZJx1Wp9kyZN+L//+z+aN7efSu7VzWAwKMfhR48eVcbP/y5CK9HXXYOH+vZjuSZZ5kyhmX25Jgx/zbnPyclh06ZNbNq0CXd3dzp06ECHDh1o166dGHsUBOGu9uzZU6yasQMZ4d3K9HiToyuZYZ2od+UgAL/++itdu3YVxRcEoYJ+++03rl61HHeZVRputBuDrBHF9WxGkkhuNRLHnCS0BZnk5+cza9YspkyZUmIOWklOnz7Np59+atWB9Il6DqKScTkUJRu7qCTWZlmKfJ0/f57//ve/TJgwgfDwcNsGKAi1RI0soxATEwNAq1YlX1hr3bo1YPnQrYjBgwcDsGjRIrKyspT1Op2OuXPnAlQokVkoH7PZzJIlS5TlzNCOFW9bq1KTEdFDWVyxYoUy00sQhKphNpv5+uuvlc90gORWI8gNsP0Ac2mSO2qCjIieZDS4OYCzdetWli5dWubnMZlMHDhwQFnu6SYuqNcU9TQSLZwsh2OyLFu9T0LFBQVZqpMnJiaWuL1ofXBw5Vb/+eWXX4A7VzO+E3d3d3x8fADLTGah+h09epQLFy4AYFapyzyYXpys0ZLRoIuyvHz5ckwm0x0eIQhCddq4caNSzVjv4k12YJsq36emIKNC2yuD0dmT7JD2yvLSpUtv6QRQXcxmM/Pnz1eWe7iqCXeskcNVdqWxk4ouLjd/jvPnz7fZe1zTPP/88+Tn51tVmxWEyrZx40bldnZQm3JPWrMlWe1AVrHviuKvSRCE6qVSqejfvz/fffcdY8eOxcHBMilLAjyvR9Ng/4+4JZ2985NUJrMJ70v7CDsw1yrJ2Nvbm1dffZXPPvtMJBn/TUFBASdOnGDJkiV88MEHjBs3jokTJ7J8+fJbkozVQBcXFe/U1zIpyJF7PDR0dVXf9l8PNw3/8NXyZagTY7w0+PwtKTknJ4c9e/Ywa9Ys/vGPf/DSSy8xe/Zsdu7cyY0bN8QxoiAIVgoLC5XxbYCM8K6YHN3K/DwZET0w/ZUAmZCQwB9//FFpMQpCXXT+/HmrYgmpzQahd/e3YUQCgNnBicS2o5H/KhJ2+vRpNm3aVKrHbt68mQ8++EBJMnaQ4CU/kWRcEZIk8XA9B57ycaDoiDglJYW3335bXIMXhEpSIz+hilq7169fH7BUhZs1axZPPfUUzz77rLI+Pj6+Qvt56KGHlFng7dq1o3v37jg4OBAVFYVer2f69Omi3YwNHDhwoNhMLAcyG5Q/saO47OB21Lt8AI0ul4yMDDZt2lTmduSCIJTeb7/9xr59+5Tl1CYDyA5uZ8OIbqoJyR2lIkmkNh2IWp+Hx41TACxevJj69evTr1+/Uj/NmTNnlAk1nmpo5iQSN2qSbq5qTheaAct3oKi4X3mKJq0Vn/BQ3KlTlr+rli1bVto+z58/T2RkJGq1mkceeaRcz2EwGJQKRZVdbVm4O1mWWbx4sbKcHdKhXIPpxWWFdsb7ymHUxkISEhLYtWsXgwYNqmiogiBUkE6ns0o0TI/oVS1t7Y3O3hXaXlkyInrgeT0aSTZz5swZTp8+fdsJ31Vp9+7dSntoBwnGetfIoSq79Eg9B47l6zBhOSfYv38/vXv3tnVYNvfUU09x8eJFXnrpJS5evMgTTzyBr6+vrcMSapGUlBSOHDmiLGeGVaxTmy1lhXbE+8ohJGSOHz9OfHx8pU/UFASh9JycnHj88ccZOHAgc+fOJSoqCrAUTgg8sZKcgBYktxha8cItd6DNSSbg1Dqccm5OjFapVIwaNYpHH31UjGMARqORuLg4Lly4wPnz5zl//jxxcXGYzebbPkYNtHRW0dlFTRdXNe53qGB8O55qiQe8HbjfS8O5QjOH8kwcyzeR8be5zvHx8cTHx7NlyxbL4zw9adq0KU2aNKFJkyY0atQIDw+PMu9fqDqfffYZrq6u/Oc//ynV/RcuXMiNGzd4++23qzgyoTZasWKFMjZt1LqQGd69XM9jdnAmvWEv/GJ3AJZrW3369BHt6wWhHMxmMz/++KMyOSjPJ4KskI42jkooovMMIj2iJz6X9gOWKu69e/e+7fGUwWBgzpw5yrEYgLsKxgdoaeokioVVhsEeGvw0Et8l6ymULdcBpk+fzoMPPsjjjz8uupwJQgXUyKs3RdWEnJ0trZ6mT5/O6dOnuXDhAs8++yyurq5W9ysvSZL4+uuvadKkCZMnT7aaWTJy5MhytbpetGgRv/32W6nuO23aNNq2bUt+fn6Fk6ZrC5PJxM8//6wsZ4Z1xuToWinPLasdSI/oif9Zyxf20qVLadiwIU5O9ldRRBBqumPHjrF8+XJlOTO0ExnlHIyoCjUluaNUJImkViPR6HJxSb8CwDfffIPJZCI0NLRUT1H8RKWTixqVVPaBaqHqdHJVsyDNgIwlAeTEiRPVdlEmODi4Vl8A6tGjB66urpw9e5aLFy/SqFEjZVtmZib79+9HkqRKTfhcuHAhAPfccw8BAQHleo4dO3ZgNBpxc3MTLc5tIDIykosXLwKW9mPpET0r/JxmBycywrvie2EPAEuWLKFv375KFSpBEGxj27ZtSsUIg5MnOYHVk2Sb698Uo9a1xA4bRq0ruf7V89lvdPIgO6gtnvHHAcvFxOpONC4oKFC+OwGGeWjwdRCT4ipLgIOKIR4a/si2tAtcsGABXbp0wdGxbrfVbNfOMgFWr9czefJkJk+ejKur6x3biEuSxPHjx6spQsHebdmyRUkmy68XjsHVfhPZjc5e5Pk1xi3FMiFk8+bN/OMf/7BxVIIg1K9fnwkTJnDo0CH+97//kZFhKZrgnnQG58xrJLa5j4J64ZW7U1nG81oUvrE7UJlvZq42adKEF198kYiIiMrdn53Q6/XExcVx6dIlLl26xMWLF7ly5QoGg+Gujw3QSLR0VtHGWU1rZxXOqsoZs1VJEi2c1bRwVvO0LHNVL/NngYlTBWYu6MwY/lbAOCsriyNHjlhNkvHz86NRo0Y0atSIiIgIGjZseMdjJaFqffrppwQEBJQ60Xj+/PmcOHFCJBoLZXbt2jVWrVqlLKc1GYBZU/7zx8ywLnheP442P538/Hzmz5/Pa6+9VhmhCkKdcvDgQWWSvlmlJqXFMBDXemuUjIheuCeeRpufQX5+PsuXLy/x3Dk9PZ3PPvuMc+fOKesaaCXGB2jx1Ygx0crU3kXNR0GOfJGkJ9loOQBesWIFly9f5vXXX8fNrWIFhqqD2WwmOzubgoICTCaT6EQiVClJknBwcKBevXp3vH5d7kTjjRs3smLFCi5dukRubi4Gg+G2v9RlHYz/+/OMHTuWGTNmKO2ni7ZLFfzyzMrK4tlnnyUqKoovvviCYcOG4eDgwO7du3nrrbcYPnw4v/76K4MHDy71c8bFxbF///5S3bfogqZwU1RUFCkpKQCYNI5kRFRuYmJ2SHu8rxzCoTCLvLw8du/ezdChQyt1H4JQ112/fp1ly5Ypy3m+jUhpNrhGnfDUlOSOUlOpudFuDCGHf8YxLw2j0ciCBQsYP3487u7ud3342bM3Wyd2dBEz9GoaT7VEI0eJCzoZWZY5d+4cHTp0sHVYtYKTkxNPP/00s2fP5q233mLx4sVotVpkWebdd9+lsLCQUaNGERISUuLjp02bxmeffQbAunXr6NOnzx33ZzAYWLJkCYBy3Ho7ixcvpn379rRo0cJq/fHjx3nzzTcB+Mc//oFWqy3VaxUqh9FoZNGiRcpyVminClczLpIZ1gWvq0fQGApISUnhjz/+4L777quU5xYEoexMJhNr165VljPCu4Gqeo6TZLUDCR0eJih6mdXxqFHrSkKHh5HV1TcJISO8Gx7xx5GwTBa8evUqDRo0qLb9L1u2TEmM8VTDvV41cj68XbvfS8O+XCM5ZkhNTWXFihU8/vjjtg7LpuLi4m5Zl5ubS25u7m0fU9ExSKHuMBqNbNu2TVnOCrX/KlNZoR2VROMdO3Ywbty4Oj9hQRBqAkmS6N69O61bt2b+/Pls374dAI0ul+Co30hr3I+MiJ6VMiYrGXUEnFqPe/LNhAitVsvjjz/OvffeW2cqguXk5HDlyhUuXbrE5cuXuXz5MtevX8dkMt31sRIQopVo6qiiiZOKFk5q6mmq/vhCkiTCHSXCHVXc5wV6s8xFnZlzhWZidWYu6szkl1BoOSUlhZSUFA4ePKis8/LyomHDhkRERCj/AgMDUVVDVxhBEKqeyWRi9uzZGI2WiaoFnsFkB7Wt2JOq1KQ0H0LwMcuY+e7du+nXrx8dO9r/MbIgVBdZlq2Le4V1weBSgwpmCQDIag2pTQYSdGIFYJmkO3bsWKtk1tjYWKZNm6aMhQL0cFXzf74OOFbShDPBWrBWxeQgR2an6PmzwHLQe+zYMf773//y3nvvlbqomy3o9XpSUlLu2BVFECqTLMvK752fn99tk43LdQXnvffe44cffrhjtrwkSeVOCC76sC0oKABg/PjxjB8/Xtmen58PVLyV9IcffsiOHTv46quveOqpp5T1o0ePxtXVlYcffpi33nqLo0ePlvpEOSwsjF69epXqvkWl8l1cXGjSpEnZX0AtU1hYyCeffKIsZ4R3x+zgXKn7kFUa0hr3pf4pS3vcvXv38vjjj4uZ2IJQSXJzc5kxY4YyEKFz9SGx7ehqaUFdFjUpuaO0zA5O3OjwMKEHF6A2FpKdnc3KlSuZNGnSHQfz09LSSE5OBiytqFs41az3QrBo46zmgs7yd5OUlCSOCyrRu+++y65du9i+fTudO3emc+fOnD59mrNnzxIYGMj06dMrbV8bN24kJSUFHx8fhg8ffsf7rlu3jhdeeIGIiAhatmyJo6Mjly9f5sSJE5jNZu655x4mTpxYabEJpbNlyxal04hJ40h6w4pXMy4iaxzJaNgLv3OWxJNly5YxcOBAu5g1LQi10aFDh0hKsrR7Njk4V/ziWRnpPIO40udF3JJj0RRkYHT2Jte/abUfhxpcfcjzb4bbX0kja9as4ZVXXqmWfcfHx1slez/q7VBpVdyEm1zVEmPrOfBTqqWq3qpVqxg4cCD169e3cWS2s27dOluHINRiUVFRykVDo9aVXD/7P7fL92mIwdkLh4JMcnNzOXjwIP369bN1WIIg/MXNzY2XX36Zbt268e2335KdnY0E+F7YjVN2Iomt70XWlH8SsyY/k6DopTjmpSrrIiIieP3112v0hfmKkGWZ9PR0Ll68yOXLl5X/i4rklIaPWqKho0SEo4pGjioiHCuvYnFFaFU3qx0DmGWZGwaZS38lHV/WmYnTyxhLeGxmZibHjh3j2LFjyjonJyfCw8OVBORGjRoRGhoqOjjZWHp6ungPhDLbsGEDZ86cAUCWVCS3HF4pk1XyfRuSU78l7omnAfjuu++YNWuWGBMVhFI6f/48ly5dAiwdGGtSB2HBWp5/U3RufjjmpqDT6di1axejRo0CYN++fcyaNUvpeiEBj9XTMMxDIya3VzFXtcQbAVpWZBhZm2U5yr1x4wZvv/02b731Fu3bt7dtgLeRnZ2N2WxGq9Xi6emJVqtFkiTx+yJUCVmWMZvNpKWlodPpSE9Pv23n5jInGm/evJnvv/8eNzc3xo8fT9u2bRk7dize3t7Mnz+ftLQ0IiMjWbJkCSqViilTppS5ZVJQUBAAiYmJJW4vWh8cHFzW8BWyLPP7778DMGzYsFu2Dxo0CCcnJy5fvkxcXBzh4eGlet5x48bdtYKdULI1a9bcHIh3dCOzQdcq2U9OYCu8rxzCMTcZnU7H4sWLeemll6pkX4JQl8iyzLfffqsktZrUWm60f6hCbZWqUk1J7igLg0s9EtuOJujYEiTg1KlTLF26lMcee+y2jzl16pRyu4mjCm0NGNAWbtXaWcWqTMvt4u+ZUHHu7u5s3ryZzz77jLVr17J+/Xp8fHx4+umnee+99257kFwev/76KwAPP/zwXQfzH3nkEdRqNadOnWL//v3k5ubi5uZGr169ePTRR3nsscdERZhqlpeXp5wfAGRE9Kz0SW9ZoR3xjItCW5BJTk4OS5cuFa2nBcFG1qxZo9zODO1YoeSL8pLVDuQEtqr2/f5dRng3JdF4z549PPnkk3h7V21lFFmWmTNnjjJBsYmjil5udaMSni30dVOzM9vIJb2MwWBg7ty5dXpCU+/evW0dglCLFa9mnB3crtqq5VcpSSIruB2+F3YDsHXrVpFoLAg1UNeuXfnqq6+YOXMmMTExALglnyMkKof4jmMxa8teuMcx+wZBx35Ho89X1o0YMYJnn322ViUxZmdnc/78ec6fP8+FCxe4cOECmZmZpX58gEaigaOKcK1EA62KcEcVHurKH4PVmWWi8k2kGGT8HSQ6u6grPNarkiSCtRLBWhV9/mqcZ5RlrutlrurNXNGZufrXbX0JtacKCws5e/asVUc9jUZDeHg4jRs3pkmTJjRt2pTg4GAxzlVNjhw5wrVr12rtRAChasTFxSlj2wDpET3Ru/tX2vOnNBuMc9plNIYC0tLSmDNnDq+99lqlPb8g1GYHDhxQbufWb1GuYzqhmkgSWaGd8D+zCYD9+/czatQo1q5dy7x585S7uargP/5aWjvXgvECO6GSJB6u50ADRxX/S9Gjly0FTj/++GNeeeWVGjnGUVhYCICPjw8ajegCKFQtSZJQq9X4+PiQkJCgTIooSZl/GxcsWIAkScyaNYsxY8Yo67VarfLHN2bMGF5++WVGjx7NlClT2L17d5n20aqV5UJb0WDI3xUl4LRs2bKs4SuSk5OVismurq63bFepVDg7O1NYWEhycnKpE42F8klPT2flypXKclqjvlWX7CepSG06UGnTsn37dkaOHCneY0GooC1btli1UktqPQqDq48NI7q7mpLcURb5vg1Jb9QHn4t7AUtFzHbt2t32O/H06dPK7eaimnGN1dBRhVYCvWypaJyeni6q7Vcid3d3pkyZwpQpU8r0uHfffZd333231PdftmxZqe97//33c//995cpHqFqLV26lKysLAAMTh5khnWp9H3IKg1pTQYQ+OcqwFIFe9iwYcpES0EQqsfZs2c5d86SWGuW1GSFdrJxRLZV6BVCgWcwzlnxGI1G/vjjDx5//PEq3WdkZCTHjx8HLBU8nvZxENUYqpBKknjKV8ukBB0yloqrhw8fpmvXqpngLQh1VXp6ulWVx+zgdjaMpnJlB7XF58IeJGROnTpFUlJSpU7aFAShctSrV4/Jkyczf/581q9fD4BTdgIhR34lvvPjmBxLXz3SKfM6Qcd+R23UAeDg4MCLL77IgAEDqiT26pSSksKpU6eIiYnhzJkzSmeju9EAIX8lE4dpVTRwlAjTVk+l4ks6M18k6sgq1jnZU2Xg9fqONHSs3DFfjSQR7igR7qii31/Jx2ZZJskgc0VvqXh8VW8mTm8my3Tr441Go5KwvWmTJdHGxcWF5s2b06JFC9q0aUPjxo1FwsQdbNiwgY0bN1qty87OvmPRJJPJxI0bN4iMjAQsBbUEoTT0ej0zZ85Er9cDoHP3J71h6bo3l5bJ0ZWUFsOUMdHdu3fTsWPHGpnYJQg1TfGcqVz/5jaMRCiNXP9mSqLx+fPn+f3331m8eLGyPchB4vUALQEO4pq9LXR1VROgceSLJD3pJhmTycRXX32F0WisccdOsmyZ5SeOmYXqVDQ5tOj3ryRl/o2Mjo4G4N57773j/cLCwvjyyy8ZPXo006dP54svvij1Pnr06IGrqytnz57l4sWLNGrUSNmWmZnJ/v37kSSpQn/oHh4eqNVqTCYTJ06cuKWayfXr15XquoGBgeXej1A6v/zyCzqdZcBK5+5PdnDVtq3N921Ink9DXNMuYTab+emnn5g8ebK4sCkI5ZSYmMj8+fOV5czQjuQFiJOdqpLesBfO6VdxyYjDbDYza9YsvvrqK5ydb628ef78eeV2U5FoXGNpJEsrxXOFlqsFsbGxdO8u2h+VxZ0OeAXhbuLj49mwYYOynNpkALK6ak7ecwOaU+AVgnPmdYxGI/PmzavTVSUFwRbWrl2r3M4NbFWmhIvaKrNBV5z/uuD3xx9/8OCDD+LoWDWdSQoKCvjpp5+U5Xs81DSo5OQI4VaNHFX0c1ezK8eSDTJ37lzatWtXZe+zPTGbzaSnp1NQUCAqvwkVsmfPHsxmyzldvncYBpeqrQ5fnUxO7uT7NsQ19SIAu3bt4pFHHrFxVIIglEStVvPcc88RHBzMnDlzMJvNOOalEnx0Mde7PFGqzj2O2YlWScZubm5MmDCBFi1aVHX4VcJsNhMbG0tkZCRHjx7l+vXrd32MowThfyUTh/+VWBysldDY4BqS3izfkmQMkGWGLxJ1fBHqVOVd7FSSRKBWIlCrokex9ZlGS/LxVb2Zqzozl/UyqcZbx+jy8/M5duyYMiHH2dmZdu3a0bVrV7p27YqbmzgnK+7kyZP89ttvVusKCgpuWXc7rVq1YsKECVURmlAL/fTTT1y9ehUAs0pDYpv7q6QrR279FmSnXsQj4U8Avv/+exo3blyhDtaCUNvJsqz8fQIUeNWevxfJZMAt+Ryagky76DpcWiZHV/TO3mgLMjAajVZJxk0dVbweoMW1CjpfCKXXwFHFh0GOzEjUcd0gK1273d3dRVEGoc4rTc5kma+eZ2Rk4OXlZdUWSaPRkJeXd8t9+/bti7OzM1u3bi3TPpycnHj66aeZPXs2b731FosXL0ar1SLLMu+++y6FhYWMGjWKkJCQEh8/bdo0PvvsMwDWrVtHnz59brmPs7MzAwYMYNu2bbz//vssXboUPz8/wNI2+c033wSgY8eO4iJDFYuNjWXnzp3KckrTQSBV/UXG1GaDcIm8jCTLnDx5kkOHDomkLkEoB1mW+e6775T2DTpXH1Kb1qwZX7WOpCKpzX2EHZiD2qgjKSmJRYsW8dxzz1ndzWAwWJ2AhmtFAkdN1lB7M9H44sWL4jupjIqO3QShrGRZZs6cORiNRgAKvELIrV/+zil3JUmkNB9M6MH5SFiqSh45coQuXSq/grIgCLdKSkqy6sKR0UAMHoKl2obByROHwixycnLYtWsXQ4cOrZJ9LV++nLS0NADcVfCgl/1fRLAXY70diMozkWu2dPpauXIljz32mK3DspkdO3bw7bffcvDgQQoLC5EkSfndBLh8+TKffvopKpWKzz//vMSOaIJQXPHxzeygqi2iYAvZQW2UROOdO3cyduxYUbRBEGqw4cOH4+bmxpdffmlJNs5NIfD4CuI7PXbHBDJNYbZVkrGnpyeTJ0+mQYMG1RV6pdHpdGzevJmNGzeSmJh42/upgQaOEo0cVTTUqohwVBHoIKGqIZ9xUfmmW5KMi2SZLdt7utmm0pmXRqK9Rk17l5u/UzkmmSs6M5f0Zi7pzFwoNJP9t/gLCgo4ePAgBw8exMHBgZ49ezJmzBi7/D2rCn8vjvXZZ5/h5uZ2x4rGKpUKDw8PWrduTa9evcR3tFAqu3btYvPmzcpyatNB6N38qmx/yc0H45R5DW1+BoWFhXz22WdMnz4dJyenKtunINizwsJCpdq4WaUp1YQxe+CYlUBQ9FI0+nxlnVHrQkKHseg87b/7o9HJA21BhtW6Fk4q3gjQ4lgNnTCEu6unkZgQ6MiniTqu6i3Jxl999RVffPEF9evXt3V4glCjlfnM09vbW2kpXKRevXqkpKSQmZmJl5eXsl6SJFQqFcnJyWUO7N1332XXrl1s376dzp0707lzZ06fPs3Zs2cJDAxk+vTpZX7Ov5s+fTrDhw8nOjqazp0706VLFxwcHDh69CjJycl4eXnx9ddfV3g/wu2ZzWbmzp2rLOf6N6XAJ6Ja9q138yMrpCNe144CMH/+fDp06CCq+QhCGe3YsYOTJ08CICOR1Pq+WjHjsKYzOnmQ0nwI9U+tAyzt1Pr27UvTpk2V+8THx2MyWSqW+WkkMUOyhmvgePP9KZ4gLpSOSDQWyuvQoUMcP34cABlIaT4EqvhijM4jkOzg9njGW/Y7d+5c2rZtK45DBaEarFu37ma1yXrh6N39bRxRDaFSkdmgC37ntgGwZs0aBg8erLTKqiwJCQmsWbNGWX60noM4Rq1G7mqJh70dmJ9mAGDVqlUMHDiQgIAAG0dW/aZOncrMmTPv2BUjIiKC8+fPc/z4cfr27Vunk7KFu7ty5YpVJbjcgGY2jqjy5fk1xaRxRG3UkZiYSGxsLM2a1b7XKQi1SZ8+fZR2wAAuGXH4xW63nPeWxGwi8PgKNHpLYSFXV1cmTZpkl8mfsbGxzJgxg5SUlFu2OUiWinItnFU0d1IRoVVVeUXgikg23LmL1922Vzd3tUQbFzVt/ko+lmWZZKNMbKGZs4VmYgrMpJluxmwwGNi9ezd79+5l9OjRPPHEE5V+HmJvevfubZVs/Nlnn+Hq6so777xjw6iE2ubSpUvMnj1bWc6p34Ks0I5Vuk9Z48iNtmMIPbwAldlEXFwc3377LW+88YZIjheEOkIyGQg+tgS1odBqvUafT/CxJVzu+7L95xn8bawpTCvxei1IMtaZZaLyTaQYZPwdJDq7qGv0MfTduKkl/lvfkY8SdKQaZfLz85k7d67oQCoId1HmM7WQkBB0Oh1XrlxR1rVq1QqA1atXW903OjqavLw8q+Tj0nJ3d2fz5s385z//AWD9+vVkZWXx9NNPs2vXLoKCKj6TpWHDhuzbt4+XX36ZgIAA9u7dy44dO3Bzc+P5559n//79tG7dusL7EW5v586dxMbGAmCW1NVeBTWtcV9Mf838SkpKsrrgKQjC3eXm5rJw4UJlOSO8GzrPQBtGVLfkBLYmz6chYBmw/fHHH5XEGYBr164pt0O09nugX1eEONw8LCtNC8faJisriz///JPIyEj2799/x3+CUFkKCgqsJr1lhXRA51E9s5XTmvTDpLFU60hKSmLlypXVsl9BqMuys7OtOi5lhIvuAcVlB7fDpLFMeEhISODw4cOVvo/58+crFeQbO0r0dqv8dqzCnfV3VxP+17mBXq/n559/tnFE1W/Lli18/vnneHp68t1333Hu3Dn8/UuedPB///d/yLJsVeVLEEqyZ88e5Xaef1NkTe2bQCarNeQGNFeWd+/ebcNoBEEorf79+/PEE08oy15xUYRG/oT/6Y23/Gu0YyZO2TcAUKvVvPvuu4SHh9so8vLLzMxk0qRJVknGLiro56bmjQAtP4Q58U6gI/d7OdDMqeYnSNS7S8mou223NUmSCHBQ0cddw/N+Wr4MdeTTYEce8dbQoNiYtdlsZuXKlbdcaxYEofJlZmYybdo0pVKq3tWHpJYjqrz4AoDeI4CU5jc7KO3bt0+MiwrCbTg5OSkVv1VmI+piFYDtlVvi6VuSjIuoDYW4JZ6u5ogqn0P+zW5ZDhK87K/FqYYfb97NJZ2ZN64V8kOKgRWZRr5PMfD6tUIu6W7TdsNOeKolXvLTUvTuREVFWeVCCkKRF154AS8vL6ZNm2brUMps0aJFeHl5MXLkyEp5vjKffvbu3Ztjx46xY8cO/vGPfwAwevRodu7cyfvvv49KpaJr165cvnyZ999/H0mSGDBgQLmCc3d3Z8qUKUyZMqVMj3v33Xd59913S3VfPz8/Pv74Yz7++OPyhChUwN8TFDPDu2Fw8a7WGMwOzqQ17ov/GcsFo+XLl9O/f//bXmASBMHasmXLlCr3BicP0hv2vssjhEolSaS0GIrzgR9RmU1cuHCB3bt3K9+7N27cUO4a6FB7qkDUthmTRQIcbr6GpKQkTCYTanXtT77ZsmULn376qVJR9m7+3tJaECri999/JzU1FQCjgwtpTfpX275NWlfSmvTH/8wmAFasWEG/fv0qZUKlIAgl27hxIzqdpQW0zs2f/GrqpmMvzBpHskI6UO/KQcDyudStW7dKqyp04sQJjhw5AoAEPOmjrTHtqOsSlSTxlI8Dk29YLigfOHCAmJgYpYhAXfC///0PSZKYOXMmY8aMueN9hw61XAA/d+5cdYQm2ClZltm3b5+ynFO/9v495QS2wjP+BGD5/Pi///u/OnHeKgj27sEHH+TChQscPGg5znPKScIpJ+mOj3n66aftthDP4cOHycuzVGWWgKd8HOjrZs/jh3eL275elyRJBGslgrUqRnk5cElnZkGqnst6S/W/HTt23PUYTRCE8tPr9UybNk2ZjGHSOJLQ/qFqnSiXHdIex+xEvK4fA+CXX34hKCiIHj16VFsMgmAPJEmiQYMGypiEc8ZVcuu3tHFUFeOaevGu23OC21VTNJVPU5CFw1/dQcAy4b++nV+j15tlvkjUkfW3nOIsM3yRqOOLUCc7Ps6Gxk4quriqOZxn6RIdFRVlV5MtR44ceUuRLrVajaenJy1atOC+++7jmWeeqVEdVffu3cu+ffto06YNo0aNsnU4QhmV+RPt3nvvRZZlFixYoKx74okn6N69O7m5uYwfP56ePXsybtw4Ll68iI+PD++9915lxizUEkuWLLmZoOjoTnpET5vEkRXSgUJ3S5tQvV7PvHnzbBKHINiblJQUNmzYoCynNh2IrNHaMKK6yeDibVWN79dff1VmoRev2uGnsd8D/OJq64xJACeVhOdf12dNJhPp6em2DagarFmzhscee4zjx48jyzJarZagoCBCQkJu+y84ONjWYQu1xJUrV1i7dq2ynNp0IOa/Ol1Ul6yQ9hR6WDoBGI1Gfvjhhzu2cBcEofwKCgpYv369spwR0aNaKvXYm8wGXTGrLAck58+f58SJE5XyvCaTifnz5yvLfdzUNHS070F2e9bESU0P15uJgQsWLLDqjFLbHTt2DEmSSjWQ7evri7u7O/Hx8dUQmWCvzp8/T3JyMgAmjRN5vg1tHFHVKfAOw6h1BSyV8GJiYmwckSAIpSFJEi+++CLe3qUr9NK+fXu7vuDr4uKi3JaBVKOMyXbhVFi68c7jBHfbXpPJskyeSSan2KFo8fdPsMjIyODs2bO2DkOoBcxmM19//bWStCgjkdjmfgyuPtUeS0rzweR7hyrLX375pdIFWRCEm9q1u5l065Fw0oaRCKXx9/eohZP9T8yNyjfdkmRcJMts2W7vmjvdHKdOSrrzhMyaysnJCX9/f/z9/XFzcyM9PZ39+/fz9ttvM3DgwBpVxGvfvn189tlnVrlGNV39+vVp0qQJPj7Vf8xU05S5onGnTp1uaeetUqlYvnw5n3/+OatWrSIhIQEPDw8GDBjAhAkTCAsLq7SAhdrh8uXLbNy4UVlObTbIdgmKkoqU5kMIPfILAAcPHiQ6OpoOHTrYJh5BsBNLly5V2h4XeAaTG9DCxhHVXRnh3fG8Ho1Gn09aWhpbtmxh1KhRVgeM9dT2n0hT22dMguV9yjJZLg6kpaXh5+dn44iq1syZMzGbzXTp0oXp06fTvn17W4ck1BFms5nvv/9eSarK9w4lJ6hN9QciqUhuOZzQg/ORkPnzzz/Zs2cP/fr1q/5YBKGWW79+Pbm5uQDonb3JEceuJTI5upEd1E6pKvT777/Trl27Clc13rt3r9J2TivBQ94OFQ1VqKCx9TRE5ZswyJYkycjISHr16mXrsKpFfn4+rq6uaLWlG4cym81iIpBwRwcOHFBu5/o3BVX1XEiUTAbcks+hKcjE6OxNrn9TZHUVf75KKnIDmuN17SgAkZGRtG3btmr3KQhCpfDw8ODzzz8nOjoak+n2yQDOzs5069YNlcp+J4V17dqVsLAw4uLiANiQZWR3jpHBHhru8dDgYWfjpP4Od473bttrIrMsc6LAzPpMI7HFCkhIksRDDz1kw8gEoXZbuHChVSeO1GaDyPdrbJtgVGputHuQ0EM/oy3IQK/XM3XqVD799FMCAwNtE5Mg1EADBgxg6dKlgKXar2NWAjpP++2KmOfbGPek20+eyfO10WdSJVAZCvGKO2K1LsOOJ4QVuaG/82u423Z7kFnsfXJ2rt6CRJXlgQce4Pvvv1eWk5OT+eqrr5g9ezYxMTGMHz+eX375xYYR2rcPP/yQDz/80NZh1AjlGilwdXXF1dX1lnUffvghx48fJzk5mQsXLjBnzhy7KikuVA9Zlvnxxx9vJnbUa2DzBMVC71CyA28ml8yZMweDwWDDiAShZktJSWHnzp3KclrjfqIinA3JGkcyilWFX7VqFQaDgezsbGWdvQ2gl6QuzJgs/j4Vf/9qq9jYWCRJYsGCBSLJWKhWmzdvvlm5Q1KR0mKYzb7HdB71yQzrrCzPmzevTvz9C0J1ys3NZc2aNcpyesNeYMeJE1UtI6IHsmT5+Zw5c4bo6OgKPZ/JZGLJkiXK8nBPDd61pNuGPfPVqBjscbP+wOLFi++YdFSbBAQEkJubS2pq6l3ve/bsWfLy8kRXDeG2ZFkmMjJSWc4NaF4t+3XMSiB872zqn1yL74U91D+5hvC9s3HMSqjyfRd/jQcPHqwznx2CUBv4+Phwzz33MHTo0Nv+69u3b41qq1seWq2WyZMn06bNzWs+uWZYlWlk/LVC/pei50Kh/Uwk6uyixvM2py+eKst2e5Frkvkjy8Bb13V8kaS3SjJ2cXHhjTfeoGvXrjaMUBBqr7Vr17J69WplOTO0I5lhXWwXEGDWupDQcSymv7rMZWVlMWnSJDIyMmwalyDUJIGBgfTsefMasP/pP8Bsv+dgufVbYNQ4lbjNqHEit779Fofwjd2B2lBgtW5ztpFCs30cc95Ozl3iv9v2mi7bJLMzx6gsN29ePeM6Vc3f359PPvmEsWPHArBu3Tq7rdYs1CziyppQ7Xbt2sWZM2cAS2JHcvOhNSJBMbXpAEwaywBaQkKC1cmWIAjW1q1bd7OasVcoBT7htg1IICuko9K+NC0tjb1795KXl6dsd60F3/jJhjufqNxtuz1wLVaRufj7V1t5enri7u5OUJD9zr4W7E96errVrN30iB7o3WxbPTytcV8Mju6AZUD9559/tmk8glDbrFq1yrqacWBrG0dUsxmdPckKaa8s//LLL8pE4fLYt28fiYmJALioYLhHmZtrCVVklKcGp78OP69fv86hQ4dsG1A16dOnDwD/+9//7nrfSZMmIUmS6DYg3NaVK1eUCzUmjWO1jI9IJgNB0cvQ6K3PGTX6PIKilyGZqrZ4QoF3KEatpa19RkYG58+fr9L9CYIglIeXlxeTJk3i1VdfJSAgQFlvkGFfrolJN3S8n6Bjpx0kf2hVEq/Xd7wl2dhTBa/Xd7SLDm8XdWb+l6LnlWuF/JZuJKlY1Ti1Ws2QIUP49ttv6d27tw2jtA9ZWVn8+eefREZGsn///jv+E4QiO3fuZN68ecpyrn9TUpoPqRHX5w2uPiR0eBizyjJWkJiYyKRJk+rE9RFBKK0nn3wSBwdL9xqnnCR8Y3fYOKLyk9UOJHR6FKODi9V6o4MLCZ0erfouPVXE7UYMnvHHleWiiXvJRpnvU/QY7WSCW0nc75JjcLftNVmhWWZWkp6cv4a+/fz86NLFtpNwKtujjz6q3D5+/LjVtr179+Ll5aVM0IyOjuaJJ56gadOm1K9fn3bt2vHqq6+i1+tved5z587x0ksv0aZNG/z9/QkPD2fMmDFs3ry5xDi8vLyUf5999hlgKXxRfL2XlxfTpk277WsZOXIkXl5eLFq0CJ1Ox1dffUWPHj0IDAwkIiKC4cOHs3XrVqvHREVF8dFHHzFo0CCaNWuGv78/zZo149FHH2XTpk13/NkFBASUKb6SfqYLFy6kT58+BAYG0qhRI1566SXS09Pv+Bxl/dkWOXr0KGPHjqVBgwaEhIQwatQoqy5slaXCV3fMZjPp6ekUFBQQGhpaGTEJtVheXp5V4kRGg64Y3HxtGNFNJkc30hr1xf+c5YNn2bJl9OvXD39/fxtHJgg1S2FhIdu2bVOW0yN62DAaoYis1pAZ1gXfC7sAS3twnU6nbHe0gwHnu6mNbQL/TlvsZKykg/bapl+/fqxYsYKUlBT8/Gyb6CnUHT/++CP5+fkA6F3qkRFh+zbxssaRlBbDCDq+DIDt27fTr18/0YZaECpBSkoK69atU5bTGvcV1YxLIb1hbzzi/0RlNnL58mV2797NgAEDyvw8siyzatUqZXmohwbXWtBpo7ZwV0sM9tCwLssyiXTlypX06NEDqQZcbK5Kr776KkuXLuXLL7/EycmJ559//pb7nDp1ismTJ7N161a0Wi0vvviiDSIV7EHxBP1830bIqqqfTOGWHHtLknERjT4Pt+RYcgJbVV0Akoo8v6bKRdRDhw7Vmoo/giDULiqVigEDBtC3b1/279/PunXrrCZHXNXLzEszsCTDQF83NYM9NPg71MxzhYaOKr4IdSIq30SyQcbfQaKzi7pGJxkbZZmDuSa2ZBu5XEJLbVdXVwYPHszIkSPFuGApbNmyhU8//fSWBJHbkSSJtLS0qg1KsAsHDx7km2++UZYLvEJIbHM/SDXn867QK4TEtqMJPLECSZa5cuUKU6ZM4cMPP8TJqeTKp4JQlwQGBvLEE08wf/58ALzjjmBw9SErtKONIysfnWcQV/q+ZDm3LcjA6OxNrn9Tu00ydsq4RkDMBmW5Z8+edOrUSfnsPZZvZkainpf8tXbZgThQqwJuX0U7UFtzvk/KItVg5utkvdVx6r///W8lqb+2KF7s607dVLdu3coTTzyBTqfDxcUFrVbL1atX+fnnn5k0aRJarVa576JFi3j11VeVwoTu7u5kZWWxY8cOduzYwZtvvsnEiROtnr943l1eXh55eXk4OTnh4eFhdT83N7e7viaTycTYsWPZvXs3KpUKT09PcnJyiIyMZPv27QwePBiwdLq85557lMc5Ojri4uJCUlISmzZtYtOmTfz73//m008/LXE//v7+Sr5NdnY2hYWFd42tuA8++ICvv/4aZ2dnTCYTaWlpLFq0iHPnzrFlyxZUJVynKs/PFmDjxo089dRTGI1GVCoV7u7u7Nu3j/vuu4/HHnusTHHfTbn/4nfs2MGYMWMICQmhadOmt7S7vnz5Mv/617944YUXxIwzQbF48WIyMzMBMDi6W1rW1iBZoZ3QuVk+4PR6vXKwJgjCTfv377dK0Mr3bWTjiIQiWSHtlVnfly5dsko0tsPzllvUpjaBt1P8krTBULVVqGqCiRMn4u3tzfjx4ykoKLj7AwShgg4ePMjBgweV5eSWw5HVNaOyZp5/E3KKtaH+/vvvrT7HBUEon4ULFyqTdwo96pNbv6WNI7IPJkc3MsK7Kcu//PJLub6rT58+zZUrVwDQSjBYVDOucYZ6aiiar3fhwoU6UZm0adOmfPXVV8iyzNSpU2ncuLGShNG/f3+aNm1K37592bp1KyqVii+//JKIiAgbRy3UVIcPH1Zu5/o3rZZ9agru3Er6btsrQ55/E+V28Z+BIAhCTaRWq+nbty8zZsxgxowZDBw40OpCeb4ZNmWbePO6jq+TdFzRlb+bR1XSqiR6umkY7e1ATzdNjU0yLjDLrM808Nq1Qv6Xarglybhhw4a89NJL/PTTTzzzzDMiybgU1qxZw2OPPcbx48eRZRmtVktQUBAhISG3/RccHGzrsIUaIDo6ms8//1zpUqRz8yOhw9gamcyX59+U5JYjlOUzZ84wbdq0OlGQRRBK495776V79+7Kst+ZTbgnnLRhRBUjqx3ICWxFRsPe5AS2qpGfS6XhmJVAUPQyVGZLUmBwcDAvvfQSgwYN4oEHHlDud7rQzIT4QqLzb5+wW1PVtuvzsiyzP9fIxASd1XHqs88+S6dOnWwYWdW4du2actvLy6vE++h0OsaPH0/Pnj3Zt28fCQkJxMXFcfToUcaNG2dVlGL//v28/PLLmM1m3njjDWJjY7l27Ro3btxg7ty5eHl58fnnn1sVLgSIjY1V/v3nP/8B4IEHHrBaHxsby8svv3zX1zRv3jyioqL48ssviYuL4/Lly1y/fp158+bdcgzcunVrZsyYQXR0NElJSUpnsrlz5+Lm5sYPP/zA+vXrS9zPyZMnlbiK/z2XRnJyMvPmzePnn38mPj6e+Ph4vvnmG1QqFVFRUWzZsuWWx5T3Z5uens5LL72E0Whk5MiRxMbGcvXqVU6cOEHnzp2tuvxWhnJd4Zk6dSozZ85EvkN594iICM6fP8/x48fp27dvpWdIC/bnypUrbNy4UVlObTYIWeNow4hKoFKR3GIooUcsf2iRkZFER0fToUMHGwcmCDXH9u3bldtZIe1rRGslwcKsdSE3oAUeNywnlrUtUbWoTeAXiTqyio3321ObwLspfmRV2yvJgeWA+fnnn2fWrFm0atWKMWPGEB4ejo+Pzx0fJ44rhfLIz89nzpw5ynJWcDsK6jWwYUS3Smk+BJe0y6iNOm7cuMHSpUt58sknbR2WINitmJgY9u7dqyynNh0kjl3LICO8O57Xj6PR55Gens7y5cvL/JlUvFVZbzc17rVh9lst46mW6O6qZm+u5ULHli1baNq0epIlbWncuHGEh4czYcIETpw4oawvfrtNmzZMmTKFvn372iJEwQ6kpaVx6dIlAGRJRb5Pw2rZr9HZu0LbK0N+vQjMKgdUZgPx8fEkJCRYVckRBEGoqZo0aUKTJk149tln2blzJ5s2bSIhIQGwjMsdyTdzJF9HO2cVD3g70MjRPiu02UK+WWZLlpFN2Uby/par7eDgQO/evRk+fDhNmjSpE+OelWnmzJmYzWa6dOnC9OnTbyn+JQglOXHiBNOmTVMq4uld6hHf6THMDjW3QnB2cDtURh1+5ywJNCdOnOCzzz7jnXfeqXUVJgWhrFQqFa+++ippaWmcP38eCQg4tQ6VUU9WWO1LjrQHTulxBEUvRW2yTIjw9PRkwoQJuLq6AvDUU0/h7OzMb7/9BkCmCb5I0tPZRcVj9RxqbCeNv6tN1+ev6838mmYgpvDmC1GpVPzrX/9i6NChNoys6sybNw+wvM7b5b0lJyfTtWtXli1bhkZzM420UaNGfPfdd1b3nTBhAmazmffee4+33npLWe/k5MRDDz2ETqfjpZde4ttvv7WqJlyZjh8/zu+//271njk5OTFmzBir+7m5ubFv375bHu/o6MhDDz2kdFBYsWIFo0aNqtQYdTodb731Fvfffz9g+fk/+eSTrF+/ns2bN7Nr1y6GDRtm9Zjy/mwXLVpERkYGgYGB/PTTT0o3iAYNGrBw4ULat2+vFJKsDGVONN6yZQuff/45Xl5eTJ06lXvuuYc+ffqQkpJyy33/7//+j//85z9s3rxZJITUcbIsM2fOHGXGZH69BuQGtLBxVCUr9A4lO7CNkqg3d+5cvvrqK3ECIwhYWk+fPn0aAFmSyAlsbeOIhL/LDm5bYqKxQZYB+znQvx17bBNYFsZimcZ14XvnxRdfRJIkZFmmoKBAOdm5G3FcKZTHr7/+qlQrNGpdSW060MYR3crk6EZq04EEnP4DgNWrV9OnTx/Cw8NtG5gg2CGj0cj//vc/ZTknoHmNm1xQ08kaR1KbDKB+jGVG/5o1a+jfvz+hoaGlerxOp7OqIt/fXVQzrqn6u99MND5w4AD/+te/6sSxaK9evdi1axexsbFERUWRkpKCLMv4+fnRqVMnmjdvfvcnEeq0qKgo5XaBd1i1JW3k+jfFqHVFo7+1i6BR61otlZVltYZ8n3DcUixV0KOiorjvvvuqfL+CIAiVxd3dnfvuu49Ro0YRHR3N2rVrrScfFZg5UaCjg4uKB70caFADEo51ZpmofBMpNWxMtNAsszXbyIasWxOMvb29GTFiBEOHDr2lLbJQerGxsUiSxIIFC8TEHqFUTp06xdSpU5VqwAYnD+I7PYbJ8e7tyG0ts0FXJJMe3wt7ADh69CgzZszgv//9b504TxWEO3F2dub999/ngw8+4MqVK0iA/9nNaAqzSGsyQBRYqEbuN2LwP7UelWwZT3N3d+fDDz+0+p6WJImxY8fSqFEjvv76a7KysgCIyjcTna9jkIeaez0d8NLU/PfN3q/PpxjMrM40sjfXZFX0y8/PjzfeeKPWjQHqdDrOnz/P119/zR9/WK43PvTQQ/j6+t72MW+99ZZVknFJzp07x/Hjx9FoNPzzn/8s8T5FCbAHDx7EaDTe9TnLo3PnzpWSGN6uXTsApYhAZSupaEu3bt3YvHmz0gWySEV+tkXFXkaPHq0kGRfx9/dn8ODBrFmzpqIvR1Hmd/R///sfkiQxc+bMW7LB/67ojT137lz5ohNqjX379hETEwNYKnykNB9Sow90UpsOwDUlFrVRR3x8POvXry9zKXRBqI0OHTqk3M6vF24XgxJ1TYF3GEZHNzS6XKvOAwU1s+NfuRS1CayNCoud3Tg61rCq/1WgZ8+eooKJUC3OnTunnEwDpDS7B7ODsw0jur3s4PZ4JJzEOfM6JpOJ2bNnM23aNNRq+2o/JQi2tmrVKuLi4gAwqx1IbVY1s+dru5ygNnhej8Y5Kx6j0cjs2bOZOnUqKtXdEy1OnjxJYWEhAIEOEuFa+//Or6nJHRXVxFGFr0Yi1SiTn5/P6dOnlYHWuqBp06Z1ooqzUPmOHj2q3M7za1xt+5XVDiR0eJig6GVWycZGrSsJHR6utpazeX6NlUTjo0ePikRjQRDskkqlolOnTnTq1IlLly6xcuVK9u/fr4yrRv+VCNLVVc0DXhpCtLZJOL6kM5dQRc7A6/UdaWijJGidWWZnjol1mQay/zb2HBgYyJgxY+jfv79IDKwEnp6eFBYWiiRjoVROnTrFxx9/fDPJ2NGd653HYXT2tHFkpZfRsDeS2YTPpf0AHD58WCQbC8JfPDw8+Pjjj5k8eTLnz1vOx+pdOYhjbgqJbe6v0VXLawWzGZ8Lu6h35WZxBS8vLz766KPbFozp1KkT33zzDfPnz2fnzp0AmIAt2SZ25pgY6K5muKcGH43tJ7bdiT1en79hMLMh08i+XBOmYutVKhXDhw/niSeewNm5Zl4rLKvFixezePHiErd1796dzz///LaPVavV9OrV6677KJpwbzab6dq16x3vW1hYSHp6Ov7+/nd93rLq169fqe9rMplYtGgRq1atIiYmhvT0dKXbQ5Hc3NzKDhFXV9cSX3tRsndennXxgIr8bM+ePQtA69YlF4ls27atbRONjx07hiRJpSob7evri7u7O/Hx8eUKTqgdCgsLWbBggbKcGdYZvZuf7QIqBZOjG+mN+iitWZYuXUr//v3x9q761oOCUJMdOXJEuZ3n38yGkQi3JUnk+jfF69oxq9W5Jvk2DxBqkuxi75Onp/0M/JXXhg0bbB2CUAcYjUa+++475SJhnm8jcuu3tHFUdyBJJLUcQYPIuUiymdjYWDZv3syIESNsHZkg2I3r16+zdOlSZTmtUV+MTqJ6VrlIEskthxN2cB6SbObMmTNs2rSpVJ9J0dHRyu0OLmq7n1xUE5M7KoskSXR0UbEl2zLkHh0dXacSjQWhPAwGA3/++aeynOfbqFr3r/MM4kqfF3FLjkVTkIHR2Ztc/6bVlmQMkF/sNcfExFBQUFBrLtAJglA3NWzYkDfffJNHH32U33//nX379iljCYfzTBzJM9HZRcUoL4dqPf7Tm+VbjkMBsszwRaKOL0KdqnXyW55JZmeOkU3ZRrJM1tsCAgJ45JFH6Nevn5gwXYn69evHihUrSElJwc+vZl9fFWzr5MmTTJkyBZ1OB4DR0Y34zuMwutjf9e30Rn2RzGbqXYkERLKxIBTn7u7Oxx9/zMyZM5Vr966pFwk7OI8bbUej8xQTU6qCujCH+ifX4JIRp6wLDQ1l4sSJBAQE3PGxHh4evPrqqwwdOpT58+crxToNMmzONrEt20R3NzXDPDSE2/k4o63Jssx5nZk/sowczTfz9wyJDh068PTTT9e6TqJOTk5KBxG1Wo2npyfNmzdn1KhRPPDAA3c8Nvfx8SnVeE5KSgpgSYZNTk6+6/0LCgpKGX3ZBAcHl+p+ubm5PPzww0RGRirrXF1dqVevHgB6vZ7MzEyrLuGVpWgff1f0PpjN1id3FfnZZmZm3nGfPj4+d32+sihzonF+fj6urq5otdpS3d9sNltVVBTqnhUrVhRrU+1CesPeNo6odDJDO+FxPRrHvDQKCgr45ZdfeOWVV2wdliDYjF6v5/Tp08pydV9EE0ovz7fxLYnG6SLR2C5kFHufvLy8bBeIINQia9euvVnVVOVAcouhNbqzBoDBzZf0iJ74XNoHwK+//kr37t1ve5IoCMJNJpOJb775RhkcKvSoT2ZYFxtHZd/07v5khHen3uUDACxcuJBOnTrddQA9NjZWud3Kyb4HyGtackdVaOmkVhKNRWcyQbi7M2fOKFXb9c5eGFyq/zhNVjuQE9iq2vdbxOjkgc7ND8fcFIxGIydPnrxr1RVBEAR7EBISwhtvvMGDDz7Ib7/9xuHDhwGQgSP5Zo7k62jqqOIeDzVdXNVoqniMISrfdMtxaJEss2V7dVSXi9eb2Z5jZG+OyaorG1guXo8dO5ZBgwZVSXvkum7ixIns2LGD8ePHM3fuXDGxRyjRiRMnmDp1qlLJ2OjoxvXO4zC42ul4oiSR1qQ/ICuVQw8fPsxnn33GW2+9VepcFUGorZycnHjnnXf47bffWLFiBQAOBZmEHl5IauP+ZIZ3q/HXQeyJa/J5/GPWozHcTO7r3Lkzr732Gq6urqV+nubNm/Ppp59y5MgRlixZwqVLlwBLheP9uSb255po5qRiiIeGTi4q1OI9LDW9WeZwnokt2UYu62/Ni2jVqhWPPvoobdq0sUF0Ve+BBx7g+++/L9djS9tluSj3s23btuzZs6dc+6oMpY135syZREZG4urqyuTJkxkzZoxVcdHdu3dz//3314ic1sr42VZXoZcyn+0FBARw/fp1UlNTlZLOt3P27Fny8vJo0qRJuQMU7FtycrJVCe60JgPsp12DSk1qs8EEH1sCwI4dOxgxYgSNG1dfK0RBqEnOnz+vJGzoXerZVZuluqbAOwxZkpCKHRSlGGx/gCTcmVmWSTPefJ+qopWIINQ1SUlJLFmyRFlOa9wXo7OX7QIqg4yInrgnnkabn05+fj7z5s3jzTfftHVYglDjrV69WkmSlCUVSa1Ggcq+k1xrgvSGvXFNPodjXhqFhYV8/fXXfPzxx6hu87OVZZmrV68qyxF2XomjpiR3VKXi71Hx964uioyM5Pjx42g0Gvr37y/GNYUSHTt2c3Jvvm+jOnsBN8+3EY65lqorx48fF4nGgiDUKuHh4bz33ntcuHCB33//3arbX6zOTGyKGfc0A73c1PRx1xCmrZpj3uS7jOvebXtFFJhlDuWZ2JtjIlZ36wGxj48PDz74IIMHDxYVRqvQ/v37ef7555k1axatWrVizJgxhIeH37U62WOPPVZNEQq2Fh0dzbRp00pIMq7cCnbVTpJIazIAQEk2joqKYtq0abzzzjulTjQShNpKrVbz5JNP0qhRI7799lvy8/ORZDN+53fgmnqBpNaj7OZ6SE0lGXX4xW7H8/pxZZ1KpeKRRx7h4Ycfvu3Y6B2fU5Lo2rUrXbp04ejRo6xatYqYmBhl+7lCM+cK9XirYYC7hv7uGrw1dXPMoTSSDWZ25pjYnWMkp4Tx244dOzJmzBhatWpl9x33bK2os0ZCQoKNIymdlStXAjB16lSeeeaZW7anpqZWc0S3V5Gfrbe3N0lJSUoB2L+73fryKvNVkD59+rB48WL+97//MWHChDved9KkSUiSRL9+/codoGDffvnlF+WkptC9PtlBbW0cUdnk+zYk168JbinnAZg3bx5Tp04VX0BCnVS8qlWBd6gNIxHuRtZo0bnXxyn7hrIuQSQa13gpRpmit8nLywsXFxfbBiQIdk6WZebMmaMci+rc/e2qqqms1pDcchghUb8BsG/fPgYNGkSHDh1sHJkg1FyXLl1i8eLFynJao97o3cXEncogqzUktb6X0EM/IyETExPD2rVrGT16dIn3z8rKUj5/XVTgrrbvc2hbJndUF281aCXQy5ZuZrm5ubi5udk6rCqxe/du3nrrLdq2bcucOXOstv3zn/9k+fLlyrJKpeKdd94Rk32EWxw/fly5ne/T0HaB2Fi+T0Ml6aN48rUgCEJt0rhxYyZMmMCVK1dYtWoV+/btw2SydILIMcOmbBObsk2EOkh0d1PT3VWNv0PlJR37O9z5WPpu28tKb5Y5UWAmMtfI8QIzJR3qhoWFcf/999O3b1+RYFwNXnzxRSRJQpZlCgoKmDdvXqkeJxKN64bDhw8zffp0jEYjAAZHd+K7jLNJx40qUZRsLKmUTkvR0dFMmTKFCRMm4ORkJwXOBKEK9ezZk4iICGbOnMmFCxcAcMmIo8GBuaQ0G0R2cPs6Ozm2IpzTrxBwagMOhVnKunr16vHaa69VSlVcSZLo3LkznTt3JjY2lnXr1nHgwAHlODPDBCszjazONNLJRcUADw2tnFSoxHuJSZY5nm9mR46RkwVm/n646uDgQL9+/bj33ntp0KCBTWKsjTp16gRYEnT//PNP2rYtX/5fUYJ+0e96VSlK2r3dpPjIyMgq3X9ZVORn26JFC5KSkjh58mSJ2//8889KibFImRONX331VZYuXcqXX36Jk5MTzz///C33OXXqFJMnT2br1q1otVpefPHFSglWsC+xsbHs3btXWU5pfo9dHsCkNh2Ia+pFJNnM6dOnOXToEN27d7d1WIJQ7S5fvqzcLvQItGEkQmkUegZaJRpf1d+mBJtQY1wt1salrp30bNy4kRUrVnDp0iVyc3MxGAy3bVMiSZLVRX1BuJ3Dhw8TFRUFWNqbJrcYbndVTQvqhZMd2AaPG5aTwx9//JFZs2aJ1oCCUAKdTsdXX32lXFgr9AgiI7ynjaOqXXSeQaQ37InPpf0A/Prrr7Rr146IiIhb7puXl6fcdlfZ3zjA31V3coctSJKEu0oizWQ5BsvLy6u1icYrV67k/PnzjB8/3mr9kiVLWLZsGQD9+/enoKCAQ4cO8cknn9C5c2f69+9frv3l5uYyffp01qxZQ2JiIj4+PgwZMoQJEyYo1Soqavfu3ezfv5+oqCiOHj1KVlYWoaGhtx1gBjhz5gzbtm0jKiqKqKgo4uPjAUvL5bp2PlJW6enpXLlyBbBUz8+vV3d/XoXeIZhVDqjMBhITE0lMTKR+/fq2DksQBKFKhIeH89prr/H000+zdetWtm7dalUF65pB5lqGkWUZRiK0Ep1d1XRxVRNYwaTjzi5qPFWGEjtseKos2yuq8K/k4iN5Jk7kmygsYVhOrVbTtWtXhg0bRtu2bUVBnmrUs2dP8fMWSnTgwAFmzpypJOoYnDy53vlxjC7ed3mknZEk0hr3Q1ap8bloyT04efIkkydPZuLEiaJoiyAAgYGBfPrpp/z++++sWLECs9mMyqQn4PQfuCeeJqnliNr32VBFVIZCfM/vsKpiDJbv4xdeeAF3d/dK32fTpk154403eOaZZ9i0aRNbt24lMzMTADNwJN/MkXw9/hqJAe6Wbhqedl7YoTzSjTK7cozsyjGSUUKOqp+fH0OHDmXIkCF4eHhUf4C1XIsWLWjTpo3yHbx06dLbVvW+dOkSDRuWPDG/6L25ceNGidsri4eHB2lpaVy+fJmWLVtabYuLi7PqiGtrFfnZDho0iF27drFmzRo++ugjq0lYycnJbN26tVJjLXOicdOmTfnqq6945ZVXmDp1Kp999hlms+Xstn///iQkJJCamoosy6hUKr788ssSLzoJtZssyyxYsEBZzvFvRqF3mO0CqgCDqw+ZoZ3wjrO0xVq4cCGdO3dGo7HvtqiCUFbXrl1TbteWynCSyYBb8jk0BZkYnb3J9W+KrK4dFRh0btbvUYJBJs8k41oHTzrsxYXCm1cLGjdubMNIqtd7773HDz/8cNvEYkCp2FF0WxDuRqfTMXfuXGU5O6Q9hV7BNoyo/FKbDsA15TxqYyE3btxg1apVPPLII7YOSxBqnIULFxIXFweAWaUhsc29dje5wB6kN+yNa+pFnLITMRqNfPnll8yYMeOWdqUGg0G5XRsOP6sjuaMmKP5eFSXt10ZFbc+HDh1qtX758uVIksSrr77Khx9+CMCUKVOYOXMmc+fOLVeicW5uLkOHDiUmJoawsDBGjBjB6dOnWbBgAVu3bmXbtm0EBlZ8Iu9//vMf5Zy9tMfLX3/9tVUVeKH0Tpw4odwu8ApF1tTdSWCySkNBvQa4plqqZkVHRzN8+HAbRyUIglC16tWrxyOPPMJDDz3EiRMn2LlzJ4cOHVI6egBc1stc1luSjoMdJLq4qunsoiZMK5V5bEurkni9viNfJOqsjkc9VfB6fUe05ZzYl2eSic43cSTfxMnbVC4GiIiIoF+/fvTv3x8vL69y7UuomA0bNtg6BKEG2r17N7NmzVLyNPTOXsR3HofR2dPGkVURSSK9UR9kSYXvhd0AnD59mo8++ogPPvig1k6UFYSy0Gg0jBs3js6dOzNr1iylmqdL+lUaHJhDWuO+ZIZ1FWOmd+CafA7/M5vR6HKVdW5ubvzzn/+kT58+VX6N0sfHh3HjxjF27FgOHjzIpk2biImJUbYnG2V+zzCyPMNIZ1c1g9zVNHdS1eprp2ZZ5s8CS/Xi4/m3Vi+WJIkOHTowbNgwOnXqhFpdO8Zpa6opU6bwwAMPsG3bNh5//HE+/PBDWrRoAUBKSgpbtmxh7ty5NGnShB9//LHE52jdujVgqSh8+PDh21YcrqgBAwawfPly3n//fQIDA+nYsSNms5m9e/cyfvz42yby2kp5f7bjxo1j5syZ3Lhxg+eee46vvvoKX19frl69yr/+9S/y8/MrNc5yZUqOGzeO8PBwJkyYYDWwWvx2mzZtmDJlCn379q14lILdiYqK4vTp04ClskdakwE2jqhi0hv2wiPhT9RGHQkJCWzbto1hw4bZOixBqDayLFvNKNLXgpZLjlkJBEUvQ6O/WW3NqHUlocPD6DyDbBhZ5TC4+tyy7lyhmY6u4uC6pjpbeHPqZbNmzWwYSfXZvHkz33//PW5ubowfP562bdsyduxYvL29mT9/PmlpaURGRrJkyRJUKhVTpkwRE9iEUlm5ciUpKSkAmBycSW3c37YBVYDJ0Y20xv3wP7sZgBUrVjBgwAD8/WvHpB9BqAxHjx61uvCa0uyeEo+FhEqgUpPY5j7CIuehMhuJi4vjl19+4bnnnrO6m7Ozs3JbVwsaa1RVckdNoys28av4e1jbJCQk4OHhQb16N89rZVnm8OHDqNVqXn31VWX9K6+8wsyZM5UuCWU1bdo0YmJiGDhwIEuWLEGr1SLLMi+88AJLlizh7bffZuHChRV+TUOGDCEsLIwuXbpgNBq577777vqYtm3bEhwcTJcuXejSpQstWrRAp9NVOJa6oHiHlXwfcX6S5xOhJBqfOHFCJBoLglBnqNVqOnbsSMeOHSkoKODw4cPs3buX48ePW03aijfIxP/V9tpfY6l03M1VTUQZko4bOqr4ItSJqHwTyQYZfweJzi7qMh+H5phkovIsycWnC8zcrllxUFAQvXr1ok+fPoSF2WcRIaH8qqMjB0BWVhbffPMNGzZsIC4uDpVKRXBwML169WLSpEkicfQOtm3bxnfffacU59C71ON653GYnCq/ymZNk9GwF7JKg1/sdsDSYfmDDz7go48+EtUrBeEvzZo148svv2Tx4sWsXbvWUt3YbMQvdgfuN2JIbjkCnafoXlycpjAbv7NbcEuOtVrfrVs3/vWvf1mNIVUHBwcH+vTpQ58+fYiLi2PLli3s2LFDSRg0AYfyTBzKMxHoIDHQXUMfN3WtKjiWZZLZnWNkZ46JVOOtM+I8PT0ZNGgQQ4YMEZ2VqlG/fv34+uuvee2119i0aRObNm3C1dUVtVpNdna2cr8mTZrc9jl69epFq1atiImJYejQoYSGhip/Y8888wzPPPNMpcQ6ceJEdu7cyaVLlxg4cCCurq6YzWYKCgrw9fVlypQpvPLKKyU+dsCAAUr3N0B5bd9++y3z589X1gcHB7Nz585Kibe8P9t69erx3Xff8dRTT7F+/Xo2btyIh4cHWVlZaDQannrqqUoZfy5S7pKsvXr1YteuXcTGxhIVFUVKSgqyLOPn50enTp1o3rx5pQUp2Bez2cwvv/yiLGeFdMDgat9JiWatCxkRPfE9b/mA+P333xkwYMAtVZsEobbKyclRLjia1VrMDvZ90VkyGW5JMgbQ6PMIil7GlT4v2n1lY0MJs9b/LDCJROMaKtskc0VvOUlSqVS0atXKxhFVjwULFiBJErNmzWLMmDHKeq1WS79+/QAYM2YML7/8MqNHj2bKlCns3r3bVuEKdiIpKYlVq1Ypy6lNBmDW2nf7vKzQDnjEH8cpJwm9Xs/PP//Mf//7X1uHJQg1QmZmJl9//bWynOvXhOyQDjaMqPYzuPqS0uweAs5sAmD9+vV06NCBTp06KfcpXuks0yRjlGU0dl5Zo7KSO2oqnVkm+69ME5VKVSVtIGuKgoICHBysz/diY2PJycmhU6dOVr+/Hh4eeHp6kp6eXub9FBYWKt2+pk+fjlZrqXorSRKffvopq1evZt26dVy/fp2QkJByvx6AmTNnKreLKjbfzQsvvFChfdZVZrPZOtHYt+Q2kHVJvm8EnLPc/vPPPzEajaITnCAIdY6zszP9+vWjX79+5OXlceTIESIjI4mOjraqdJxslNmYZWRjlhFfjUR3VzU93NSEae9eTUurkujpVvbP1wKzzJE8E5G5Jk4XmrndPMCwsDB69OhBjx49aNCgQa2ujCfcXnV15Lh8+TL33nsv169fx9/fnwEDLAWrLl26xE8//cTrr78uEo1vo6h4RxGdqy/xnR/H5Fh3fl6Z4d2QVWr8z24BLL8377//PpMmTRKV1wXhL46OjjzzzDP06tWL7777jitXrgDglJNE6KEFZIZ1Ir1xP8yaOp7vIpvxjDuKz4XdqE03j9m8vLx47rnn6NWrl82PicLCwnjuued48skn2b9/P5s3b+bcuXPK9hsGmUXpBpZlGOjpqmawp6ZUx5Y1kSzLXNCZ2Zpt4nCeqcRJcW3atGHo0KF069btlvE9oXo88cQT9OjRg++//55du3YRHx+PSqWiWbNmNGvWjCFDhnD//fff9vEqlYrVq1czdepUtm/fzo0bN5RulcWLH1ZUeHg427dv55NPPmHnzp1kZmYSEBDAoEGDePvtt7l48eJtH5uamkpycvIt6/Py8sjLu5ljVNk5g+X92Y4cOZJNmzYxffp0Dh06hMFgoFevXkycOJGLFy9WaqKxlJmZefs+1YJQDrt37+bLL78EwKx24ErvFzE5uto4qoqTTAYa7PsBB10OAE899ZRVUpQg1GbXrl3j5ZdfBkDv4s3V3vZ9QdL9Rgz1T6657fbENveTE2jfiZ6SyUjj7dOt1nmr4atQJ1RikLjG2ZVj5KdUS4vxFi1aMG3aNBtHVD2aN29OcnIySUlJysmgt7c3AQEBnD171uq+u3fvZvTo0Tz77LN88cUXtghXsBPTp0/nwIEDABR6BHKt2zNQCz73nDKuEXrk5mS+KVOmKO2FBKGukmWZTz75REmqM2pdiev5HCat/Z9/1niyTODx5bilnAcsg++zZs3C0/PmZLfnn39eqS4/JciRBo72OcBdV1zUmfkowTK5NCgoiNmzZ9s4oqrTvn174uLiOHbsGOHh4QDMnj2bCRMm8O9//9vqWFyWZQIDA3F3d+f8+fNl2s/OnTt54IEHaN68OQcPHrxl+4MPPsj27duZNWsWTz/9dIVeU3FHjhxh8ODBhIaGcvLkyVI/LiAgAJ1Ox4kTJ2jQoEGlxVPbXLp0iddffx0Ao4Mzl/uPrxXHmhUiy4Tv/Q6HQkt1lU8++YSWLVvaOChBEISaoaCggOjoaCIjI4mKiqKgoKDE+4VqJfq6aejlpsa9EirRmWWZ04VmdueYOJpvwnCbK8FNmjShe/fudO/eneDg4ArvV6h6hw8fZt++fSQkJFBYWMi3336rbMvLy1POwYqOc8tqwoQJfPfdd7ftyHHfffdVOFHBZDLRt29fYmJieOmll/joo4+sEoXOnj1LWFgYLi72XTigKmzYsIE5c+Yoy4XuAcR3eszuiyyUl8f14/if3kjRp2ZoaCiTJ0/G29vbpnEJQk1jNBpZs2YNv//+u9UEKKOjGynNh5Dr36xOntc6Zt/A//QfOGUnWq2/5557eOaZZ2r0hJcrV66wefNmdu3aVeLxZTMnFcM8NHR0UdlFXoBRljmUZ2JzlpHL+lsPXN3d3ZXqxUFB9t+ZujSuXbsGWL7bBKE63e13T5QWECqVyWTi999/V5YzGnStFUnGALLagfSGvZSqTatWrWLYsGHiRFeoE4rPyjFrnGwYSeXQFGRUaLs9kNUazCoNKvPNNn0ZJjivM9PMSVQ1rmkO5t6ck9mjRw8bRlK9MjIy8PLyshpI1mg0Vp85Rfr27YuzszNbt26tzhAFOxMTE6MkGQOkNB9cawbICr1Dya7fCo/EGADmzZvH559/jkolEveEumvbtm1WlTuTWt8rkoyriySR3GoETgfmotHnkZmZyffff8/bb7+tVPlo2rSpcpH7dKFJJBrXcDEFN49HmzZtasNIql7v3r1ZtGgRb7zxBh988AEZGRl8++23SJLEoEGDrO579uxZdDpduTq3xcRYvrNv162kdevWbN++ndOnT5f9RQg2U7yacYFPRK051qwQSSLfpyGe8ccBiI6OFonGgiAIf3F2dqZnz5707NkTg8HAiRMnOHDgAIcOHbIa/7qmt1SiW5phoIermmGeGkLLUYmu0CyzJ8fE1mwjiSW0mAbLxP+ePXvSo0cP/Pz8yv3ahOp19epV/vnPfyrnwLIsI0nSLYnGvXr1orCwkB07dtCuXbsy7aO6OnKsXLmSmJgYBgwYwNSpU2/ZLroml2zt2rXMmzdPWS70CCS+06N234G0IrJD2iOr1AScWo+EzLVr15g4cSIff/yx0oJdEATLdbcHH3yQnj178sMPP3DixAnLel0ugSdWkufbmOQWQzA6e9k20GqiMuqod2E3XnFHkbh5vBQSEsILL7xgF11nw8PD+de//sVTTz3Fnj17+OOPP5Sq1QDnCs2cK9Tjr5EY5qmhj5sapxrYlS3PJLMzx8iWbCMZJZQvbtasGcOHD6dnz57KcYkgCLZVrkTj2NhYNm/eTGxsLKmpqeh0OoxGI7Jc8kmrJEmsXbu2QoEK9mHPnj0kJCQAYNI4kdmgm40jqlzZwe3wvnIQbUEmOTk5bNiwgYcfftjWYQlClTMYDMpts9r+56gYne88m/lu2+2FrHaAYonGAHtzTCLRuIZJM5o5XWhpWihJUp1KNPb29iYrK8tqXb169UhJSSEzM9OqzZkkSahUqhLblAgCWNpYF10MAcip35JCr4q1Ia9p0poOwC35HCqzkUuXLrFr1y4GDhxo67AEwSaSkpL46aeflOXM0E6ifX01M2ldSWo1iuBoy2TjgwcPsnv3bvr37w9Au3bt2L9/PwCH8kwM97T/VnY6s0xUvokUg4y/g0RnFzXaGjhIXx6H826O5pc1IcHevPbaa6xevZqdO3eyc+dOwJKo0aZNm1sSjTdu3IgkSXTt2rXM+ykaH6tfvz4Aq1evZtasWTz11FM8++yzyvr4+PiKvJwaZdGiRfz222+luu+0adNo27Yt+fn5dvUzKPpcA8jzEd87RfJ9IpRE44MHD5brb0YQBKEu8PT0ZPjw4QwePJjY2Fiio6OJiYlRxt8NMuzJNbEn10RHFxUPeTuUKuFYb5bZkm1kQ5aRXPOt2wMDA+nYsSPt27dXxtsyMzPJzMysxFdnP4KDg+2qiFB6ejqjRo3i+vXrNG7cmD59+rB06VLy8/Ot7ufv78+4ceOYM2cOq1evLvNxfWRkJHl5eTRv3pzGjRtbbfPy8qJXr15s376d7du3V6gjx4oVKwD497//Xe7nqGvWrFnD/PnzleUCz2ASOj6C2cH+CwNVVE5QG2RJRf1Ta5Fkmfj4eCZOnMiUKVNEsrEg/E1gYCAfffQRe/fuZd68ecpxgGvqBRrsv0pa4z5khnUBVS29jizLuCbH4nd2i9LFHECr1fLwww8zevRoq8JI9sDZ2ZmhQ4cyZMgQzpw5w8aNG4mMjMRksozzJRtlFqYZWJVhYKinhsEeGlxqwFhmlklmU5aRbdlGCv+WZujg4EDfvn0ZMWIEjRo1sk2AgiDcVpmzxebMmcM777yDLMu3TSz+O0lUdqgTTCYTy5YtU5YzG3StfSc4KjUZDXsRELMBsMweHTVqFM7OdXe2qFAX2f9neq5/U4xaVzT6W6umGrWu5PrX3gpekXkmHqsn41oJLfiEyrErx6TMl23Tpk2dqiQSEhJCcnIyV65cUdr5tWrVil27drF69WqeeeYZ5b7R0dHk5eXh7+9vm2CFGu/AgQNKS3OzSk1qkwE2jqjyGZ08yAjvhs8lS4LLokWL6NWrF46OjjaOTBCqlyzLzJ49m8LCQgD0LvVIbSqS7m0h368RmSEd8LoeDcDcuXNp164d3t7edO/enR9//BGj0chFncxVndmuqxpf0pn5IlFHVrHEDU+VgdfrO9LQjl8XWF7b1b/aEmq12lqfINioUSPWrVvHhx9+yNGjR3F2dqZ///5MnTrVagzTZDKxYMECZFnmnnvuKfN+iqoUFo0ZTZ8+ndOnT3PhwgWeffZZXF1dre5XG8TFxVkl4t5JdnZ2FUdT+QoLC60qBIkJLjfl+4QjIyEhc/36dfLy8pTfcUEQBOFWGo2Gli1b0rJlSwoLCzl+/DiHDh3i+vXryn2O5ZuJztdxj4easd4Ot61CdyLfxII0A6l/q2Ds5OREp06d6Nq1a51pMV1bffXVV1y/fp3777+fuXPnotFo2LBhwy2JxgCPPvooc+bMITIyssz7qa6OHMeOHQOgZ8+eXLhwgeXLl5OYmIifnx9DhgyhS5cuFXr+2mbt2rXWScZeIcR3fARZI8YDi+QGtiJRpab+n6uRZDMJCQki2VgQbkOSJPr27UvHjh359ddf2bx5M7IsozIb8IvdgceNUyS1HIHOs3YdO2gKs/E7swW3lFir9e3bt+df//oXgYGBNoqsckiSpBxbpqam8scff7B582Zyc3MByDHD8gwjG7OMDPPQMMxTg7MNEo5zTDLr/0ow1v8t3dDb25vhw4czdOhQPD09qz02QRBKp8yJxp9//jmyLDN8+HBGjhyJn58fWq0WtbqWzmoRSi0yMrJYNWNHMsM62ziiqpEd2BrvS/uVqsabN29m9OjRtg5LEKqURnPz60Iyl9C3ws7IagcSOjxMUPQyq2Rjo9aVhA4PWyoB1wLF36vQ0FCuXbuGXoZduUZG1oKKcrWB3iyzPftm1elhw4bZMJrq17t3b44dO8aOHTv4xz/+AcDo0aPZuXMn77//PiqViq5du3L58mXef/99JEliwIDalzwqVJzBYODXX39VljPDumJ0rp0DERnhPfC8Ho1Gn09aWhobNmxgzJgxtg5LEKrVzp07lRZ/MhJJre+tNcdv9ii16SBcUy/hUJhFbm4uP/30E2+++SYeHh5069ZNSTpcn2XkJX/7bHGnN8u3JBkDZJnhi0QdX4Q62XVl43WZNzvY9OjRo04kB3bo0OGu3ddUKhX79u0DwMPDo8z7+HuBhrFjxzJjxgzGjRtntb02FWgICwujV69epbpv0c/UxcWFJk2aVGVYlebQoUNKVSCdmz8mRzcbR1RzmB2cKfQKxjnzOrIsk5WVRfv27W0dliAIgt1o06YNTz75JOfOnWPVqlUcPHgQABnYmm1iR7aJIK10SwmQPBOkmayPOfz9/Rk9ejQDBw7EyamWFQOqo/744w8kSWLSpElW12pK0r59exwcHKyS1kurOjpy5OXlkZycTL169di4cSP/+c9/rDpqzpgxg8cee4xvv/22TLkHtbWzxr59+1izZo2yXOAV+leSsX2eW1el3IDm3Gg7msBiycbvvPMO//73v3F3d7d1eIJQIw0aNIjGjRuzYsUKbty4AYBjTjKhh34mM6wzaY372f/njSzjee0ovud3oTLpldVubm7cd999tG/fntzcXKWITW3RvXt3OnbsyOHDh9mzZw8ZGRkA5JthZaaRrdlG7vdyYJCHGk01jEvpzDKbso2sz7y1grG/vz/9+vWjY8eOaDQakpOTa313W3vrriEIxZU50bigoAAnJyd+/fXXWjUQLlSMLMssX75cWc4M61z7qhkXUanJiOhBwOk/AEu7mpEjR9pdGwVBKIviVbtVxkIbRlJ5dJ5BXOnzIm7JsWgKMjA6e5Pr37T2JKmYzVYnTKNGjeL7778HYFOWkcHuGrtOhqgtdueayPkrYcXHx4du3brZNqBqdu+99zJr1iwWLFigJBo/8cQTLF68mIMHDzJ+/HjlvrIs4+vry3vvvWejaIWabPv27SQmJgJg0jiREdHDxhFVHVmjJb1hH/zPbgZg5cqVDB06tE4khQkCQG5uLj///LOynNmgC4VewTaMSJA1WpJbjSD46GLAciF08ODBtGvXjgceeEBJND6YZ2K4zmyX1X+j8k23JBkXyTJbtvd0K/MQW40QW2giKv/mi3vggQdsGE3NIklShSqouLlZklALCgoAGD9+vNXxbVEFutp0YWHcuHFKInVtdPToUeV2np9o3/l3+T4Ncc60JDUdO3aMfv362TgiQRAE+9OsWTPeeecdpKearAABAABJREFULl++zIIFC5QJlibg2t/Lvv2Nu7s7jz/+OIMHD75rMqpgX65du4arqysNGjS4631VKhVubm6kpKSUeT/V0ZEjJ8fSql6v1zN+/HgefPBB3nzzTfz8/Dhw4ADjx49n8eLFNG3alNdee63Uz1sbO2scOnTob0nGISLJ+C7ylGTjVUiyTHJyMj/++CP//ve/xdipINxGgwYNePXVV9mzZw9bt27FYDAgIeMddwS35FiSWo2gwCfC1mGWi0NeGgExG5Tz1CLdunVjxIgRtWo8piRarZbevXvTo0cPoqOj2b59O6mpqYClwvGv6Qa25Rh5sp4DbV2qprCoLMsczjPxW7qR9L9NjgsMDOSee+6hdevWqFT2N14sCHVVmc80H3nkEX766Sf27dtHnz59qiImwQ4dP35caR1oVmnIDKvdbW1ygtrgc3EvGl0uGRkZ7N69u1xtNAXBXhS/uKrR39qOy17JagdyAktuA2bv1MUqNXt4eDBgwACWLFlCRkYGmSbYlWNiiKcYcLYlvVlmfebNasajR4+ucx0iOnXqdEt1DZVKxfLly/n8889ZtWoVCQkJyu/whAkTCAsLs1G0Qk2l0+lYunSpspwR0aP2Tnj7S1ZIe7yuHkJbkElubi5r167lscces3VYglAtli1bRlZWFgAGJw/SGvW1cUQCQL5PBNmBrfC4YWm1+9NPP/Hll1/SuHFjunXrxqFDhwBYkKrnwyBH1HY2cT3ZcOekjrttr6mMssyCtJvVw3r37k14eLjtAqplilqUF02G+rui9cHBYrKEPZBlWWnzDZDnKxKN/y7PrxE+F/cAEB0djclkqnPnuIIgCJUlIiKCjz76iF27djFnzhxlgtLtdO/enRdffLFcXRiEms/JyYm8vLxSfbfm5+eTnZ2Nt7d3mfdTHR05zGbLJMfc3Fy6dOnCDz/8oGwbPnw4ZrOZcePGMXv2bMaPH1/qfdW2zhq7d+9mxYoVynKBZ7BIMi6lvIDmJLYZTf2Tq5FkmcTERH799VcmT55c65MKBaEimjdvzn333cf333+vTHRyKMwi5OhiskLak9J0ELLG0cZRlpJsxuvqYXwu7EZVrPtvSEgIL7zwAq1a1c7cgDtp3rw5Y8eOZdeuXSxZskSZkJRokJmRpKebq5onfRzwVFfemG2Kwcz8NAMnC6yrN4SEhPD444/TvXt3kWAsCHaozBlGn376KVeuXOH+++8nKCiIgIAAnJyc7vgBIEnSXdsRCvat+IzK7JD2mLXVc6AumQy4JZ9DU5BZrdVIZZWGjLCu+J3fAVhe/6BBg0SVb6HW8vDwQKPRYDQaURsKkIw6+zmZqKMcCrOU2z4+Pmi1Wh544AHmzZsHwJpMA33c1TiLqsY2sy3n5uxNT09PhgwZYuOIbKOkSgKurq58+OGHfPjhhzaISLA3W7duJT09HQCj1pXMsM42jqgaqNSkN+pD/VPrAFi3bh333nuvUjlREGqrlJQUNm7cqCynNh0kLrLVIKlNB+GWfB6VSU9cXBy7du1i0KBBPPPMMxw7dgyDwcBlvcy6TCOjve2ri4i/w52Pme+2vaZanWlUKuNptVqefPJJG0dUuxRduIqJiSlx+6lTpwBo2bJltcUklN+VK1eUyj8mjROFniJB/O907vUxal3R6PPIzs7m/PnzNG/e3NZhCYIg2C1JkhgwYAA9e/YkPj7+tvdzd3fHz8+vGiMTqluLFi04dOgQkZGR9O7d+473XblyJSaTiTZt2pR5P9XRkaP4Y0uaND9ixAi0Wi0pKSlcunSJRo1KN7mrNnXWiIqK4uuvv1YSuws96pPQ8RFxTa4Mcuu3IEk2EXByLRJw4cIFPvnkEz744AO0WjGOJAi3U79+fWWi008//URubi4AnteP45J6maTWoyiod/fq+rbkkJ9OwKn1VlWM1Wo1Dz74IA8//HCd7lKuVqsZNGgQffv2ZcOGDSxdulT5bj+UZyKmwMT/+Wrp7FqxCcOyLLMn18SvaQYKi81h8vT05PHHH+eee+4Rk5IFwY6VeXrAzJkz2bZtG7IsEx8fz7Fjxzhw4AD79u274z+h9rp69SrHjx8HQEYio5qqGTtmJRC+dzb1T67F98Ie6p9cQ/je2ThmJVTL/rND2mNWW05Grl27pvwMBKE2UqvV1K9fX1nW5qXZMBqhNLS5qcrtwMBAAIYNG4avry8A2WZYV6yarlC9sk0ya4r9/MeOHYujoxgoFISy0uv1VtU90hv2rJZJZ0UkkwH3G6fwvrQP9xsxSCbD3R9USXICW6F39QEsF3rWrVtXbfsWBFtZvXo1BoPl76zAM5jcAJG8VJOYHN3ICO+mLK9YsQKTyURgYKDVBeSVmUbOFJhKeooaq7OLGs/bjKB5qizb7c2pAhNrix2PPvHEEwQEBNgwoppr4MCBtG/fvsyP69GjB66urpw9e5aLFy9abcvMzGT//v1IksSgQYMqKVKhKh05ckS5ne/bEFT293df5SSJPL/GymLxn5kgCIJQfo6OjjRs2PC2/0SSce330EMPIcsy7777rjLZviSHDh1iwoQJSJLEQw89VOb9VEdHDk9PTyXZODQ09JbtkiQp5yVFk7zqkrNnzzJ9+nRMJss5s87Nj/iOj9b67m1VISewNckthyvLp06d4osvvlB+toIglKxootO3335L9+7dlfUOhVmERC3C99x2MNfAvyNZxiP+BGGRP1klGTds2JDPP/+cxx9/vE4nGRfn4ODA6NGjmT17Nv3791fW55phVrKehWl6jHL5urcVmmW+TzEwN/VmkrEkSYwYMYLvvvuOoUOHiiRjQbBzZU40/v7775EkiSFDhvDtt9/y+++/s3r1atatW3fbf6Kace1WvKJUnn9TjC5lb8dTVpLJQFD0MjT6PKv1Gn0eQdHLqiXJw+zgRFZwW2V5w4YNVb5PQbClBg1uzlB0zC55oEmoORxzbr5HERERgKVKWfFZ/X9kGblhMN/yWKHqLU03kP/Xjz4oKKjOVjP+O7PZTGpqKteuXbN1KIKd2LZtGxkZGQAYHd3IDu5Qbfu29aQ3JBVpDW9WsVm/fv1dW6kKgj3Lzc1l69atynJ6oz4gOsrUOJkNumLSWC6AJiQkKElm999/Py1atABABr5N1pNqR8ehWpXE6/Udb0k29lTB6/Ud0dpZl5Akg5nvkvUUXTJo06YNI0eOtGlMNVl8fDxxcXFlfpyTkxNPP/00AG+99RZ6vR5ASRIpLCxk5MiRhISElPj4adOm4eXlhZeXF3v37i3/CxAqxeHDh5XbeX41s8V2TVA80bj4z0wQBEEQhPJ75pln/p+9+w6Pot4aOP7dkk3vCamE3psIiAiIiNLFSlHuBStXxAKi0pQmXbC8tmtDr/cKKBYQRbpBpAlIDb2XJCSkJ5tk27x/rBkSaQlsMpvkfJ4nzzN9TrJJdnbm/M6hTZs27Nu3j86dOzNx4kS16vDKlSuZP38+//jHP+jTpw/Z2dm0a9eOQYMGlfk8FdGRQ6fTUb++83ohMzPzsttkZTm7NXp5Va/k2sTERKZPn65+brB6BTqTjCuoi3BVlB3bmgsNuqrzW7Zs4bPPPlOrRQshriwoKIgxY8YwevToEp0Ug09tpebWL/DIu/LAl4qmtxYQuecHIhJ+Rv9XnpDBYODhhx9mzpw56nNyUVJQUBAjR45k8uTJhIaGqstXZ9uZnWwhz162/5UZNoVpSYVszruYiB4TE8Ps2bMZNmyYdOQUooowlnkHoxEvLy8WLlyIXl/mPGVRxeTm5hIfH6/OV1Q1Y7+Uw5ckGRcxWvLwSzlMTlSzco8jK64tQae3owN27NhBUlKSWjlUiKqmQYMGbNy4EQDvzLNk17xZ44jE1RQfrVl04w6gS5curFixgkOHDmEDPr9gZVykCZ0k6lSYA/l21ude/JD1+OOPV/tRtOvWreO9995jy5YtFBQUoNPpSEu7WDn9xIkTzJo1C71ez9y5c/H19dUwWuEubDYbP/zwgzqfUftWFEOZP95cl2sNejvZ+ZkKqaycG9kEy7ENmMzp5OXl8csvv/Dggw+W+3mF0MJvv/2mPmwr9K+BOVRuELsjh9GTrJo3E3JiEwCrV6/m1ltvxWAwMHr0aF588UWys7PJdsCb5y1MiPLE11A5rkPreup5s6YX2812UqwKNTx0tPUxVLok41y7wpvnLeT+lecdFBTEiy++KNVEysm4ceOIj49n7dq1tG3blrZt27J//34OHjxIVFQUc+bMccl55syZw6pVqwDIy3Nen5w/f5677rpL3Wbu3LklKjOvXLmSN954Q50v+h/7j3/8Q+22MmTIEIYMGeKSGCuzCxcucPToUQAUnZ68sNK18K6OzKF1ceiN6B02zpw5Q2JiolodUQghhBDXx2AwsHjxYh577DHWr1/Pe++9p64r6h5TlDjZuXNnvvjii+t6hv/3jhz16l285nFlR4477riDPXv2sHHjRvr3719i3bFjx8jOzsZoNNKgQfUZ3JWdnc3UqVPJyckBwObhw7k2D2P38tc4ssovo/atGCx5BJ9yDoJbvnw5kZGR9OvXT+PIhHB/Op2Ozp0706xZM95991127twJgFfOeWpumU9Ks97kRl7/4BNX8MxOImr3D3jkZ6rLYmJiGDVqVInn4+LKbrrpJt555x31OS3AwQIH484V0CPQiE8pcgiyHQorsmzq/UaAu+66i6eeeko6+gpRxZT5U8bLL79MQUGB+g9GVG/x8fEUFhYCUOhXg4LgS9vclAdjfsYNrXcVq08I5r8eLiiKwsqVKyvkvEJoofgodZ+0EyAjft2WoTAXU04KAHq9nsaNL7YV1+v1/Otf/1JvNB4ocLA2xw1b3FRRBQ6Fzy5crLp/66230rZtWw0j0t706dN56KGH+PXXX8nPz0dRlEsqCtSpU4cjR47w9ddfS6cModq4cSOpqakA2Dy8yYq5qcLOXZpBbxVCpyejTgd19qefflKThISoaooGvAHOv3cZJOW2smJaqdO7du0iNzcXgLCwMMaMGYPR6BwUcsbqTHgtdFSezxUmvY7b/IzcF+zBbX7GSpdkXOBQmHu+kESr82fu4eHB2LFjCQ4u/85U1ZW/vz8rV67k2WefBZzv1VlZWQwdOpT4+HiXJWCeOHGC7du3s337dg4cOAA4E4eLlm3fvl1NWihy4cKFEuuLrsH37t2rLjt37pxL4qvsit8Hzw+Ok9bVV6EYPEoMBpJnCEIIIYRrBAcHs2TJEhYtWsR9991HbGwsnp6eeHp6EhMTw7333sv//vc/li5dSkhIyHWdo6I6cgwdOhSj0ciCBQtKFLPKz89n/PjxANxzzz34+FSPSr42m405c+aQnOzsUunQG0ls3R+r7/W9juJvdDouNOxGTsTF52RffPEFf/75p4ZBCVG5hISE8Nprr/HEE0+o9/UMdgtRe5YQdmgNOLR5zhxwbjexf3xZIsm4R48evPnmm5JkXEZ+fn6MGTOmRGfkDDssSrcxP816za9vMy4mGev1eoYPH86zzz4rScZCVEFlLvn1448/EhgYSN++fYmOjiYiIgIvL6+rjozU6XSSFFIFKYrCihUr1PnMmjdX2MNem/fVH4Jda70rZdZsg++FYwCsXbuWRx55BJPJVGHnF6Ki1KtXD39/f3JycjBa8vDMTqIwUKrSuCPf1KMU/Tdu0qQJ3t7eJdbXrVuX++67j++//x6AhelWWnjrifCoHJ0KCh0K2812UithJblF6VbO25wP8H18fHjqqac0jkhbq1atYu7cuQQFBTF9+nTuuusuOnfurCaPFvfEE0/w7LPPsnLlSrVSh6i+FEUpUc04K64dirHirr/cZdAbQHZUc0KO/oZHYQ4ZGRmsX7+eu+++u8LOL0RFMJvNauKcAuQWezgk3I/NJ5iCgCi8spOw2+3s3r2bjh07As5WvCNGjOCdd94B4HChg7fPWxgVYao013OVVYHDmdh9rNB5LarT6XjhhRdKDEqsimbPng1AaGgoTz75ZIllpVVUIfh6+fv7M23aNKZNm1am/caNG8e4ceNKte2HH37Ihx9+WKbjDx48uMQDJHFlmzdvVqdzIxppGEnlkBvRGL/UI4DzZ/fAAw9oHJEQQghRdfTo0YMePXqU2/EroiNHvXr1mDRpEq+99hoPPPAA7dq1Izw8nJ07d3Lu3DliY2OZMWOGC76bymH+/Pns27dPnU9ucS+FQTEaRnRtOrsVv5RDGPMzsXkHk1ujYYV0d7tuOh3nm/fDWJiLd+ZZHA4Hc+fOZe7cudJ9Q4hS0uv13HPPPTRt2pQ33nhDHRwRfOoPPHNSSGp1Pw4P72scxUUcDsIOryH49HZ1kY+PDyNGjFDvQYqy0+l09O/fn7CwMN59910cDse1d/obk8nEK6+8Uu2LbAlRlZU50bh4FaFz586VqrKFtGOvmg4cOMDZs2cBcBhM5EQ1q7Bz59ZoiM3ke9lKcjaTL7k1GlZYLOawuli9AvEoyCInJ4ctW7Zw++23V9j5hagoBoOBtm3b8uuvvwLgn7xfEo3dlH/yfnW6Xbt2l91m0KBBbNu2jTNnzmBR4P0UCxOjPTG6+Xv28UIHbyYXklXss02g3sqLkZ7U9XTvROkdefYS1aOffPJJQkNDNYxIex999BE6nY558+Zd8+Fz0Q30Q4cOlfk8ubm5zJkzh6VLl5KcnExoaCjdu3dnwoQJhIeHX1fsxW3YsIF77rnniuujo6PZv3//ZdedOHGCGTNmEB8fT3Z2NrVq1WLgwIE8//zzeHi48c1Zje3du5eTJ08C4NB7OAe8VSB3GvSG3kBmrXaEH14HwNKlS7nrrrvkM5ioUo4ePare2LT418Du6adxRK5R6R7MlYE5tA5e2UkAHD58uMRN/q5du5KTk8P8+fMB2Ffg4M3zFkZGmPCSZONykf9XkvHBgosX0cOGDaNTp04aRlUxZs2ahU6no0GDBmqicdGy0lIURd5Xq7GMjIySg11qSKLxteSF10fR6dEpDo4cOcL58+eJiIjQOiwhhBBClEJRR47Zs2fz448/8tNPPxEaGsrQoUMZP368y97Tn3vuORo2bMgHH3zA7t27+fPPP4mOjmbYsGG8/PLLLrlnWxmsX7+e5cuXq/MX6nchz80HtnlmJRK9c3GJZ/Q2ky+Jrfu79TNDxWAkqdUD1NzyOR6FOZjNZubMmcPs2bOl4qYQZVCvXj3mzZvHO++8wx9//AGAT/pJam79D+duHojNp3yfjehshUTtWaIWAgSIi4tj7NixMnDARbp27UpMTAzx8fFYrdZr7/AXb29v7rzzTmrXrl1+wQkhNFfmRONly5aVRxyiElq9erU6nRPVFMVYcRfhisGDxNb9r/hBpkIfzur0ZMe0IvTYb4Dz5yKJxqKquv322y8mGifuI63BHSj6Mr+ViHJkzM/EO/0k4Bzoc6XkAZPJxMiRIxkzZgw2m40TFoWv060MDnXfiuwWh3JJkjFAlgPeTC7kzZpeblsJ74LVwacXLOr8rbfeSteuXTWMyD38+eef6HQ6+vbte81tw8LC8Pf3L3P75tzcXHr06EFCQgJxcXH07t2b/fv388UXX7B69WrWrFlDVFTU9X4LJdSoUYNu3bpdsvxK7cj3799Pz549yc7OpnXr1tSqVYuNGzfy+uuvs3HjRhYvXozBYHBJbFVN8W4p2TEtcZgqtpWiOw16A8iOuYnQY7+jt1s4e/YsO3fu5OabKzb5WojyVPx/f4F/pIaRuE5lfTBXWoX+Fx8+X+69u1+/fhQUFLBgwQIAEgocvJFs4cUIE74G97yeq6xy7Apzzxdy/K9KxgBDhgyhV69eGkZVcQYNGoROpyMysuT/Di8vL+67775SHeOHH36gsLCwHKITlcHGjRvVwS75wTWrzGCX8uTw8MYcWkd98Ltx40apaiyEEEJUIhXRkQPKvzqzu0tMTCzRlSSnRiMy6tymYUTXprNbL7mXAWC05BG9czEnOz/j1gOo7Z5+JLV+iNg/vkTvsHPy5Ek+/fRTRowYoXVoQlQqvr6+jB07lm+++YZFixYBYDKnU/OP/5B48yAKA8rn/q3Bkkf0jq/xyklWl3Xo0IEXXngBLy+vcjlnddWwYUMaNqzY51xCO59++iknTpzQOowS6tSpoxaNcCft2rXjyJEj6vz7779f7TrGlTk7zJXVTv7973/z9NNPu+x4ouKYzWY2bdqkzmfF3FThMRQGRnOy8zP4pRzGmJ+haQWo7JiWhBzbgA6FvXv3SqUOUWW1bNmSsLAwLly4gNFqxi/5IDnRzbUOSxQTeOZPilIzWrduTVhY2BW3rVevHv/85z/5/PPPAViRbae+l532vu6Z2LjdbL8kybhIlsO5/jY/90t8tzgU/i/FQu5fsYeFhTFixAipiobzesLX1xeTqXQJ7g6HA0VRrr1hMTNnziQhIYE777yTRYsWYTKZUBSF4cOHs2jRIsaMGcOXX355PeFfokGDBmVqWf3MM8+QnZ3N2LFjGTt2LABZWVn06tWLdevW8dlnnzFs2DCXxFaVJCUlsWPHDsBZVS4z7vKV28uTWw16AxweXmTFtCL49DYAfvrpJ0k0FlVKRkaGOm3z8tcwEteo7A/mSsPqFaBOF3/9ihswYAA6nY6vvvoKgMOFDqYnFfJSpCchRrlOcoULNgdzky2cs168fnr00UdLnWBbFVzp2iwgIIAPPvigVMdYu3YtqamprgxLVCIbNmxQp3MjK66bW2WXE9lUTTT+7bffJNFYCCGEEKIYm83Gm2++SUFBAQAWnxBSmvcFN39m4Jdy+LKFF8B5T8Mv5XCFdkC+HoUBUaQ27k7E/l8AZwGxNm3acOutt2ocmRCVi16vZ9CgQdSsWZO3334bq9WK0WImZvtXJN48kIKgWJeez1CQQ+yOBZjy0tRl/fv35+GHH0avd++Ot0K4uxMnTrDn0NESxUO05Jlz3iXHCQoKuuK6Bx54QO24WBZTp04lOzubw4cPM2/evBuIrvLSNBtnypQpkmhcSW3cuFGt5lLoF05hgGsqAZaVYvBwiw8sNq8AzGF11Rvo69at4+GHH9Y4KiFcz2Aw0KNHDzUZIPjkZuffoJvf/Kgu9NYCAs/uVOd79ux5zX3uueceEhIS1PY2n6RaiPbwpKbJ/T6UpVivnmB6rfVaUBSF/6RZOWFxxmYwGHjppZfw96/8SVKuEBERwdmzZ7lw4cJVk+IBDh48SF5eHg0aNCj18QsKCvjiiy8AmDNnjprQrNPpmDVrFkuWLGHZsmWcPXuW2FjX3vS4ls2bN7Nr1y5iY2N5+eWX1eWBgYFMmTKF/v378+GHH0qi8WUsX75cTTg3h9XH6huiSRzuNOgNICuuLUGnt6HDWS08MTFRWoWJKsNut6vTVaGbRlV4MHdN+osD14q/fn/Xv39/vLy8+OyzzwA4Y1WYmljIS5EmYt3werQyOVXoYN75QjL++vHrdDqGDRtWbSoZC+EKycnJHDp0CABFpyfXzdtYu5O8Gg1x6I3oHTZOnjzJqVOnqFWrltZhCSGEEJVSeno669evx8vL65Lr+V27djFp0iR27dqF0WikW7duTJ48We4JubnvvvuOo0ePAs7rzKSW9+OowM7B18uYf/mBxKVd7y6yY27CJ/0k/skHAGc1wiZNmhAYGKhxZEJUPh07diQkJIRp06aRl5eHwVZIzI5FnGszyGXJxoaCHGK3f4XJnA44k5yffvppunfv7pLjCyGcHQrPtfuH1mEAELPtfy47VrNmzXj++ecvWR4XF3ddxyu6Ft+wYUO1TTTW9KlNWSvSCfexbt06dTo7ppUkGQLZ0S3V6V9//VVtqyhEVdOzZ0+1/Yhnbip+5w9qHJEoEnRqKwabcxBIbGwsbdu2veY+er2e559/Xm0lXKjAm+ct5Njd7z26hsfV32uutV4LK7Pt/JZ7Mbnmscceo3HjxhpG5F46d+4MwEcffXTNbadMmYJOp6NLly6lPv7mzZvJy8ujcePG1K9fv8S6oKAgOnbsiKIorF27tmyBu8CaNWsA5/9Ug6FkFfE777wTX19fTpw4wbFjxyo8NndWUFBQ4vXKjLv2/7nyVDToLaNuJ3KimmlagdTqE0xe2MXf8xUrVmgWixCuVrz1nf6va53KrKo8mLsava1Anfb29r7qtvfccw8vvPCC+n6YZncmG+81XzlBWVzdLrOdaUkXk4yNRiOjRo2SJOO/mEwmPD3d/yG+0N769evV6bzQuthNvhpGU7k4jJ7khV8cJFr8ZymEEEKIslmwYAFPPPEE8fHxJZafPHmSfv36sWHDBrKzs0lPT+fbb7+lV69eZGVlaROsuKYzZ86wePFidf5C/TuwBLhHBcFrsXkH39B6t6HTkdKkp9qNKScnh08//VTjoISovJo0acL06dPVZH293UL0n19jykm54WPrrfnE7FioJhkbDAZGjx4tScZCiFKJjIxk4MCBl3x16NBB69AqLU0TjaVleOWUlJTEgQPOEX6KTk+OtA0EIK9GA+xG5wPwlJQUEhISNI5IiPLh7+9f4gF16NH14JAkAK0ZCnIIPvWHOt+/f/9St4rx8/Nj3LhxahLPBZvC2+ctWBzulWzc1sdA4BW+pUC9c7072Wm2syDdqs537dqVPn36aBiR+ylKKnrrrbeYN28e2dnZl2yzb98+BgwYwIoVK/Dw8OCZZ54p9fGL3oubNbv8tUrz5s0B2L9//3VEf6kLFy4wa9YsXnjhBSZMmMB3332ntr8rS2wGg0FNSHdVbFXFb7/9htlsBsDiE4w5tI7GEbmXrLg26vTatWvVDiRCVHbFq94Xb49XWVWZB3NX4ZGXrk5fq2sBOK+TXn31VfV6NF+BuectrM62ySD1MlAUhRVZNt48b6Hgrx+bj48PEydO5Pbbb9c2ODdy/vx5du/eXerto6OjK7z7hdCew+EoUWghJ7q5htFUTjlRF39m8fHxV61wL4QQQogrW716NQCDBg0qsfzjjz8mJyeH+vXrs2LFCr7//nvq1avHmTNneP/997UIVVyDoih89NFH2Gw2APIDo8msfYvGUZVebo2G2K4w+M5m8iW3RsMKjuj6OTy8SWly8Vnnhg0b2Lt3r4YRCVG51a5dm9dff11NNnZWNl6IseDS536lpXPYiN65GM+8C85jGgy8/PLLdOzY0SUxCyEEOHMgJ0yYQMeOHYmLiyMqKorOnTurXRhvxMaNG7n33nupV68ekZGR3HTTTTz33HOXzYnYu3cvgwcPpk6dOkRERHD77bezdOnSG47B1Sp/z1FR4YqPmM0Lq4fdU6p5gLOFb05kU4LO/gk4f04tWrTQOCohysf999/PypUrMZvNmMzpBJ/6g4w6MupHS2FHfkVvdya1xsXF0alTpzLtX6tWLV588UVmzpyJoigcLnTwyQUrw8M90LvJwCCTXseLkZ68mVxIVrGi8YF6eDHSE5PePeIEOFno4P0UC0VpMY0aNWL48OEyyOpvGjZsyNtvv83zzz/P9OnTmT17ttoR4I477iAxMZELFy6gKAp6vZ633nqLOnVKn1iamJgIoFbsXrJkCe+88w5DhgzhscceU5efO3fOJd/PoUOHmDVrVollUVFRzJ8//5KRkX+P7fXXX+e3335j2rRptG/f/rpj++qrr1iwYEGptp05cyYtW7bEbDa77GdQnhRFKfGBKiv2Zumq8Tfm0LpYvIMx5WeQl5fHd999R7t27bQOS4gb5uFxsVq4d+ZZcDiglAOq3FFeaB0U4HL/wZS/1ld2Phmn1enAwECOHDlyzX38/PwYPnw48+fPJysrCwfwZZqVsxYH/wz1wCj/86/Kqih8ccFaoptGcHAwjz/+ON7e3qV6DSpSTEwMPj4+WodRKr/++qvWIQgN7N+/n/PnzwNgN3qRF155kibcRV5YXWwmH4wWM+np6ezcubNUnZeEEEIIUdLx48fx8PCgVatWJZavWrUKnU7Hm2++Sfv27QH44IMP6N69O8uXL2f8+PFahCuuYsuWLezbtw8ARacjpWlv0FWe+xuKwYPE1v2J3rkYoyVPXW4z+ZLYur+m3d6uhzm8HjmRTfFPdhb7+Oyzz5g3b94lHQiFEKUTFxfH5MmTmTBhAmazGaMlj+id33DmlqFl//+gKNRI+MV5LxhnEcsXXniBW2+9tRwiF0JUVVarlbS0S4vXBAcHq0X7EhIS+N///se9997LI488gslkYt26dYwePZrU1FTGjh17Xec+cuQIDz30ELVq1WLUqFH4+/tz8uRJlixZQkZGBgEBAeq2mzZt4sEHHyQsLIznnnuOgIAAVq1axdChQ/noo48YOHDg9f0AyoEkGosycTgcJRKNc6Ilkba47OgWaqLxpk2bGDZsmLTjFFVSQEAAgwYNYv78+QCEHPudnIgm2HyCtA2smvJOO0FA0j51/oknnriuGyG33HILQ4cO5YsvvgBgS56dEKOOh0Pc5+ZQXU89b9b0YrvZTopVoYaHjrY+BrdKMk6xOph7vpDCv7KMa9Sowbhx4zCZTNoG5qYGDx5M7dq1mTBhQonKcsWnW7RowbRp08pciS8vz3mzs6hl+5w5c9i/fz9Hjx7lsccew9fXt8R21ysgIIBRo0Zx7733Urt2bcBZiXnmzJls3LiRgQMH8ttvv6nrip/Tx8eH9PR05s2bB8Bbb73FokWLrju206dPs3HjxlJte7nRku7s7NmzakK0Q28kO6alxhG5IZ2OrNjWhB9xVt/bsmWLJBqLKiE8PJyAgACys7MxWPPxST+JOayu1mFdN9+0E5dNMgZn8rFv2glyoipv5yCdzYJv6lF1vn79+qXeNzo6mueff57PP/+cs2edDxLW5dg5Z1F4LsJEoMF9rvncSYZN4f9SCjlaeLH6c1xcHI8++ij+/v4aRiZE5bVmzRp1OieyKYpBbqOXmd5ATlQLgk9tBZw/U0k0FkIIIcouJSUFPz+/Eh0Ms7KyOH78OOHh4SWKjrRr1w6TycTJkyc1iFRcjd1u53//+586n1mzLRb/GhpGdH0KA6M52fkZ/FIOY8zPwOYdTG6NhpUuybhIasNu+KYcQe+wcvLkSTZs2MAdd9yhdVhCVFp16tRh3LhxTJ48GbvdjmdOCjX2/8L55veUqXBM4Nk/CUi6WGV86NCh0q1LCFFmv/32G/Xq1btkeUJCAjExMQC0adOG/fv3q8/mAZ566il69+7Nhx9+yCuvvFLqTuLFrV27lvz8fP79739z0003qcsnTpyoFl4DZ6GtF154gZCQEDZs2EBQUBAATz75JA888ABTpkxhwIABblPQTu6QijI5cODA36p5lP6BYXVQGBiNxScEkzmd/Px8tm7dKhc8osrq3bs3a9eu5dSpU+gdViISfuJc28FSXbKC6W2FRCT8rM537NjxksoGZXHvvfeSnJzMihUrAFieZSPIAL0C3ecmkUmv4zY/97yEybIrvJFsIeuvQnK+vr689tpr6gWhuLyOHTsSHx/P4cOH2b59O6mpqSiKQnh4OG3atKFx48bXddy/t1ofMGAAb7zxBoMHDy6x/kYvzFu1anXJ312nTp1YtmwZDzzwAPHx8bz55pv83//932VjCw4OplevXmzcuJH+/fvfUGxxcXGlbhtVNFLSx8eHBg0alOk8Wli1apU6nRvRBIeHt4bRuK+cmBaEHl2PXrFz+vRpjEZjmSqBC+GuunTpwrJlywAIOr2tUicaG/Mzbmi9uwtI3IPebgGcicNdunQp8/tZ8+bNee+999iwYQMAhwodTDxXyAsRJup6Vp5qTxXhSIGd/0uxkHmxkDFdu3Zl+PDhMtBNiOuUm5vLpk2b1Pns2Ov/jF3dZcW0UhONt23bRkZGBsHBwRpHJYQQQlQuXl5eZGVlYbPZMBqd98X/+OMPFEVRKxkX5+3tjcViqegwxTVs2LBBLaJgN3qSXq9sXSndiWLwqNQDpIuze/mTUbs9ocd/B+Drr7+mc+fOUtVYiBvQokULhg0bxocffghAQNI+vLISyQ+KLdX+HgXZ+KSfVOe7devGvffeWx6hCiGquNatWzNp0qRLloeFhanTxe9TFRYWkpeXh6IoNG/enE2bNnHhwgVq1Cj74LCiAiDr16+nZcuWarKyTqcrcZ2xe/dujhw5wtNPP43dbi9RgblDhw6sW7eOo0ePus2zfPfM0hFuq3g149zIJih6+RUqQacjO7o5YUd/A5w/L0k0FlWV0WhkxIgRjB07FofDgU/GaYJObSWztrQsqUjhB1biUeCsSurv78+TTz55Q8fT6XQ89dRTZGRksHWr82HggnQbfnodnf3lf/7VmB0KbyQXkmxzJoh6eHgwfvx4atasqXFklUfDhg1p2NB1LYn9/PwAyM/PB2DkyJGMHDlSXW82mwHKrW23Xq9nxIgRxMfHX9Jyuyg2s9mMTqdj4cKFJdZfb2yDBw9WE6mrErPZrCabAWTF3qRdMG7ObvIlL6KR2vJv9erVDBs2TOOohLhxvXr14qeffkJRFHwvHMMr4zQFwXFah3VdbN5XT7C61np3prMVEnLiYnJenz59rmtAj6enJy+++CJ16tThv//9L4qikG5XmJZUyNBQD7rIdSmKovBrjp0v06wU5Rjr9XqGDh1Kv3793KbCgRCVUXx8vJqcU+AfQWFAlMYRVV5WvzDyg2LxzjyL3W5n7dq1PPTQQ1qHJYQQQlQqTZs2ZevWrXz33Xdq2+RFixah0+kuaSGflZVFdnZ2ic5qQnuKorBkyRJ1PrPWLVJEwY1k1rqFoNPbMdgKSEpK4o8//qBDhw5ahyVEpda9e3cOHTrEunXO7osmczomc3qZj1O7dm2GDRsm97mEENclJCTkmp0KbDYbb731Fl999dVlu4IUFBRc17kffPBBFi5cyKRJk3jnnXdo27Yt7du3Z9CgQWo1ZYDjx48D8O9//5t///vflz1WamqqJBqLysdisZRoxZ0d1VzDaNxXTtTFRONdu3ZJpQ5RpTVs2JAHH3yQxYsXAxB2JJ6CoJoUBMVcY0/hCv7n9hCQtE+d/9e//uWS/zcGg4EXX3yRKVOmsH+/M1HtkwtWvPQ62vnKKO7LKXQozEu2cMriTDLW6/WMHj2aZs2qxqj+yio6OhqA5OTky64vWl78Yt7Vim7qF3WEKB7bnj17NI2tMtmwYYP6Qa7QN4yCUo58r66yYm9SE43j4+MZMmQIXl5eGkclxI2Jjo6mU6dO6qCDGgdWcubWxyrl4NfcGg2xmXwxWvIuWWcz+ZJbw3WDbipa6LENGAtzAedNvG7dul33sXQ6HQ888AC1a9dm7ty5mM1mrAp8esHK8UIH/wz1wFhNHzJYHApfpllZn3uxjLG/vz8vvfTSDXU3qYruuecelxxHp9Px448/uuRYwr0piqJ2+AHIim2tYTRVQ1Zsa7wzzwKwcuVK7r//fqkQJ4QQQpTBwIED2bJlC88//zxLlixRi4SYTCbuv//+Etv+/vvvKIriNokIwikhIUFNXHHoPciMa6ttQKIEh4cXWTVvVgdO//TTT5JoLMQNKipsdejQIbWae1l5eXkxevRoPD09XRydEEJcNGHCBD766CP69evH+PHjCQsLQ6/X89VXX7F48eJLOiiXlpeXF8uWLeOPP/5gw4YNbNiwgenTp/POO++wdu3aS67XR4wYwd13333ZYzVt2vS6YigPle+JnNDMH3/8oVbXs3gHS4LHFdi8gzAHx+GTcRqHw8H69eu57777tA5LiHIzYMAAdu/ezeHDh9EpDiJ3f8+ZWx/D7umndWjXpLNb8Us5hDE/E5t3MLk1GqIYPLQOq1Q8s5OpceDiw88777yTTp1c12rL09OT8ePH8+qrr3Ly5EkU4P0UC6MiTLTykQeCxVkcCu+kWDhc6FCXDR8+/JJqEuLyDh8+zMqVKzl8+DAXLlygsLAQm812xYv2siR5FCV6JyQkXHb9vn3ORP3yvDhPTEwELq1M3KxZM1asWHHZ2Ox2OwcPHiz32CqTlStXqtNZsa2hmiaWlVZ+cC0sPiGYzOmYzWY2btx4Q8l+QriLIUOGsHXrViwWC565qYQeWc+FRpXvd1sxeJDYuj/ROxeXSDa2mXxJbN2/0lyP/p132gmCT/2hzv/zn/90ySCHm2++mXnz5jFz5kxOnz4NwLocO6ctDp6r4UmIsXq9J1ywOXj3vIXjlovXSrVr12bcuHFERERoGJl7+v3336+4rqgaztWuO4vWS+Wc6mPv3r2cPetMirUbTORIoYUblhvRBPuhNRis+aSmprJjxw5uueUWrcMSQgghKo2hQ4fy22+/8cMPP6gDogwGA1OnTiUqqmTnhW+++QaArl27Vnic4sqKKnoCZEc3l2rGbiizZhuCT25GpygkJCSQnJxMZGSk1mEJUal5e3szc+ZMdu7cidVqLdO+Op2Opk2bXvI+J4QQrrZo0SI6dOjAl19+WWL5ggULrriPyWQCnM/0r0an09G+fXvat2/PSy+9RHx8PPfddx///e9/mTp1KgB169YFnN2yr1V92R1IorEoteItv3Oim0uCx1XkRLfAJ8P5APTXX3/l3nvvlYdSosry8PBg9OjRjB49mtzcXDwKc4ja9R3n2g5GMbjv24xnVuIVkzsKA6M1jOzaDIW5RO36Fr3DBkDNmjUZNmyYy8/j5+fH5MmTGT9+PImJidiBd1IsjI4w0cxbko0BbIrCe6kW9uZfTDJ+/PHHrzjaTJT0ySefMHbsWBRFKfVowLK8n3bo0AFfX18OHjzIsWPHqFevnrouMzOTjRs3otPpyjUBc82aNYAzSaq4bt26MW/ePFasWMHs2bNLVPRat24deXl51K5du0TM1dWxY8fUtjEOvdF5HSquTqcjK+Ymwo84H2KsWrVKEo1FlRAeHs6QIUP49NNPAQg+tZWCwGhyI5toHFnZFQZGc7LzM/ilHMaYn1HpBr39nTE/i8g9S9T5m2++2aU3xaKiopg9ezbvvfee2mnpaKHCxMQCnqthopFX9bg23Z9v570UCzkXLz3p0qULzzzzjFR3uYL333//ssu3bNnCf//7X3x8fLj77rtp2bIloaGhAKSlpbFnzx5Wr15Nfn4+Q4cOlaTIauTnn39Wp3OiW6AYTRpGUzUoBiNZMa0IObkFgOXLl8vflBBCCFEGOp2O+fPn89RTT7F9+3a8vb3p3LkzjRo1KrGd1WolLi6Op59+mr59+2oUrfg7i8XC5s2b1fnsGOlC447sXv6YQ+vhe+EoAL/99hsDBgzQOCohKr+AgAC6dOmidRhCCHFFBoMBo7FkXtOpU6f46aefrrhPbKyzMOuRI0euuE1aWpp6v7lIUVKxxWJRl7Vs2ZJ69erxn//8h6effvqSgU7Hjx9X93MH7psBJtxKeno6O3fuVOezo1poGI37y41oTPiBlegdNk6dOsXx48clUUhUaREREYwePZrXX38dh8OBd9Y5IhJ+IrnFvW45KEFnt16SZAxgtOQRvXMxJzs/47ZJHjqbheidi/EoyAacVVLHjh3rkmpxlxMUFMSUKVMYP348qampWBV487yFlyNMNK7mycY2ReGDFAs7zRczPQYNGkS/fv00jKpymTt3Loqi0KtXL/r06UN4eDgmk8llbXS9vLwYOnQoH3zwAa+88goLFy7EZDKhKArjxo2joKCAvn37qh8G/m7mzJnMnj0bgGXLltG5c+fLbvfee+8xYMAAatSoUWL5d999x4cffgjA008/XWJdhw4daNmyJXv27OGNN95g7NixAGRlZTFp0qTL7lNdrVq1Sp3OjWgsFT9KKSe6BWFH49EpDg4dOsSpU6eoVauW1mEJccN69+7Nzp072bFjBwAR+5Zh8/KvlB13FIMHOVHNtA7jhumt+UT/+TVGaz7gvH589tlnXT7Y1tvbm5deeokGDRrw5Zdf4nA4yLLDzCQLj4R4cHeAocoO8FUUhRXZNhal2yi68jQYDDz22GP06dOnyn7frvDII49csmzz5s288MIL3HrrrXz55ZeEh4dfdt+UlBSGDBnCwoULL3scUfWkpKSwbds2dT4zro2G0VQtWTVvJvjkVnQo7Nq1i7Nnz17xc5gQQgghLq9Dhw506NDhius9PDx4/fXXKzAiURoJCQnk5zs/L1t8gikMkOqc7ionqpmaaLx9+3ZJNBZCCCGqgXvvvZfPP/+cp59+mg4dOnDmzBnmz59P7dq12b9//2X3iYmJoUOHDsyfP5+QkBCio6MJDg6me/fu6jZvvPEGv/76Kz179qROnTrk5OTw5ZdfYjQa6d+/v7qdXq/n3Xff5cEHH6Rjx44MHTqUWrVqce7cOTZs2MC5c+fYs2dPuf8cSsutE41zc3OZM2cOS5cuJTk5mdDQULp3786ECROu+BDgemRlZfHuu+/y888/c/r0afR6PTExMXTs2JEpU6bg5+fnsnNVVvHx8TgczsdZ5uA4bD5B2gbk5hxGT3IjGhOQ5GzJvnbtWkk0FlVe69atefTRR5k/fz4A/sn7sXn6u2U7a7+Uw5ckGRcxWvLwSznsnkkfDjtRe37AKzsJcF50vPzyy8TExJTracPDw3n99deZMGECaWlpWBSYe97CK5EmGlaT6nF/Z1cU/p1qZVuxJOMHH3yQgQMHahhV5ZOfn4+Xlxf/+9//yi1BZty4ccTHx7N27Vratm1L27Zt2b9/PwcPHiQqKoo5c+bc8DnmzJnDpEmTaN68OXXr1sVqtXLw4EGOHnXelBw7dmyJDxbgrETywQcf0KtXL2bNmsWqVauoVasWGzduJCUlhS5duvDkk0/ecGyVXX5+PuvXr1fns2Jv0i6YSsbu6UtujYb4nz8IOBO2n3rqKY2jEuLG6fV6Ro0axcsvv0xSUhJ6h43oP7/hXNtHKAyQlpYVTW8rJPrPb/DMuwCA0WhkzJgxhISElMv5dDod9913H/Xq1WPu3LlkZWVhB/6bbuWExcFjoR6Y9FUr6bbQofDZBSub8y62YQsKCuLll1+mWTM3/MxSCcyYMQO73c7HH3981fuLNWrU4KOPPqJ169ZMnz6dpUuXVmCUQgvLly+/eP8zpDZW3zCNI6o6bN5B5IU3wC/1MOCsHP2vf/1L46iEEEIIIcpf8UJeeWH13bI4j3DKC6uLgg4dCkeOHCEnJwd/f3+twxJCCCHKnWfOeWK2/U/rMABnLFBx77/Tp0/H19eXJUuW8MMPP1CvXj2mT5/O2bNnr5hoDPDpp5/y4osv8tZbb5GdnU3z5s1L5AP07t2bxMREvv32W1JTUwkKCuKmm27i3XffpU2bksUNbrvtNtasWcPcuXP573//S1ZWFjVq1KBly5Zu92xXl5mZWbo+1eUgKiqKpKSky67Lzc2lR48eJCQkEBcXR5s2bdi/fz+HDh0iJiaGNWvWEBV14yP+Tpw4wT333MPZs2epUaOG2rbt+PHj7N+/n4SEhHJP4HJ3iqIwYsQIEhMTAUhu1pecmJYaR+X+vNNOErtjAQB+fn7Mnz8fk0naLYqqTVEUPvroI1asWKEuu9DgDjLq3KZhVJcKPv47YUd/u+L6C/VvJ6NupwqMqBQUhYh9PxKQlKAuGjZsGL17966wEM6dO8err75KRkYGAF46eCXSRINqlmxclGS8pViyR79+/XjsscekmlwZvfzyy3z22WcsXbr0itWCXSEnJ4fZs2fz448/lhi8Nn78eCIiIq64X2krGr/11lvEx8dz7NgxsrKyyM/PJywsjPbt2/PUU0/RqdOV/58cO3aMGTNmsH79enJycoiLi2PAgAG88MILct0ArFy5Uq0KbfEN5dRtw+RmfBl4p50gdsdCwFkB//PPP8fT01PjqIRwjaSkJMaOHUtWVhYAdqMX59o+LJWBKpDeWkD0n1/jnXVOXTZ69OhyfU8vLjU1ldmzZ6sDewDqmHS8EGEi1KivkBjKW6rVwTspFk5ZLt66a9SoUbkmc1cHNWvWxGg0cuLEiVJtX6dOHWw2G2fOnCnnyISW8vPzeeKJJzCbzQCcaz0Ac3h9jaOqWrzTTxK73Xmv1NPTk88++0wKfAghhBCiynvllVc4fNg52CqxdX/ywhtoHJG4mppbvsAr25kT8dprr12SCCSEEEJUhKL7kDVr1iz3c3366aelvk9aUerUqSMFuTRyrd89TRONIyMjSU5Ovuy6CRMm8P7773PnnXeyaNEitc318OHDWbRoEf369ePLL7+8ofPb7XZuv/12EhISGDFiBJMnT8bDw0Ndf/DgQeLi4vDx8bmh81R2CQkJTJgwAQC7wcSJLs+jGCXx5ZoUhdq/f4hHfiYAo0aNokuXLtrGJEQFsNvtzJkzh61bt6rLUhp3JyuurYZRleSflEDk3itXo0puca97VTRWFGocWEHg2Ysj3x966CH+8Y9/VHgoZ8+eZcKECWpSj5cOxkR6Ut+raiRzXItDUfgo1cqmYknGvXv35qmnnpIk4+tgt9sZNGgQa9euJTo6moiICLy8vNDrr/z7pNPp+PHHHyswSqEVRVEYPXo0x48fByC10V1k1rpF46gqGUWh1sZ/YzI7B4g899xzdOvmfp0GhLhex44dY+LEieTlOTtV2A0mklo/RH5IbW0DqwYMhbnE/LkIz5wUdVlFD4IDsFgsfPTRR6xdu1ZdFqCHFyIqf+eNg/l2/i/FQs7FBhr06NGDJ598ssS9K1F2tWvXJjc3l8OHD18zYTstLY2GDRvi7+/PyZMnKyZAoYmff/6ZTz75BACLTwinOv5LBri5mqIQt/kzPHOd7x1DhgzhgQce0DgoIYQQoupZsmQJ+fn5PPzww1qHUu3Z7XYGDhyIzWYD4NgdI3GYqnfegbsLP7iKoNPbAXj44Yeli6UQQghNVGSisRDFXet3T9OsoCslGRcUFPDFF18AzlbURdXcdDods2bNwsvLi2XLlnH27NkbOv/3339PQkICXbt2Zfr06Zc8qGncuHG1TzIGZ5vlIrlRzSTJuLR0OrKKVX5evXq1hsEIUXEMBgOjR4+mRYsW6rIaB1cReOZPDaMqKbdGQ2wm38uus5mcrebdhqIQfnBViSTjHj16MHjwYE3CiY2N5fXXXycwMBCAAgXmJBdytMBxjT0rv8slGffq1UuSjG/AvHnzWLNmDYqicO7cOf788082bdrE77//ftUvUT0cOXJETTJ26I1kR7e4xh7iEjodWbGt1dniHQeEqArq1avHlClT1GqIBruF6B1f41+sA4RwPVNuKjW3/qdEkvGTTz5Z4UnGACaTiWeffZZhw4ZhMDgTi7MdMDPJwoYcW4XH4yrxOTZmJV9MMjYajTzzzDMMHz5ckoxd4JZbbsHhcDBy5EgsFssVt7NYLIwcORJFUWjfvn0FRigqmt1uZ9myZep8ZlxbSTIuDzodmbXaqbM///yzmnQjhBBCCNcZM2YMzz77rNZhCCAlJUW93rF5+kmScSVQ6BeuThd1exZCCCGEEE5GrQO4nM2bN5OXl0fjxo2pX79ki7qgoCA6duzI2rVrWbt2LUOHDr3u83z33XcAPP300zcUb1WWnZ3Npk2b1PniiQri2rKjWxF6bAM6RWHfvn2cPXuW2NhYrcMSotyZTCbGjx/P5MmTOXToEAA1DqwAxeEWlY0VgweJrfsTvXMxRkueutxm8iWxdX8Ug5s8vFcUwg+sJOjsxSTtLl26MGzYME0TW+Pi4pg6dSoTJ04kKyuL/L+SjV+pwpWNHYrCxxdKJhn37NlT89eisvvwww/R6XTcfffd9OvXj/DwcDw9PdVEIVG9/fLLL+p0bmRTHB7eGkZTeWVHtyT06Hr0DjtHjhzh6NGjl3zGEqIyq1+/PtOmTWPKlClkZGSgV+xE7l2KR14a6fU6S6KYi/lcOE7knh8w2AoB0Ov1jBgxQtNq6Tqdjt69exMXF8ecOXPIzs7GBnx8wUqiVaF/sBF9Jfk9cCgKi9Jt/JJ9MfEuMDCQsWPH0qRJEw0jq1rGjBnDr7/+yk8//UTr1q257777aN68OSEhIeh0OtLS0ti7dy9Lly4lKSkJg8HAK6+8onXYohxt27ZNLYhhN3qRHd3yGnuI65UT1YzQI/EYLXmkpaWxceNG6QAnhBBClANF0ayhsSgmJeXiAF2rd5B2gYhSs/oEq9Pnz5/XMBIhhBBCCPdT5kTj2bNn4+vrW+qRkF9++SVJSUmMGTOm1OdISHBWH2rW7PJt65s3b87atWvZv39/qY95OX/+6Uzcuu222zh69CjffvstycnJhIeH0717d9q1a3eNI1R9a9euxWq1AlAQEEVhQKTGEVUudi9/8sIb4JdyGHBWkXvyySc1jkqIiuHt7c3EiROZPHkyR44cAZyVjXUOO5m1ta8GVRgYzcnOz+CXchhjfgY272ByazR0oyRjBzX2/0Lgud3qos6dO/P888+7RRJmrVq1mDp1Kq+99hrZ2dlqsvGYKE/qeVatZGOHovDJBSsbcy8mGffo0UOSjF3AaDTi5eXFwoUL0eur1u+NuDHZ2dklqldn1rxZw2gqN4fJh9yIJgQk7QNg+fLlPP/88xpHJYRr1a5dm1mzZjFt2jS1rVPo8d/xzE0hufk9KEZPjSOsAhSFoJNbCTvyKzqcD6y9vLwYPXq029w7ad68OW+88QYzZszg1KlTAPyUZeO81cHT4SZMeve+bitwKHyYauFP88VOIXXq1GH8+PGEh4dfZU9RVm3atOE///kPzz77LImJiXz44YeX3U5RFIKCgnj//fdp06ZNBUcpKtLSpUvV6ayaraWbWzlS9EayarYh9NhvgPNnf/vtt8tnayGEEEJUSdnZ2eq0zdNPw0hEadmLdUMt/voJIYQQQggoc0bHrFmzeO+990q9/eeff87s2bPLdI6iNhSRkc6k1iVLltC1a1c+//zzEsvPnTtXpuMWl5eXR0pKCiEhISxfvpwOHTowa9YsvvjiC9544w3uvvtuhg8fjt1uv/bBqii73V6ivXKWJHhcl6yaFx9GrVu3jvz8fA2jEaJi+fr6MmnSJBo2bKguCz+8lpCjv4EbjKhXDB7kRDUjo24ncqKauU+SscNZia94kvHtt9/OyJEj3SLJuEhRsnFAQACAmmx8vNBxjT0rj6Ik49+LJRl3796df/3rX5IY6wIvv/wyBQUFbNmyRetQhJtZs2ZNycFugdEaR1S5Fb8e3bBhg9wkF1VSREQEM2fOpFWrVuoyv5TDxG35HFNuqoaRVX56WyGRu78n/Mg6Nck4NDSUGTNmuE2ScZGIiAhmzZpF27YXu6hsMzuYmWwhx679548rybIrzEwqLJFk3L59e2bOnClJxuWkd+/e7Nixg6lTp9K5c2fCw8Px8PDAw8ODGjVq0KVLF15//XX+/PNPevfurXW4ohwdPnyYAwcOAKDo9GTW1L4LU1WXWfNmHHpn/ZPjx4+zb98+jSMSQgghhCgfZrNZnXYYvTSMRJSWvdjrVPz1E0IIIYQQ11HRuCLk5Tnb2Ht7O9sjz5kzh/3793P06FEee+wxfH19S2x3PXJycgCwWCyMHDmSBx98kJdeeonw8HA2bdrEyJEjWbhwIQ0bNmTUqFGlPu5XX33FggULSrXtzJkzadmyJWaz+YaSpstLQkKC2hLE7uFNTmRTjSOqnMwhtbH4hGAyp2M2m/nmm2+47bbbtA5LiAr1z3/+k/nz53PixAnAWWHOYM0ntXF3aWf9Nzqbhajd3+Obdlxd1rZtW/r06cPx48evsqd2nnjiCT766CPMZjNmB8xOLmRspCd1KnllY4ei8Nnfkozbt29Pt27dOHbsmIaRuU5MTAw+Pj6anf/HH38kMDCQvn37Eh0dTUREBF5eXldN4tbpdPz4448VGKWoaHa7neXLl6vzmTWlguCNKgiMpiAgCq/sJKxWKytXrqR///5ahyWEy/n5+TFx4kT+85//qO8VJnM6Nbd8QUrTnuREt9A4wsrHlHOeqN0/YDKnq8saN27MmDFjCA4Ovsqe2vH29mbcuHF8/vnn/PTTTwAcLXQwNamQMREmwjzc6xo1xepgdrKFFNvFROj77ruPIUOGyMC2chYcHMxzzz3Hc889p3UoQkPLli1Tp3Mim2L38tcwmurBYfIhO7oFQWd3As7XoEULeY8WQgghAEJCQgBo2LChWpyhaFlpKYoi3QLcRPGCZoq8JpWD7uLncIej6hTVEUIIIYRwhXJPNE5PT8fDo2wVIpW/VbkcMGAAb7zxBoMHDy6x/kY+JBVdGObm5tKuXTv+/e9/q+t69eqFw+Fg8ODBfPDBB4wcObLU5zp9+jQbN24s1bbuXkmseLvqrJib3KfSZ2Wj05EZ15YaB1cBzp/rrbfeKg8MRbXi5eXFk08+yX/+8x8OHz4MQNCZHRis+SQ3vwf07lOlV0t6i5nonYvxzro4+KRjx47069fPrf9nREdH869//atEsvGcv5KNa1XSZGNFUfgizcpvxZKMb7nlFh544AG3fi0qm+LXTOfOnSvVwCu5SV71bd26lQsXLgBg8/AmVwa73bi/rkcj9zkTaVasWMH999+P0eiW406FuCEGg4HHH3+cevXq8cEHH1BYWIjeYSVy3zJ80k+R0rg7itGkdZjuT1EIPLuTsEOr0TsuXg/17t2bxx57rMz3eSqawWDgySefJCIigvnz56MoCslWxZlsHOlJjMk9rudOWxzMSS4k668fsV6v56mnnqJXr17aBiZENZGamlriM0lmrVs0jKZ6yax1i5povG3bNs6dO0dMTIzGUQkhhBDaK3oGXvxZ+d+fm4vKo3iHSl0Veh11dit+KYcw5mdi8w4mt0bDqpNHoFxMLpZnQUIIIYQQJZXrk+Vt27Zx5swZatasWab9/Pz8AMjPzwdg5MiRjBw5Ul1f1KbiRirwFd/34YcfvmR97969MZlMpKamcvz4cerVq1eq48bFxdGxY8dSbVvUat7Hx4cGDRqUap+Kcvz4cY4ePQo4R1hm1bxZ44gqt+zoFoQeXY/BVkhqaio5OTklWrkKUV1Mnz6dt99+W32Q55+8H701n6RWD6AYPTWOTlvG/Cyi/1yEZ16aumzgwIEMGjSoUiRWNmjQgJo1azJx4kRyc3PJ/auy8YQo90nkKC1FUfhvupVfcy4m1XTr1o0RI0bIjSUXK149TIgixX8vsmrejGKQZFhXyI1sgu3wOoyWPNLS0ti8eTOdO3fWOiwhyk2XLl2oXbs2c+bMUQeyBCTuwSvzLMkt76MwIFLjCN2X3ppPRMJy/FIOqcu8vLwYPnw4Xbp00TCysrvnnnsIDQ3lzTffxGazkWGH6UmFvBLpSW2NB8QdL3QmGef99QzTZDIxevRo2rdvr2lcQlQny5cvV4tRmIPj5L2hAll9Q8kNq4/fhaMoisLPP//MsGHDtA5LCCGE0Nzu3bsBLhncGRYWxtq1a6+5v6IodOvWjfT09GtuK8qfl5eXOq23F2oYiet4ZiUSvXMxRsvFztM2ky+JrftTGBitYWSuobdb1Omi7ttCCCGEEMLpmk/tf/755xKti8FZiXfEiBFX3Mdut5OUlMTmzZsBZ3JOWURHOy9Ck5OTL7u+aPmNVDkIDAzEx8cHs9l82URonU5HREQEZ86c4cKFC6VONB48eLBaebkyW7p0qTqdG9EYm3eghtFUforRk+yYmwg+tRWAJUuWSKKxqJY8PDx48cUX8ff3Z8WKFQD4pp0gdtv/SLx5IHZPP40j1IYp5zwxf36NsTAXcL4HPfHEE/Tt21fjyMqmbt26TJ48mYkTJ2I2m8lxwMzkQl6N8iTSzVpUX4miKHydYWN19sUk4zvuuINnnnlGkozLQadOnVx2rH//+988/fTTLjue0Mbhw4c5cOAAAIpOT1bNNhpHVHUoeiNZNW8m9NgGAH788Uc6depUKQazCHG9atWqxdy5c/noo4+Ij48HwGROJ3brf0hrcIezcqX8DZTgnX6KiL0/4lGYoy6rVasWr7zySqWtNHnbbbfh5+fHjBkzKCgoUK9Rx0R6UlejZOOjBQ5mJxdS8FdBKx8fHyZMmECzZs00iUeI6qigoIBVq1ap85m1JMm/omXWugW/C85CF2vXruWRRx5RC5AIIYQQ1VVcXNxllxsMhiuuu9y2wj0UFR0DMBTmXWXLykFnt16SZAxgtOQRvXMxJzs/U+krGxd/nfz9/TWMRAghhBDC/Vwz0Xjv3r0sWLCgxLL8/PxLll1Js2bNmDBhQpmCKnqwkpCQcNn1+/btA6Bp0+tvo6zT6ahfvz579uwhMzPzsttkZWUBJUcbVgcpKSls2LBBnc+QG+0ukRnXlqDTf6BTFPbt28fhw4dp2LCh1mEJUeEMBgP/+te/CA4OZuHChQB45Zyn5tb/cK7NQKy+YRpHWLG8004Qtes7DH+NkjYajYwcOdKlCZgVqX79+mqycUFBAVl2mJVk4dVoE2FG90/UXZpp4+csmzrfsWNHnnvuObk5WwlMmTJFEo2rgOKD3XIim1XbASjlJSv2ZoJPbELvsHPkyBH2798vSW2iyvP29uaFF16gVatWfPTRRxQUFKBX7IQfXotP2nHON+uL3UseHOGwE3rsN4JPbKZ46nXv3r0ZOnQonp6Vu/tIy5YtmTp1KlOmTCEvLw/zX903xmlQ2fjYX5WMi5KM/f39mTRpEvXr16/QOISo7uLj48nLcyYRWLyDyQuXv8GKlh9Si0K/cDxzUyksLGTt2rXce++9WoclhBBCCOEyoaGh6rSxIOcqW1YOfimHL0kyLmK05OGXcpicqMp9r7H4wOuQkBANIxFCCCGEcD/XTDT+e6LT7Nmz8fPzu2pFY71eT0BAAM2bN6djx45lrpLVoUMHfH19OXjwIMeOHStRTTgzM5ONGzei0+nKXCn57+644w727NnDxo0b6d+/f4l1x44dIzs7G6PRSIMGDW7oPJXNjz/+WLJtYBVoc+IObN6B5EQ2IyDJmSj//fffM3bsWI2jEkIbOp2OgQMHEhISwocffojD4cCjIIuaW78ksXV/CoIvrTRfFfkn7iMi4Sd0ivN/ro+PD+PGjaNFixYaR3ZjGjZsyGuvvcaUKVOwWCyk2RVmJ1l4NdqTQIP7Vg1clWXju8yLScbt27dn1KhRkmRcSSiKonUI4gadP39e7YgCkFHrFg2jqZrsnr7kRDUn8JyzDefSpUsl0VhUCzqdjq5du9KoUSPefPNNjh51Vk/0TTtBrc2fcr5pb/IiGmkcpXY88tKI3LMUr5yLXaX8/f159tlnad++6gw8btiwIa+//jqTJk0iJydHTTZ+NcqTGFPFJBuftjiTjPP/umwJDAxk6tSp1KpVq0LOL4RwUhSlRAe/rLg2UuFeCzodmXHtiNjvfC2WL19O37595TO4EEII8TeTJk3C19e31NvLfVL3ERERgU6nQ1EUPAoywWEHfeW91jHmZ9zQ+srAIy9NnY6MjNQwEiGEEEII91OqROPiycazZ8/G19e3XBMkvby8GDp0KB988AGvvPIKCxcuxGQyoSgK48aNo6CggL59+xIbG3vZ/WfOnMns2bMBWLZsGZ07d77sdkXnWLBgAffddx933HEH4KzYPH78eADuuecefHx8XP9NuqmsrKwSbQMzanfQMJqqJ6P2rWqi8datWzlz5gw1a1aPhEohLufuu+8mODiYN954g8LCQgy2AmJ2LOB8837kRjbROrzyoygEn9hE2NH16qLQ0FBee+01ateurV1cLtSsWTPGjRvH9OnTsdlsJNsU3kguZEKUJ95693uAuzHXxn/Trep8q1ateOmllzAar3mpJNxEWQe2CfdTYrBbSG0sAREaR1Q1ZdRqryYab9u2jbNnz17xc5UQVU10dDQzZ85k4cKF/PDDDyiKgsGaT/Tu78iKaUVqo7tRjCatw6w4ikLg2Z2EHVqD3nFxsFWrVq144YUXqmTlnrp16zJlyhQ12Tj3r2TjiVGehHmUb7LxeauD2UmFmJ1vdQQEBEiSsRAa2bdvH6dPnwbAYTCRHdNK44iqr5yoZoQdXofBVsD58+fZuXMnbdu21TosIYQQwq2MHDmyTNvPnj2b/Pz88glGlImnpyfh4eGkpKSgUxRMeRew+Ffee5427+AbWl8ZeOamqtPyDF8IIYQQoiS3zZ4ZN24c8fHxrF27lrZt29K2bVv279/PwYMHiYqKYs6cOTd8jnr16jFp0iRee+01HnjgAdq1a0d4eDg7d+7k3LlzxMbGMmPGDBd8N5XHsmXLsFgsABT4R2AOq6txRFWLxb8GuWH18btwFEVR+O6778p8g0CIqqZt27ZMnz6d119/naysLPQOO1F7fiC1IJvMWrdUvapCDgc1Dqwg8NwudVFcXBwTJ04kLCxMu7jKQevWrRk9ejRvvPEGDoeDUxaFt85beDnShIcbva57zHY+Sb2YZNyoUSPGjRuHh4eHhlEJUb1kZ2ezevVqdT6j9q0aRlO1Wf3CSlyPLl269KrdaoSoajw8PBgyZAitW7fmnXfe4cKFCwAEntuNd8ZpklvcWy26+hgK86ixfzl+qUfUZUajkSFDhtC3b1/0+oqp8KuFunXr8tprrzFx4kQKCgrIsMMb5y1MjPLEt5y6b+TYFeYmW8j+K8nYx8eHyZMnS5KxEBopXmQhO6o5DqOnhtFUb4rBg+yYVgSf2grAypUrJdFYCCGEuEH333+/1iGIYurUqUNKSgoAXtnJlTrROLdGQ2wmX4yWvEvW2Uy+5NZoqEFUruWZnaRO16lTR8NIhBBCiIrx6aefcuLECa3DKKFOnTo8+eSTWochLsNtnxz5+/uzcuVKnn32WQB++uknsrKyGDp0KPHx8URHu+bB33PPPcfXX39N586dOXToECtXrsRoNDJs2DB+/fVXoqKiXHKeyiA3N7dE28CMOh2qXoKfG8ioe5s6/dtvv5GcnHyVrYWoHurXr8+cOXOIiYlRl4UfXkv4odWgODSMzLV0NgvRuxaXSDJu0aIFM2fOrHJJxkU6dOjA8OHD1fkDBQ4+TrXicJP2bScKHfxfigX7X/NxcXG89tpreHl5aRqXENXN8uXL1cFuhf41MIfKTdzylFHnYiL3r7/+Snp6uobRCKGNFi1a8Pbbb5fo4GQyZ1Dzj/8QfPz3KnUN+nc+F44Rt/nTEknGcXFxvPHGG/Tr169KJxkXadiwIRMmTFC7VyRaFd5NsWArh2tUm6LwznkLyTbnsT08PJgwYQJ168rAbiG0kJWVxebNmy/O17xZw2gEQFZsa3V6x44dpKamXmVrIYQQQojKpUGDBuq0V+ZZDSO5cYrBg8TW/bGZfEsst5l8SWzdH8VQuYu3GApy8CjIBsBkMhEXF6dxREIIIUT5O3HiBCcOJGA/dsAtvk4cSLihxOfhw4cTFBR0za+vvvrKhT/F6qPMFY0zMjLKI47L8vf3Z9q0aUybNq1M+40bN45x48aVevsePXrQo0ePsoZX5fz888+YzWYALL6h5EY01jiiqqkgKBZzSC180k/hcDj47rvvpIqcEEBERASzZs1ixowZHDhwAICg09sxFmST3OLeyn+DojCX6D+/wSvn4uCCO+64gxEjRlT5yrl33303WVlZ/O9//wNgS56dUKOOQSHaft8XrA7mnS+k8K98kvDwcCZNmoSfn5+mcQlR3RQUFPDzzz+r8xm1ZbBbeSsIqkl+YAzeWeew2WwsW7aMoUOHah2WEBXOz8+P0aNH06ZNGz7++GPy8/PRKQphR3/DJ+0E51vci80rQOswXUbnsBF6+FeCT28rsbxv377885//xNOzelX0bNGiBc8//zxvvvkmAAkFDhakWxkSanLpeb5Ms3Ko0Jm4rtPpGDVqFM2aNXPpOYQQpbd+/XpsNhsA+YExWPxraByRsPqGYA6pjU/6SRwOB/Hx8fTv31/rsIQQQgghXKJp06bqtHf6aQ0jcY3CwGhOdn4Gv5TDGPMzsHkHk1ujYaV/hgfgk3Hx9WnUqJE6OFkIIYSo6uJMeiZEucfzgelJhTe0/2OPPcYdd9yhzq9cuZLvv/+e0aNH07Dhxe4L7du3v6HzVFdydSQAMJvN/Pjjj+p8ep2OoKv6VYy0kl63Ez7ppwBYt24d/fv3p0YNebAhhL+/P1OmTOHtt99m06ZNAPilHCZmx0ISW/fH4eGtcYTXxyMvjZg/v8YjP1Nd1r9/fx555BF01SSZ7sEHHyQ9PV2tnP9zlo1IDx13+GtzKZLvUJh73kLWX6WM/fz8mDhxIqGhoZrEI0R1tmbNGnJycgCwegWSE9FE44iqAZ2OjDq34r3rO8D5Ifuhhx7C19f3GjsKUfXodDq6du1K06ZNeeuttzh48CAAPhlniNv0Keeb9SEvopHGUd44j7w0IvcswSvnvLosKCiI559/nptvrr7VPG+//XaSkpJYuHAhAKuz7dT3tHGbn2uuUX/LsfFrjl2d/+c//8ltt912lT1EVZSbm8ucOXNYunQpycnJhIaG0r17dyZMmEB4eLhLzrF+/Xo2btzI9u3b2bFjB1lZWdSsWZO9e/dedb8TJ04wY8YM4uPjyc7OplatWgwcOJDnn3++yg6IXbt2rTqdHdNKw0hEcdkxrfBJPwk475U+9NBD1eZ+iRBCCFHcxo0bXXasjh07uuxY4vo1aNAAT09PCgsLMeVnYDRnYPMJ1jqsG6IYPMiJqnoDaH0uHFenmzdvrmEkQgghhLhet9xyC7fccos6n5iYyPfff88dd9xB586dNYysapBEYwE4qxnn5eUBYPEJJiey6TX2EDciPziO/KCaeGeewW638/333/P0009rHZYQbsFkMvHSSy/xxRdfqAMgvDPPEvvHlyTePAibd6DGEZaNZ1Yi0X9+jdGaD4Ber+fpp5+me/fuGkdWsXQ6HU888QSpqals2+asovfFBSuRRh2NvQ0VGotDUfggxcI5q7OUsdFoZNy4cdSsWbNC4xBCgM1mY+nSpep8Ru32oJfBbhUhL7whFt9QTHlpmM1mVq5cyQMPPKB1WEJoJiIigunTp7N48WK++eYbHA4HBlsB0bu/I7NmGy407IZiqJy3UPwT91LjwAr0dqu6rG3btjz77LMEBQVpF5ibGDBgAKdOnVIHOs6/YKWOp54ojxt7PzpncfCftIs/89tvv53777//ho4pKp/c3Fx69OhBQkICcXFx9O7dm/379/PFF1+wevVq1qxZQ1RU1A2f59lnn+XMmTMApU7O3L9/Pz179iQ7O5vWrVtTq1YtNm7cyOuvv87GjRtZvHgxBkPFflYrbydPnuTUKefAf4feSG6kDHBzF7k1GmI3emKwFZKUlMSRI0dKVJkRQgghqou+ffu6ZLCNTqcjLS3NBRGJG+Xh4UGLFi3Yvn07AL4XjpEV11bjqMQlFAWftGPqbHUelC2EEEJUN0FBQTz88MMMHz6ciRMnsn37dgwGA61atVJzlmbOnMns2bPZvXs3tWrVUvcdPnw4CxcuJDMzs8QxT548yYwZM/j111/JysqiTp06DBs2jCeeeKIivzWXk6f4gvz8/EurGUuCR/nS6Uir10mdXbNmDampqRoGJIR70ev1PP744zz++OPqMs+8NGL/+BJTbuX5W/G5cJzY7V+pScYmk4lx48ZVuyTjIgaDgRdffJG6desCYAf+L8XCBaujQuNYnGFjV/7Fc44YMULaVwuhkY0bN6rXQDYPb6kqV5F0OjJq36rOLlu2DKvVepUdhKj6DAYDgwYNYvr06SWqjAad2UHsH1/iYc7QMLqy09mt1Ej4mch9y9QkY6PRyJNPPsmECRMkyfgvOp2OZ599lujoaAAKFfgwxYJNUa77mFZF4YNUC5a/DhEXF8czzzwj1TmroZkzZ5KQkMCdd97J9u3b+fzzz9myZQuDBg3i3LlzjBkzxiXn6d69O1OmTGH58uUlBnFdzTPPPEN2djZjx47l119/5YsvvmD79u00bdqUdevW8dlnn7kkNnfy+++/q9N5NRrgMLpHS0jhrIqXW+NiB4ENGzZoGI0QQgihndjY2Ct+KYqifnl6ehIREUFERASenp7q8qJjxMTEaPydiOLatGmjTvulHNYwEnElXplnMVrMAAQGBlKvXj2NIxJCCCFERUpKSuKee+4hKiqKyZMn8/zzz5OUlHRdxzp69Chdu3Zl7dq1PProo8yePZuWLVsyevRo3njjDRdHXrHKnE2anp7ODz/8wC+//HLJul27dnHvvfdSq1Yt6tWrx7Bhw0hMTHRJoKL8LF++XG1XbfEOIidKWoFUhPyQ2uQHxQLOan4//PCDxhEJ4X769evHSy+9hNHorB7nUZhD7Lb/4Zl5TuPIrs0veT/RO79Rkzr8/f15/fXXadeuncaRacvb25tx48YRGOisTJ3jcCYbWxzXn8hRFtvy7PyUZVPnH3zwQbp27Voh5xZClKQoSonrn6y4tiiGqtmi211lRzXH5ukHQEZGBvHx8doGJISbaNKkCW+99Ra33noxGd8rJ5maW+bjW0keCHqY06m59T8EntutLouJiWHOnDkuq5BVlfj4+JT43HHCovBzsWvGsvox08bpv7KMizq2eHl5uSRWUXkUFBTwxRdfADBnzhxMJhPgTG6fNWsWXl5eLFu2jLNnz97wuebNm8cLL7zAbbfdhre39zW337x5M7t27SI2NpaXX35ZXR4YGMiUKVMA+PDDD284LneiKIpauRwgJ1IGm7qb3GLttzdt2qQmSwkhhBDVyd69e9mzZ0+Jr23bttG4cWMMBgPPPvssmzdvJjExkQMHDnDgwAESExPZvHkzI0aMQK/X06RJE3bs2KH1tyKKKd6+2zvjFPq/ElqF+/BLOaRO33LLLeilKJsQQghRrcTHxzN79mw+/PBDnnzySUaPHs3mzZuv61gvv/wyNpuNtWvXMmHCBB577DE++eQTHn30Ud58881Lqh9XJmW+QlqwYAFPPPHEJQ+hT548Sb9+/diwYQPZ2dmkp6fz7bff0qtXL7KyslwVr3Cx/Px8lixZos5n1LlNqhlXFJ2O9LoXqxqvWrVK2hgJcRmdOnXitddeUx/MG6z5xO5YgHfaSW0Du4qAszuJ3LMEneKsmhseHs7MmTNp1KjRNfasHsLDwxk3blyJRI7/pZd/Fc1kq4OPUy3qfJs2bXjkkUfK/bxCiMvbvXs3J0+eBMCh9yCzZpur7yBcT28gI+7ig46lS5ficFRslXkh3JWfnx9jxozhqaeeUq9ZDLZCond9S+iReHDj5Cef1KPU3PI5nrkp6rIuXbowd+5ctbOEuFTdunUZPHiwOr8kw0aipez/E89YHCzLvJik/M9//pO4uDiXxCgql82bN5OXl0fjxo2pX79+iXVBQUF07NgRRVFYu3Zthce2Zs0aAHr27InBYCix7s4778TX15cTJ05w7Nixy+1eKZ09e1YtiOEweGAOlf+H7sYcXAu70XnvJy0trUr9/gkhhBA3YtasWaxZs4a33nqL119/ncaNG5cYPKrT6WjcuDHTpk3jzTffZPXq1cyePVvDiMXfhYaGqs+HdIpSIqlVuAFFwS/5gDrboUMHDYMRQgghhBbq1KnDwIEDSywrejZUFunp6cTHx9OlSxf8/f1JS0tTv9q3b09+fn6lHhRY5ozS1atXAzBo0KASyz/++GNycnKoX78+K1as4Pvvv6devXqcOXOG999/3zXRCpdbuXKlWs3Y6hVIdnQLjSOqXsyhdcgPdLZnlarGQlxZq1atmDZtGv7+/gDo7Vaid36NT+pRjSO7VNCpP4jY/wtFt/liY2OZOXMmsbGxmsblbho3bszjjz+uzv+aY2dz7vVXjbsWi0PhvRQLBX/lBEVERDBq1KhLHqoLISpO8bbe2TEtcZh8NIym+sqOvQm7wVlh8ezZs2zfvl3jiIRwHzqdjj59+jBr1izCw8PV5SEnNhG9czF6a4GG0V2GohB8fBPRO7/BYCsEnDfChg8fzsiRI0tV5bS669evHw0aNADABnyZZi1TRU1FUfjPBSv2v+abNGlCnz59XB+oqBQSEhIAaNbs8pVzmzd3dhTbv39/hcVU5GqxGQwGGjduDGgTW3kpfo1jDq2LYij7gwJRzvR68sIvJuVv27ZNw2CEEEII97F48WK8vLxKDIy8ksGDB+Pl5cXXX39dAZGJsujU6WLxKf+kBA0jEX/nnXEaj0JnvoS/vz8tW7bUOCIhhBBCVLRGjRq5pBPk8ePHURSFn376iXr16pX4Gj58OACpqak3fB6tlDnR+Pjx43h4eNCqVasSy1etWoVOp+PNN9+kffv2dO3alQ8++ABFUVi+fLnLAhauU1hYWKKacXqdDqCXhKsKdZmqxpW5RLoQ5al+/frMmDGD0NBQAPQOO9G7vsXXjUZ+B5/YRPihNep8vXr1mDFjBmFhYRpG5b569epF586d1fn5F6ykWsunkuY3GVZO/dW+2mg0MmbMGPz8/MrlXEKIaztz5gw7d+4EQAEya91y9R1EuXF4eJEd21qdX7ZsmYbRCOGe6tevz7x582jd+uLfiu+Fo8T+8SVGc6Z2gRWjs9uI2PcjYUfj1QFv4eHhzJo1ix49erjkBll1YDAYeOaZZ9QWqQkFDv40l/769A+zg0OFDvVYw4cPl3ar1VhR9dzIyEgAlixZQteuXfn8889LLD937pzmsb3++uvcfffdbN26VfPYysvu3bvV6eLJrMK95IXVU6f37NmjYSRCCCGE+7hw4QIGg6FUny2Ktrtw4UIFRCbKomPHjupr6JNxGmO+dIR2F/5J+9Tpjh07Xlf1QiGEEEJUbsHBwde1n91uv+zyAQMGsGTJkst+3XHHHTcQqbbKfJWUkpKCn59fiQ8zWVlZHD9+nPDw8BKj8dq1a4fJZFJbIgv3sm7dOjWp1erpT06MjM7TgjmsHgX+kXjlJGOxWFi2bBn//Oc/tQ5LCLdUs2ZNZsyYwcSJEzl//jw6xUHU7h9Iank/eRGNNI0t+MQmwo7Eq/NNmjTh1VdfxdfXV7ug3JxOp2P48OEcOXKE5ORkChT4KNXK+CgTehcmw+zLt7My++IF3mOPPSZtw6ugslQbFNr76aef1Om8Gg2x+lzfhzfhGplxbQk6/Qc6RWHv3r2cPHmS2rVrax2WEG4lICCAV199la+++orvv/8eAM+8C9Tc+jmJrQdQGBSjWWx6i5noXd/inXlWXdasWTNeeeUVAgMDNYursqpTpw49e/ZUB81/k2HlJh89hmtcn9oUhW/Srep8nz59iIuLK9dYhXvLy8sDUKuJz5kzh/3793P06FEee+wx9bNi0XZaxObj40N6ejrz5s0D4K233mLRokXXHdtXX33FggULSrXtzJkzadmyJWazudwTmm02m1rFGcAcUrtczyeuX36x1+bQoUMkJCRgMpm0C0gIIUSVFBMTg49P5emsFRsby/Hjx1mxYgU9e/a86ra//PILeXl51K8vA6vcTUhICK1atVKLL/gn7SWjWDEqoQ2d3Ypf8gF1vjIn/gghhBCi/BTdnzKbzSWWJyUllZivU6cOOp0Om81WJa8rylxWxcvLi6ysLGy2i+3N//jjDxRFoX379pds7+3tjcNRPtUJxfWz2+0lqhln1m6PopfReZrQ6cio00Gd/eWXXy75xySEuCgiIoLp06cTHR0N4Ew23vMDvilHNIsp6OSWEknGLVq0YNKkSZJkXAo+Pj68+OKL6gCmQ4UOVmdfftTX9ch3KHyaejHho23btvTu3dtlxxfuIzk5WesQRCnl5uYSHx+vzmfESTVjrdm8A8mtcXHAzooVKzSMRgj3ZTAYGDJkCKNGjVKr2xit+cRu/wrfVG2uRY35WdT848sSScbdu3dnypQpkmR8AwYOHKgmHiRaFbbkXfv6dGOunRSbc+CTn58fAwYMKNcYxY1btWoV48eP55FHHuHee+/lnnvuueJXv379ynz8vw+EGzBgAL6+vmrL66L1WlQcLx5bcHAwvXr1IiAggP79+99QbKdPn2bjxo2l+srOznbdN3QNSUlJWK3Oz4VWr0Bs3vL/0V3ZPX0p9HV2hXI4HJw9e/YaewghhBBVX//+/VEUhaeeeopPPvnksp1RMzMz+fjjj/nXv/6FTqdTr+uEe7nzzjvV6cBze0CKZ2jO7/xBDHYLANHR0TRqpG1RIyGEEEK4p5gYZ7GZHTt2qMtOnz7Nli1bSmwXGhrK7bffzrJly0oUPihy4sSJ8g20nJU5s7Rp06Zs3bqV7777joEDBwKwaNEidDodt956a4lts7KyyM7OlmpYbmjr1q2cP38eALuHN1kxN2kbUDWXG9EIi08IJnM6ZrOZNWvWXNdDLCGqi7CwMKZNm8arr75KYmIiOsVB5J7vSWw9kPzQ2hUaS+CZPwk/vE6db9GiBa+++iqenp4VGkdl1rBhQ/r378/XX38NOKvGtfbRU8PjxttMf51uJc3uvFnn7+/Ps88+K63DhdBYfHw8hYWFABT61aAguKbGEQmAzJpt8T9/EHC+RkOGDKlU1X2EqEhdunRRB7/l5OSgd9iI2vUt55v3IyeqWYXF4ZF7gZgdC/EozAGcCYGPPvoo/fr1k+udGxQYGEi/fv1YtGgRAEszbdzqa+BKP1UH8GPmxQH59913H35+fuUfqLguGRkZDBw4kO3btwOl64xxPX9TRb8D+fn5AIwcOZKRI0eq64sGmWvxflsUm9lsRqfTsXDhwhLrrze2uLg4OnbsWKptAwIC1HM0aNCgTOcpq6NHj6rTBUHR5XouceMKgmLwzHO2e8/Pzy/33w8hhBDC3Y0aNYr169ezefNmxowZw7hx44iJiSEkJASdTkdaWhrnzp3D4XCgKAodOnQocd0p3Ef79u3x8/MjNzcXj/xMvNNPkh9aR+uwqrWAc7vU6W7dusn9FCGEEEJcVrdu3fDx8WHChAmcO3cOg8HAl19+Sb169Th48GCJbefOnUuPHj3o3r07Q4YMoVGjRqSmprJ161bWrl1LRkaGRt/FjStzovHAgQPZsmULzz//PEuWLCEjI4OtW7diMpm4//77S2z7+++/oyiK3Ax0Q0uXLlWnM2vejGKUFnSa0unJqHULEQec1eOWLVtGnz59MBgMGgcmhPsKCQlh6tSpTJgwgfPnz6N32Ine9S1n2w2mMCCqQmLwS95P+IGLVR+bNWvGhAkTJMn4Ojz00ENs3bqVkydPYlHgP2lWXoow3dBNnaMFDtblXKw+99RTTxEUFOSCaIWrzJ49G19fX5599tlSbf/ll1+SlJTEmDFjyjkyUV4URWHVqlXqfFbNm0Fu3rqFguCaFPqG4Zl3gYKCAn7//Xe6d++udVhCuK3GjRsza9Yspk6dyvnz59EpChF7l6KzW8mOvancz2/KSSFm+1cYrc4ERqPRyKhRo0qd4CeurW/fvixdupT8/HySrAqPniwo1X5+fn706dOnnKMTN+K1115j27Zt6PV67r77btq3b09YWJjL78EUdeG5UueNouVF1TAqUnR0NHv27HF5bIMHD1YrNruTkydPqtMFFXS/QFy/woBIOLcbqPxVXoQQQghXMJlM/PDDD8ybN49PP/2UjIwMTp8+zenTp0tsFxwczFNPPcWLL76otnYW7sVkMtGlSxd+/vlnAALP7ZJEYw155F3AJ+MM4OxiVbzitBBCCFGdnLY4mJ5UqHUYgDMWd7w6Cg8PZ9GiRYwfP563336b2rVrM336dJYvX35JonGDBg2Ij49nzpw5LF26lNTUVEJDQ2natClz587V6DtwjTInGg8dOpTffvuNH374QW2pazAYmDp1KlFRJW/UfvPNNwB07drVBaEKVzl69CiHDh0CwKEzkFWzjcYRCYCc6BaEHV2PwZpPamoq27dvp3379lqHJYRbCwsLY+rUqYwfP560tDT0dgvRO77mbPuhWH2Cy/Xc3uknidi7TK1q1qBBA1599VW8vLzK9bxVlYeHByNGjOCVV15BURT25DvYbnbQzvf6HvY7FIX/pFkoqk3Wpk0bOnfu7LqAhUvMmjWLiIiIUicaf/755+zevVsSjSuxY8eOqQ9BHHqPCq38Ka5BpyM79ibCD60BYM2aNZJoLMQ1xMTEMHPmTCZPnszp06fRARH7lwOUa7Lx35OMvby8GDduHK1atSq3c1ZHfn5+3H333fz4449l2q9Hjx54e3uXU1TCFVasWIFOp+P//u//yjUptlkz53XO5VrkAezbtw9wdo+raM2aNWPFihWXjc1ut6s3x7WIrTycO3dOnbb4hmkYiSiN4q9RYmKihpEIIYQQ7sPT05Px48fz8ssvs337dg4ePEhmZibgTDBu0qQJbdq0wWgs86N/UcHuvvtuNdHY7/whDIV52D19NY6qego8u0udbteuHcHB5ftcUQghhHBHdeq4V1pvHVwb06hRoxg1atRVtym6rr6W22+/nd9//73EsnvuuYcPP/zwkm3j4uJ47733Sh1nZVHmTxs6nY758+fz1FNPsX37dry9vencuTONGjUqsZ3VaiUuLo6nn36avn37uixgceOKEsQBciObYPeUdp7uQDF4kBV7EyEnNgPwyy+/SKKxEKUQERHB5MmTGTduHLm5uRitZqL//Joz7Yfi8CifB/weeReI2vU9esVZLTc2NpbXXntNEgpuUIMGDejZsye//PILAAvTrbTy1mPSl73a6W+5dk5anGnGJpOJYcOGScsrIdzA+vXr1enciMY4jFIB3p1kRzUn7PA6dIqDw4cPk5SUdMlgUiFESSEhIUybNo3Jkydz/PhxAGrsX47DaCI30vUJeh7mDGJ2LFSTjH18fJg0adIl92SEazz00EMcOHCAo0ePlmr7hg0bct9995VvUOKGmc1mTCYTgwYNKtfzdOjQAV9fXw4ePMixY8eoV6+eui4zM5ONGzei0+no1q1bucZxOd26dWPevHmsWLGC2bNnl6jmvG7dOvLy8qhdu3aJmCuzpKQkddrqG6JhJKI0LL6h6nTx104IIYQQzoIdHTp0oEOHDlqHIq5T7dq1adSoEYcOHUKnOAhI3E1Gndu0Dqva0dmtBJzbo8736NFDw2iEEEII7Tz55JNahyAqkese1nitDzEeHh68/vrr13t4UU7y8/NLZNdn1bxZw2jE32XF3kzwic3ogN27d5OSkkKNGjW0DksIt1ezZk1effVVXnvtNaxWKyZzOlG7f+DczYNAr3fpufTWfKL/XIzB5mydHBwczKRJkwgICHDpeaqrRx55hN9//52cnBxSbQprc+z0Cizb5UqhQ+G7DKs6f//99xMREeHqUIUG0tPT8fDw0DoMcZ0cDkeJ69Cc6OYaRiMux2HyIS+sHn6pRwDYsGEDAwYM0DgqIdxfQEAAU6dOZeLEiRw/fhwdELn3R855+JAfWttl5zEU5hG9YyFGSx4A3t7eTJ48mYYNG7rsHKKkgIAA3njjDa3DEC5Wr149jh8/XiK5tjx4eXkxdOhQPvjgA1555RUWLlyIyWRCURTGjRtHQUEBffv2JTY29rL7z5w5k9mzZwOwbNkyl3Zo6dChAy1btmTPnj288cYbjB07FoCsrCwmTZoEwNNPP+2y82nJ4XCUqEpi85TP7u7ObvJF0enQKQq5ublYrVb5HCiEEEKIKqVnz55q9+HAMzvJqH0r6Fz7LEtcnV/yAfU5X0REhHSJEkIIIYQoBblirWY2bdpEQYHzornQN4yCwBiNIxLF2bwDMYc6S8ArikJ8fLy2AQlRiTRu3JgXXnhBnfdJP0nYkXWuPYniIHLPUkz5GYCzXdmECRMIDw937XmqMX9/fwYOHKjO/5hpJd+hlOkYq7JtZDqLTRMcHMz999/vyhCFRrZt28aZM2eIjIzUOhRxnQ4fPkxGhvP/p83DB3NILY0jEpeTU6wC69atWzWMRIjKxc/Pj8mTJ6sJgzrFQdTu7zDlprrk+Dq7lahdizHlZwLOjg2vvvqqJBkLcR2eeuopzGYzy5YtK/dzjRs3jqZNm7J27Vratm3L448/TocOHVi4cCFRUVHMmTPHJeeZM2cOd911F3fddRfPP/88AOfPn1eX3XXXXezatUvdXqfT8cEHH+Dv78+sWbO48847eeyxx2jXrh379++nS5cuVaaaSV5eHna78wOi3eiJYqg67cR1div+SfsIPv47/kkJ6OzWa+9UGeh02D181NnStq8UQgghhKgsOnbsiL+/PwAeBVn4XDiucUTVT9CZHep0z5490bu4aJEQQgghRFVUde6silLZsGGDOp0d3RKkjbzbyY5uiW/aCcD5evXv3x+dvE5ClEqnTp04c+YMX3/9NQDBp/6gICiW3IjGLjl+yPGN+KZdvOHzwgsvUL9+fZccW1zUo0cPli1bxvnz58l1wOpsG/2CSle9qMChsDzLps4PGjQILy+v8gpVlNHPP//M8uXLSyzLzs5mxIgRV9zHbreTlJTE5s2bATRpLS1cY9u2bep0Xo0GUqXDTZnD6qHo9OgUB8eOHSMtLY3Q0NBr7yiEICAggMmTJzNmzBjS0tIw2AqJ2vUtZ9o/isPD+/oPrCjU2P8L3lmJAOj1el566SWaNWvmosiFqF6GDBnCsWPHGDFiBMeOHeMf//gHYWFh5XIuf39/Vq5cyezZs/nxxx/56aefCA0NZejQoYwfP95lnVdOnDjB9u3bSyyzWCwlluXk5JRY37x5c+Lj45kxYwbr168nISGBuLg4nnrqKV544QWMxqpx27io4AKAw2DSMBLX8sxKJHrnYrXKPYDN5Eti6/4UBkZrGJlrOIye8Nf3ZrFYNI5GCCGEEMK1TCYT3bp1Y8mSJQAEnd6OOVyeNVUUz6xEvLKTAGeXbnnmIIQQQghROjd0x/iPP/7g999/JzExkYKCAt577z11XV5eHqmpzso9tWvXvqEghWvk5OSwZ88edT43somG0YgryQtvgEPvgd5h5cyZM5w9e5aaNWtqHZYQlcbAgQM5ceIEf/zxBwA1En6mICAKm3fgDR3XO/0UIccuDtZ46KGHuO22227omOLyPDw8GDBgAO+++y4Av2TZ6B5gxEt/7UEXa3Ns5Dqc0zVq1JAbRG5m7969LFiwoMSy/Pz8S5ZdSbNmzZgwYUJ5hCYqQPHr0LywqnHjXGe34pdyCGN+JjbvYHJrNEQxVO62zg4PL/KDa+KTfgpwvm5du3bVOCohKo+wsDBeffVVxo0bR0FBASZzBhH7fiLppoeue6Bv4Nk/CUjap84//vjj3HLLLa4KWYhqp6glrsViYerUqUydOhVfX19CQkKuuI9OpytREbgs/P39mTZtGtOmTSvTfuPGjWPcuHGl2vbDDz/kww8/LHNs9erV47PPPivzfpWJzXZxIKqiN2gYievo7NZLkowBjJY8oncu5mTnZyr9NWnx18pqrSKVmoUQQgghiunZsydLly5FURR8047jYU7H6nPlzyTCdYJOX6xm3KlTJwICAjSMRgghhBCi8riuRONTp04xbNgwtSqZoijodLpLEo07duxIQUEB69atU2/iC+3s3LkTh8OZfVUQEH3DSXeifChGE+awuvilHAJg+/btkmgsRBno9Xqef/55Ro8ezfnz5zHYConc+yNn2w2+7uqZemsBEfuWUZQa0rx5cx5++GHXBS0u0aVLF77++mtSUlLIdcDvuXbuCrj6ZYtNUVhZrJrxgw8+WGWqcFUVnTp1KjE/e/Zs/Pz8rlrRWK/XExAQQPPmzenYsaNU+a+k8vPzOXbsGAAKOvJDamkc0Y2rylXkzCF11ETjffv2SaKxEGVUp04dnn/+eebMmQOAX+oRgk5vI7NW2ZODTTkphB1ao85369aNPn36uCxWIaqj06dPX7IsNzeX3NzcK+4j16CVV/HXTqcoGkbiOn4phy9JMi5itOThl3KYnKhKXvW+irxWQgghhBBXEhkZSZs2bdQuJIFn/uRCo7s0jqrqM1jy8Du/X53v1auXhtEIIYQQQrgPpRT348qcfZOenk7fvn05e/Ys9evXp3PnznzzzTeYzeYS29WoUYPBgwfzySefsGTJEkk0dgPFK6/khdfTLhBxTXnh9dVE4127dnH//fdrHJEQlYufnx+jRo1i/PjxOBwOvDPPEHR6+3UldwCEHV6LR0E24KxGNWrUKAyGqlEJyV0ZjUb69evHp59+CsDKbBvd/A1XfcC/Lc9Oht05HRgYKIlxbqhTp04lko1nz56Nr68vY8eO1TAqURGOHj2qDniz+IXj8PDSOKIbU9WryOUHx6rTR44c0TASISqv2267jXvuuYdly5YBEHrkV/JC62L1Cyv9QRx2Ivf9iN7hvMCpXbs2//rXvyThUYgbVPR3KaoHL6+L1506e9WojGvMz7ih9ZWBvthr5e3trWEkQgghhBDlp3fv3mqiccC5PaTVux3FaNI4qqot4Oxu9T5LgwYNaNiwocYRCSGEEFfmcDjQ66+vmJ4QZVWUaHy1Z1BlTjR+++23OXv2LPfeey+ffvopRqORn3/++ZJEY4BBgwbxySefsHnz5rKeRpSDAwcOqNPmkNraBeJCVbFdNZR8fQ4dOoTdbpekRiHKqHHjxjz00EN88803AIQeWU9ujUZlrubunXaSwHO71fnhw4cTGhrq0ljF5XXr1o0FCxZgNptJtirsL3DQzPvK/wvX5tjV6V69emEyyQ05IdzF8ePH1emCwCgNI3GNql5FrtA/EgUdOhTOnDmDxWKR/6lCXIchQ4awb98+Tpw4gd5hJ2L/cs62+yeUMlE4+ORmPHNSADCZTLz00kvytyiEC/y9y4ao2oonqRpsBc5KuZV8wIbNO/iG1lcGeluBOi2JxkIIIYSoqm666Saio6NJTEzEYCvAP2kf2TVv1jqsqsvhIPDsn+ps7969NQxGCCGEuDIPDw+sViuFhYVyX0RUGIvFAnDV/MQyp73/8ssv6HQ6pkyZcs125DfddBMeHh6cPXu2rKcRLpaTk0NSUhIADp2BwiqQ4OGZlUjtDR8QufdHwo7+RuTepdTe8AGeWYlah3bDbN6BWD39ASgoKODMmTMaRyRE5dS/f3/i4uIA0DushB9cXbYDOOzUOLBCnb3tttu47bbbXBmiuApvb2/uuOMOdX59sUTiv0u2OjhU4KyWqtfr6d69e3mHJyqR3NxcJk6cSKtWrYiIiKBp06aMHDmS1NRUlxz/1KlTvPvuu/Tr148WLVpQo0YN6tWrR//+/Vm9+sr/d4KCgq76VTw5t7JLTLx4fWbxC9cwEteo6lXkFKNJHZijKArJyckaRyRE5eTh4cELL7yg3pTxzjxLQLEBbFdjNGcQcnyjOj948GBiY2OvsocQQojL8fT0xN/feY9NpzgwXGGwWGWSW6MhNpPvZdfZTL7k1qjcVdn01gIMtkLAOdCm6PUTQgghhKhq9Ho9vXr1UueDTm93DowT5cIv9bDavTQwMJCOHTtqHJEQQghxeT4+PgBkZGRgNptxOBxqtVkhXE1RFGw2G1lZWcDVB/2XuaLxmTNn8PX1pVatWtfcVq/X4+fn57IkDnH9Tp8+rU5b/MJQ9GV+6d1KVW9XDVAYEIlHag7gTGCqXbu2tgEJUQl5eHjwzDPPMHbsWMB5E8E77QT5oXVKtX/QmR2YzOmA82LuySefLLdYxeV1796d5cuXA7DdbMfsUPDRX1p96vfci0nIbdu2JSQkpMJiFNcvI6P8kzFzc3Pp0aMHCQkJxMXF0bt3b/bv388XX3zB6tWrWbNmDVFRNzYA65lnnmHjxo14e3vTpk0bbrnlFk6dOsXq1atZvXo1I0eOZPLkyVfc/+GHH77s8qr0QP38+fPqtLUKVFirDlXkLD7BeORnApCcnKwO3BFClE3t2rW5//77+fbbbwGI2L+c8ENrUHRXH/dtKFbJsW7duvTt27dc4xRCiKosPDycnBznPTYPcwZ2Tz+NI7oxisGDCw26EpHwE8U/HSvAhQZdK/09UWN+ljodFhZ21XaNQgghhBCV3Z133slXX31FQUEBnnkX8E4/WepnWKJsAk9vV6e7d+8uXaOEEEK4LT8/PwoKCigsLCQtLU3rcEQ1YjAYCAgIuOL6Mmebenl5kZeXh91uv2qpZACz2Ux2djbBwZX/QXtlV7KKXJiGkbhGVW9XDX+9TqlHgJKvnxCibBo3bkzXrl359ddfAQg7vI4ztz5+zVapemtBiSpyAwYMkORVDdSuXZs6depw4sQJrAr861QBzbwuTcxJ+KuaMUDXrl0rMkTh5mbOnElCQgJ33nknixYtwmQyoSgKw4cPZ9GiRYwZM4Yvv/zyhs4RExPDm2++ycCBA/H1vVhZbOXKlTz88MO8/fbbdOnS5Yq/mx9++OENnb8yyM7OVqdtnpevvlaZFFWRu9z1aFWoIgdgL1YlrygxRwhxfR566CF+/fVX9Yag3m4p0/7Dhg275v0XIUTZ2e12fvnlF9asWcPBgwfVQXDBwcE0btyYu+66i169esnfXxUQGxurdgvxzEmhILimxhHdGJ3dStiRX/n7XQ0dEHbkV3Ijm1TqZGPPnIuDFGvWrNyvlRBCCCHEtfj6+nLnnXeqBVeCTu+QRONyYMo5j0+GszCbwWCgZ8+eGkckhBBCXJlerycsLIzc3FzMZjM2m00qGotypdPp8PLyIiAgAL3+yoVyypxo3KRJE7Zu3crmzZvp1KnTVbf9/vvvsdvttGjRoqynES6Wnp6uTtu8AjWMxDWqertqAJvnxRECxV8/IUTZ/eMf/2Djxo1YLBa8cs7jl3KI3IjGV90n6NQfGKz5AERERNCnT5+KCFVcRufOnTlx4oQ6Xzyp+O98fHxo06ZNRYQlKoGCggK++OILAObMmaNWKNDpdMyaNYslS5awbNkyzp49e0Pt6D/++OPLLu/Rowe9evXi559/5ptvvqnWSfB5eRcTch0eXhpG4hqKwYPE1v0v6bBhM/mS2Lp/pU7sKGIv9joVf/2EEGXn5eXFiBEjmDNnDgUFBdfe4S96vZ57772Xxo2vft0qhCi7hIQEnnzySQ4dOgRwyY36P/74gy+//JJGjRrx2Wef0bRpUy3CFC5St25dfvvtNwA8s5M0jubGVfUCDF45yep03bp1NYxECCGEEKJi9O7dW0009k09jNGcgc1HCrm5UlCxasa33XYboaGhGkYjhBBCXJterycgIOCq1WWFqGhlTjR+6KGH2LJlC+PGjWPp0qVXrO64detWJkyYgE6n46GHHrrhQMWNKV5Fzm7y0TAS16gO7aqLv07FXz8hRNmFhobSp08ffvjhBwCCj28kt0ajK1Y11tkKS9x0ePjhh/HwqPxJY5VV165dWbJkSan+F/bq1UvaXQnV5s2bycvLo3HjxtSvX7/EuqCgIDp27MjatWtZu3YtQ4cOLZcYis6bkpJSLsevLByOiwMEFN2VR0FWJoWB0Zzs/Iwz0SM/A5t3MLk1GlaJJGMAir1OxV8/IcT1ufnmm/nf//5XpkRjDw8PPD09yzEqIaqn5ORk+vXrR3p6OiaTiTvuuINWrVqpD5rT0tLYvXs38fHxHDx4kH79+vH7778TGRmpceTiejVo0ECdLqpiVplV9QIM3umn1OmGDSt/pxAhhBBCiGuJjY2ldevW7Ny5Ex0QdGYHFxrdpXVYVYbBkod/0j51XgoLCSGEEEJcnzInGj/66KMsXLiQHTt20LlzZx588EHy850VH1euXMm5c+dYt24dK1aswG63c8sttzBo0CCXBy7KxmK52JrVoS/zy+52qkO7akexJBWr1aphJEJUDffeey8///yzWtXYO/3kFdtPBZ7bjcHmTAKJioqic+fOFRmq+Jvg4GA++OADjh07dtWWIAEBAdSpIy3FKpP09HTWr1+Pl5cXvXr1KrFu165dTJo0iV27dmE0GunWrRuTJ08mOjq61MdPSEgAoFmzy1fzat68OWvXrmX//v3X/01cw+nTzkSGq1VMfu+99zh+/DgGg4FGjRpxzz33EBERUW4xaaF4ixVdFUpaVQwelbpa3FUpF1+nq7XIEUKUntFoxM/PT+swhKj25s2bR3p6Oi1atOCrr76iZs2al93u9OnTDB48mISEBN58803mzJlTwZEKV2nYsCFeXl4UFBTgkZ+JhzkDayWuEFeVCzAYCnPxzE0FnO+bTZo00TgiIYQQQoiK0bdvX3bu3AlAwLndpNXrjGKUwceuEHhmJ3qHHXAOQmzUqJHGEQkhhBBCVE5lfmJsMBhYvHgxXbp0ITExkffee4/c3FzAWfHxpZde4ueff8Zut9O5c2cWLlwoD6bdzOXrd1YuRe2qbSbfEsurUrtqHVdOphNClF1QUBB33XVxBHjxisUlKAqBxdbdd999GAyG8g5PXIOfnx+tWrXipptuuuJX3bp10V2hSrVwTwsWLOCJJ54gPj6+xPKTJ0/Sr18/NmzYQHZ2Nunp6Xz77bf06tWLrKysUh8/MTERQK0+t2TJErp27crnn39eYvm5c+dc8N1c6ty5c6xcuRKABx988Irbvfrqq8yfP59PPvmEl156iVatWvHpp5+WS0xa8fW9eM2mt5W+mqfQjsF68XUq/voJIYQQld2aNWvQ6XR88sknV0wyBoiLi+Pjjz9GURRWrVpVgREKV/Pw8KB58+bqvO/5QxpGc+OKCjBcTmUvwOB3/qA63aRJE7y8vDSMRgghhBCi4rRu3ZqYmBgADLZCAs/t1jiiqkHnsBF4Zoc637dvX3mOJIQQQghxna6rtG1wcDBLlixh5cqVfP3112zfvp3UVGelgbCwMNq0aUP//v3p3bu3XKi5CW9vb3VaZ7NcZcvKo6q3qy7+OslNdSFco0+fPixfvhwAv9QjNFg145Iq73qHTZ329fXljjvuqMgQhahWVq9eDXBJ94uPP/6YnJwcGjRowLvvvovZbOaVV17h2LFjvP/++4wfP75Ux8/Lc3Y+KLoOmjNnDvv37+fo0aM89thjavJk0XaupCgKL774ImazmZ49e3L77bdfss0jjzzCwIEDadSoEf7+/hw/fpxPP/2UL7/8kpdeeonw8HDuvffeMp33q6++YsGCBaXadubMmbRs2RKz2VxuydZFTCaTOm0syKYwsPSVqYU2jAXZ6rTZbObIkSMaRiOEEKKqiYmJwcfHR5NzJyUlERAQUKoqVk2aNCEwMJDk5OQKiEyUpw4dOrB9u3NQsf/5/WTWuVXjiK5fUQGG6J2LS3R7qwoFGPyTD6jTHTp00DASIYQQQoiKpdfr6du3Lx999BHgLJaTGdcWdFLQ7Ub4Je1Xr5lDQkK47bbbNI5ICCGEEKLyuq5E4yI9evSgR48eropFlCN/f3912mjJ1TAS16rK7aqLPygICAjQMBIhqo6YmBhatGjB3r171WXFE4v/rmvXrnh6SmsqIcrL8ePH8fDwoFWrViWWr1q1Cp1Ox5tvvkn79u0B+OCDD+jevTvLly8vdaKxopTsDjBgwADeeOMNBg8eXGJ9eQyMmzt3LitXriQuLo4PPvjgstv8fXmLFi145513iImJYcaMGUydOrXMicanT59m48aNpdo2Ozv72hu5SGhoqDptMqfj+tRu4Womc7o6Xfz1E0IIISo7b29vzGYzhYWF1/y8V1hYiNls1iwpWrhO+/bt+fDDD7HZbHhlJ2PKScHiX0PrsK5bVSzA4JGXjnfmGcCZaCNJIEIIIcTlORwO0tPTyc/Pv2qHDlH53HnnnSxYsICcnBw88jPxO3+I3MgmWodVeSkKwae2qrN9+vTBw6PyXi8LIYQQQmjthhKNReVR1BocwMOcoWEkorSKv07FXz8hxI0ZMmQI06ZNIysr66rbxcTE8MADD1RQVEJUTykpKfj5+aHXX6zKkJWVxfHjxwkPD6dTp07q8nbt2mEymTh58mSpj+/n5wdAfn4+ACNHjmTkyJHqerPZDODyxJGFCxcyY8YMgoODWbx4MSEhIWXaf/jw4cyZM4djx45x6tQpatWqVep94+Li6NixY6m2LRrI5OPjQ4MGDcoUY1m1bNlSTYD2ykoq13OJG2coyMFY6BycaDKZaN++PQaDQeOohBBCCNdo1qwZmzZt4pNPPuHZZ5+96rYff/wxVquVFi1aVFB0orz4+flx66238vvvvwMQeOZPUpv21DiqG1PVCjAEnt2pTrdp04agoCDtghFCCCHc0Lp163jvvffYsmULBQUF6HQ60tLS1PUnTpxg1qxZ6PV65s6dq3ZzE5WHp6cnPXv2ZPHixQAEndpKbkRjkA7S18Un7QSeuc6u3J6enlJATwghhBDiBkmicTURGxurTntmS7vHyqD46xQTE6NhJEJULQ0aNODzzz/HarVedTuTyVQuVU6FEBd5eXmRlZWFzWbDaHRelv7xxx8oiqJWMi7O29sbi8VS6uNHR0cDXLHVddFyV77Prly5kueeew4fHx8WL15cqpbcf+fv709oaCjnz5/n/PnzZUo0Hjx4sFqx2Z0U/zl4ZZ4BRZEb5G6sqJIcON83JclYCCFEVfLoo4+yceNGJk2axMmTJ/nHP/5BixYt1Pc7u93O3r17+e9//8sXX3yBTqfj0Ucf1TZo4RI9e/ZUE40DEveSVv92HCapVu0O9LZCAs7tVud79qzcSeBCCCGEq02fPp158+Zd0sGtuDp16nDkyBF27drF7bffzsMPP1yBEQpX6d27Nz/88AM2mw3vrES8Ms5QEBKndViVUvDJLer03XffrRYmEUIIIYQQ10d/7U1KCg4OpkmT0rfo6Nq1q7TadQNxcXFqO0iPwhyM+Vev5Cm0pbNb8cy5mBTVsGFDDaMRourR6/V4enpe9UuSjIUof02bNsXhcPDdd9+pyxYtWoROp+PWW28tsW1WVhbZ2dllqvLfrJmzuldCQsJl1+/bt0+NwxU2b97Mo48+isFgYMGCBbRt2/a6jmO1WtVqJFWlTXfNmjXVCspGixnPbKlq7M58U4+q082bN9cwEiGEEML1HnroIR5++GEcDgfz58/nzjvvJDIyknr16lG/fn0iIyO58847+fzzz3E4HDzyyCM8+OCDWoctXKBZs2bUrl0bAL3DStDpbdoGJFSBZ3ZgsBUAzgGjrVu31jgiIYQQwn2sWrWKuXPnEhgYyPvvv8+hQ4eoUaPGZbd94oknUBSFlStXVnCUwlWCg4O544471PmQYsmyovQ8s5LwST8JOJ8J3nPPPdoGJIQQQghRBZQ50Ri46mhJV2wvXM9gMNC4cWN13vfCMQ2jEdfik34SvcMOOKtRBwYGahyREEII4XoDBw5EURSef/55Hn74YXr27Mn333+Ph4cH999/f4ltf//9dxRFoUGDBqU+focOHfD19eXgwYMcO1by2iczM5ONGzei0+no1q3bDX8ve/bsYeDAgdhsNr744gu6dOly3cdat24dNpsNPz+/KjPYyGAwlEi89k8+oGE04mp0diu+qUfU+VtuuUXDaIQQQojy8cEHH/Dee+/RuHFjFEXBZrORnp5OWloaNpsNRVFo3Lgx77//Pu+9957W4QoX0el0PPTQQ+p80Ont6C1mDSMS4KxmHHTyD3X+wQcfRK+/rscWQgghRJX00UcfodPpmDdvHo888sgVk4wBevToAcChQ4cqKjxRDu6//361GI7vhaOYclI0jqjyCT6xSZ3u1KkTERERGkYjhBBCCFE1lPsdu2u1phcVp127duq03/mDGkbiOjq7Ff+kfQQf/x3/pAR09qrx++Z3/uINgOuthiiEEEK4u6FDh3L//fdjsVhYsWIFW7duxWAwMHXqVKKiokps+8033wDObhml5eXlxdChQwF45ZVXsFgsgHMQ3Lhx4ygoKKBPnz7ExsZedv+ZM2cSFBREUFAQGzZsuOJ5jh07xoMPPkheXh4ff/wxvXr1umZsCxcu5MCBS5Ntd+3axUsvvQTA448/jslkuuaxKouOHTuq0/6Je+GvQVXCvfilHMJgKwQgMjKSunXrahyREEIIUT4GDx7Mpk2b2LdvH9999x2ffvopn376Kd999x379u1j06ZNPPLII1qHKVysQ4cOxMTEAGCwFRJSLAFBaCPo5BaMVmfCd3h4+A0N2hRCCCGqoj///BOdTkffvn2vuW1YWBj+/v6cO3euAiIT5SUmJqZEx7+QExs1jKbyMeWm4pdy8Vn734uaCCGEEEKI62Msz4MXFhZy+vRp/Pz8yvM0opTat2/PZ599hqIo+KSfxJific07SOuwrptnViLROxdjtOSpy2wmXxJb96cwMFrDyG6M3laIX7Eqf7fddpuG0QghhBDlR6fTMX/+fJ566im2b9+Ot7c3nTt3plGjRiW2s1qtxMXF8fTTT5fqhnpx48aNIz4+nrVr19K2bVvatm3L/v37OXjwIFFRUcyZM+eGv49HH32U1NRU4uLiWLVqFatWrbpkm9DQUKZNm/b/7N13eJRV+sbx78yk95BACIHQpfcEgdBRutJFpAkqCCJio6qsu7oUe9f9uYqsgKugdEVFUEQQkJ4QpEPoEJKQBsnM/P7IZjTSUiZ5U+7PdXEt5y1zblwNz8w87zmO8YoVKxg3bhzVq1enfv36uLu7c+TIEXbt2oXNZuOOO+7gmWeeKXC24qRp06YEBQVx8eJFXDJS8T2zj8uVGhodq0BM1gx8zu3/X10dSHKF27BbXI2OlX92OwHHtjmGXbp0cayeIiIiUlqFhYU5Gk+l9LNYLAwbNow5c+YA4H/8NxKrtCDDK9DgZGWTS3oSgUd/dYyHDh2Ki0uhfmUhIiJS4qSmpuLt7Z3rBQlsNluBdhtOTk5m7ty5LFu2jDNnzhAUFETXrl2ZMWMG5cuXz/frZtuwYQN33XXXDc9XqlSJmJiYAs9T0g0aNIhNmzYB4HNmH64125HhHWxwqpIh8MgvZH+iGRkZSfXq1Q3NIyIiIlJa3PJTu6SkJBITE3Mcs1qtxMXF3fBNitVq5fTp07z//vtcvnw5xxN3Ypzy5cvTtGlTduzYAUDA8d+4UKfgW4UbwWTNuKbJGMDlagqVdnzB0XbjS2yTh+/J3ZhtWSszh4eH52mLeBERkZKodevWtG7d+obnXV1d+cc//pGv1/b19WXNmjXMmTOH5cuXs3LlSoKCghg5ciTTp093ypZpCQkJABw/fpzjx49f95oqVarkaDQePHgwFouFvXv3snHjRpKTk/Hx8SEqKop7772XIUOGlLrtgi0WC926dWPhwoUABB7dxOXQBlBCG1lL40NvnvHH8Eg6BWT9d3fHHXcYnEhERETE+Vq1akXdunWJjY3FbLdSft8aTjUfXGLr0pIsOPY7zLZMAKpXr0779u0NTiQiIlL8hISEEBcXx4ULFwgOvnmjaWxsLCkpKfn+bjE5OZlu3boRHR1NeHg4PXv2JCYmhnnz5vHdd9/x/fffX7MTXX5VqFCBLl2u/Z46MFAPgAHUqFGDFi1a8Ntvv2ECyh3eyNlGfYyOVey5plzE9/QfjeqDBg0yMI2IiIhI6XLLRuN33333mpXeLl68SOPGjW/54tmNyA8//HA+44mzde/e3dFo7B+3g/gabbC5ehqcKu98zv1+TZNxNperKfic+z2rcaWksVkJPPbHKh7du3fXKnIiIiIF5OvrywsvvJCj0Tc3pk2bxrRp02553Z49e/KcqU+fPvTpU/Y+GO7Zsydffvkl6enpuCefx/dMNJdDS96qxqXyoTe7naCDPzqGXbp00Rc7IiIiwNKlS0lLS2PIkCFGRxEnMZlMPPDAA0yePBm73Y73xcP4nNtPckhdo6OVKV4XDuH7py2tH3zwwVL3sKWIiIgztGvXjkWLFvHBBx8wY8aMm177/PPPYzKZ6NChQ77mmjVrFtHR0XTu3JnPPvsMNzc37HY748aN47PPPmPKlCnMnz8/X6/9V7Vr1+a9995zymuVVoMHD+a3334DwPd0NPHVo8jwMX5V4+K8y1u5Qz9jIqtHpVmzZtx2220GJxIREREpPW75yZ3dbs/x63rHrneNn58fUVFRzJs3r0w2URRXkZGRVKlSBQCz9SqBRzYbnCh/XNIuFeh8ceUftwPX9KSs3/v7X/dJXhEREZGSysfHh969ezvGQQd+xGTNMDBR/uTmobeSxufsPjwTTwLg4uJCv379DE4kIiJSPEyZMoUJEyYYHUOcrHbt2nTr1s0xLr9vDeaMNAMTlS3mzCtUiPnaMe7UqRMNGpTARSNERESKwGOPPYbFYuG1117jlVdeISkp6Zpr9u7dyz333MM333yDq6sr48ePz/M86enpzJs3D4C5c+fi5uYGZD2kNXv2bDw8PFixYgVxcXEF+vNI7t122200b94cABMQdOgnYwORtctbtQ3vUnHPcoIP/kTFPcuotuFd3BNPGR0Nt/8tbJFt8ODBBqYRERERKX1u2Wg8bdo0Ll265PgFWVu0/PnYX3/Fx8dz9OhRVq5cqSbjYsZsNnPPPfc4xgHHt+CSlmhgovzJ9Lz56mq3Ol8cmTPSKXdog2Pct29f3N3dDUwkIiJSdLZs2cKrr77KU089dU0jR0pKCkePHuXo0aPGhBOn6tevH35+fgC4pidS7vBGgxPlXWl76M2ceYXy+793jHv16kVISIiBiURERIqX7IUVpHQZNmyYYwcHl6splI/91uBEZUfw/rWOxRZ8fX0ZOXKkwYlERESKr9tuu43XX38du93Oiy++SK1atbh48SIAHTt25LbbbqN9+/Z89913mM1mXnvtNapXr57neTZt2kRKSgp169alVq1aOc4FBAQQFRWF3W5n7dq1TvlzSe7cd999jt/7no3FPem0YVlutcub0QtKBB34kex9glu0aEHdutqxRERERMSZtBdZGRQVFeV4g2i2WbM+RC9hX5gkV7iNTDfv657LdPMmuULJ2wYl6MB6XP63ckr58uXp1auXwYlEREQK37Fjx+jWrRvdu3fnhRde4N///jcLFy7McU1KSgpRUVG0aNGCXbt2GZRUnMXb25thw4Y5xoFHN+N2+ayBifKutD30FnRgHS5XkoGsL44GDRpkcCIRERGRwufj48O4ceMcY7/T0ficiTEwUdngfe4A/id3OsZjx44lICDAsDwiIiIlwdChQ1m+fDmNGzcmIyMDq9WK3W5n165dnD9/HrvdTqNGjfjqq69yNKbmRXR01kqwN9ploGHDhgDExDinXrpw4QKzZ8/mscceY8aMGSxZsoT09HSnvHZpUqtWLVq1auUYB/++zrAsxXmXN4+EOHzO/zH/0KFDDcsiIiIiUlqp0bgMMpvNPPjgg46xz/kD+JzdZ2CivLNbXDnVbNA1zcaZbt6cajYIu8XVoGT543HpBP5x2x3j+++/37ElkYiISGkVHx9P79692bJlCzVr1uT+++/H2/vaB4kqVKjA0KFDsdlsLF26tOiDitPdcccd1KtXDwCT3UbFPcsx2TINTpV7pemhN68Lhwk48UcdOnr0aHx8fAxMJCIiIlJ0WrZsSceOHR3jCjFfl8jd30oKy5VkKkSvdIxbt25NVFSUgYlERERKjqioKNavX8+vv/7KO++8w9/+9jdmzpzJ22+/zaZNm/jpp59o3759vl//1KlTAFSsWBGApUuX0qlTJz7++OMcx0+ePFnAP0mW/fv3M3v2bD755BPeeecdHnjgAZo1a8amTZuc8vqlydChQzGbs9o6vOKP4nXhsCE5iu0ub3Y7wb//4Bi2a9eOGjVqGJNFREREpBRzyesNU6ZMuW4DiJQsdevWpVu3bqxZswaACvvWkBZQBauHr8HJcu+KfyWOthuf9fRk2iUyPQNJrnBbiWsyNmdeoeLeFY6tXCIiImjTpo2hmURERIrC66+/TlxcHH369OHDDz/ExcWFVatWkZqaes219957L//3f/+nD5pLCbPZzIQJE3j88ce5evUq7snnCfr9By7U7Wp0tFzJfujtr1sFlrSH3ixXkgn5U6NHy5YtadeunYGJREREnKtcuXJA1nbTmzdvznEst+x2OyaT6dYXSon10EMPERMTw7lz57BkXqHinmXERQwFs8XoaKXL/x4wzN7RLSgoiHHjxum/LxERkTy67bbbuO025z/knpKS9RmXp6cnAHPnziUmJoaDBw8yatQoR39A9nX55efnx+OPP06fPn2oVq0aAHv37mXWrFls3LiRwYMH89NPPznO5caCBQuu2SXvRmbNmkXjxo1JTU11WtN0UYiMjOTXX38FIPj3tRwvVw3MRbumXHHd5c3nbCyeCXEAWCwWoqKiOHDggCFZREREbiUsLAwvLy+jY4jkS54bjadOnVoYOcQAI0aMYPv27Zw/fx5LRhoV9y7nZIshYCo5C13bLa5cDr3+Fj4lgt1O+X1rcE1LAMDLy4uxY8fqA3YRESkTvv76a0wmE88//zwuLjcvS5s2bYqrqytxcXFFlE4KW1hYGPfffz//+te/AAg8vo30wHCSQ+oanCx3SvxDb9mNHleSAfD392f8+PGqQ0VEpFSx2+05/vevvxcB8Pb25oknnmD69OnYbDY8E+IIPrCeC3W6GB2tVCl3aANe8UcBMJlMPPbYY/j5+RkbSkRERBz+Wiffc889vPTSSwwdOjTH+YJ+dtSkSROaNGmS41jbtm1ZsWIF/fv3Z/369bz66qu8+eabuX7N48ePs3Hjxlxdm5SUlKe8xUXXrl3ZsWOHY9EG/5M7SazSvEgzZO/y9ueFF7IZtcubyZqZYzXjNm3aEBQUVOQ5RERERMqCPDcaS+nh7e3NY489xrPPPovdbscr/hjlDm0gvlYHo6OVGX5xO/A7vdcxHjduHOXLlzcwkYiISNE5ceIE3t7eVK1a9ZbXms1mfHx8OH/+fBEkk6LSo0cPdu7cyZYtWwAI2buSq95BXPUpGfVQSX7oLejA+hyNHpMmTSIgIMDQTCIiIs62a9cuAFxdcz4IFBwczNq1a295v91up0uXLsTHxxdKPik+6taty7Bhw5g/fz4Agcd+JS0gjJQS8hBcced1/hDlDv/R/DNo0CAaN25sYCIRERH5Kx8fHwDS0rJ2H5g0aRKTJk1ynM/eha6wVuAzm8088sgjrF+/nnXr1uXp3vDwcKKionJ1bfaDTl5eXtSuXTvPOY00cOBAx8rNQQd/5HLFethcPYts/uK4y1vAsc24picC4Ovry9ixYx3/LouIiIiIcxXrRuPk5GTmzp3LsmXLOHPmDEFBQXTt2pUZM2YUWjPm6tWrue+++wCYOXMmjz/+eKHMU1w0bNiQQYMG8fnnnwMQdHgjV/xCSTHgicOyxiPhJOVjv3OMO3furK2qRUSkTPHw8CAlJQWr1YrFcvNtiVNTU0lKSiIw0Jjt16RwmEwmJk6cyJNPPsnZs2cxW68SuuMLTtx+PzY3bRtUWHxP7aXc0c2O8aBBg2jWrJmBiURERApHeHj4dY9bLJYbnrvetVI29O3bl5iYGLZt2wZAxb0rOVGCHoIrrlxT46m4ZxnZax82btyYwYMHG5pJRESkJJkzZw7e3t5MmDAhV9fPnz+f06dPM2XKlDzNU6lSJQDOnDlz3fPZx8PCwvL0unlRrVo1AM6ePZun+4YOHepYebk069OnD999951jt+Kggz9yvl73Is1QnHZ5c0lLpNzhXxzjIUOGqMlYREREpBCZjQ5wI8nJyXTr1o0333wTu91Oz5498fX1Zd68eXTs2JHTp087fc7ExESefPJJp79ucTd48OAcW9RU3LMMt8vnDExU+rmkJRK6czFmuxXIeuM8duxYg1OJiIgUrXr16mG1Wtm0adMtr/3yyy+xWq00atSoCJJJUfLx8WHatGl4eHgA4JaWQKWdizFZMw1OVjp5xB+nQvQqxzgyMpJ7773XwEQiIiIixYPZbOaxxx4jJCQka2y9SujOJZgz0g1OVnKZMq8QumMxlsysf4ZBQUE88cQTauAXERHJg9mzZ/P222/n+vqPP/6YOXPm5HmeBg2ydu2Kjo6+7vm9e7N2aK1fv36eXzu3Tp06BRTeqsklnbu7Ow888IBj7H9iB+5Jzu+ZuJXsXd4u1WjL5dAGhjQZA5Tf/x1mW9ZnyNWqVaNbt26G5BAREREpK4pto/GsWbOIjo6mc+fObNu2jY8//pjNmzdz7733cvLkyTw/hZkbM2fOJCUlhS5dujj9tYszi8XCk08++acP0TOotONzLOmXDU5WOpkz0qm043PHljK+vr5MnToVd3d3g5OJiIgUrYEDB2K325k2bdpNt6P+9ddfmTFjBiaTiYEDBxZhQikq1apVy7EVo2dCHCHRK8BuNy5UKeSafIFKf3rYrUqVKjz++OOYzcX2baGIiIjTzZw5M08LDdhVj5Qpvr6+TJs2zfE5nVtqPBV3fwU2m8HJSiC7nYp7luOecgEAV1dXpk6dSkBAgLG5RERE5Lpat26Nt7c3sbGxHDp0KMe5hIQENm7ciMlkKtTv0b///nsAmjdvXmhzlHS33367Y2cyE3YqxHwD9rJXq3qdP4jPud8d4zFjxuhhNhEREZFCViy/UU5PT2fevHkAzJ07Fzc3NyBra+XZs2fj4eHBihUriIuLc9qcP//8M5988gnPPPMMFSpUcNrrlhR+fn7MmDEDT09PAFzTkwjb/l+t2OFsNiuhu5bgnnweyGrynjJlChUrVjQ4mIiISNG7//77adGiBXv37qVdu3Y899xzpKWlAbBmzRo++ugjhg0bRq9evUhKStLKq6Vcq1atuP/++x1j3zP7KB/7rZqNncQlLZGw3xY5VpMLCAjgmWee0QoxIiJS5kyaNImHHnoo19fPmTMnTyvISclXrVo1Jk6c6Bh7XzxC+d+/NzBRyRR0YD0+5w84xuPGjaN27doGJhIRESkb4uPjcXXN+wqzHh4ejBw5EoDJkydz9epVAMdCEenp6fTq1YvKlStf9/5Zs2YREBBAQEAAGzZsuOE8b7/9NufOXbuz7pIlS3jvvfcAePjhh/Ocv6wwmUyMGTPG8f+xR9Jp/I//ZnCqomXKvEqFfd84xl26dCnUlbZFREREJEuxbDTetGkTKSkp1K1bl1q1auU4FxAQQFRUFHa7nbVr1zplvvT0dB577DEaNWqUY7uRsiY8PJzJkyc7nvZzTz5H6M7FmKwZBicrJew2Ku5Zhlf8McehCRMm0LBhQwNDiYiIGMdisfDFF1/QoUMHTp06xdtvv01ycjIAQ4YM4amnnmLVqlVYrVbatWvHokWLtPJqKdenTx969uzpGAec+I1yh382MFHpYLmaQtj2z3C9krVjiYeHB88884xjRxMRERG5sX79+nHfffcZHUOKWFRUFIMHD3aMA45vw//4NgMTlSx+J3dR7ugmx7hv37507tzZwEQiIiJlw9atWzlx4kS+FziaNm0a9evXZ+3atURERDB69Ghat27NokWLCA0NZe7cuQXOOHfuXOrVq0eHDh0YNWoUw4YNIyIiggceeIDMzEymTp1K165dCzxPaRYaGppj57/gg+txSUs0MFHRCjr4I67pSUDWjiTZDfIiIiIiUrhcjA5wPdHR0QA0aNDguucbNmzI2rVriYmJccp8s2bN4vDhw3z77bdlfkuNZs2aMWHCBN544w0AvC4dp+KurzjddACYy/Y/mwKxZ21d43s21nFo6NChdOrUycBQIiIixgsMDGTp0qWsWbOG//73v2zbto3z57NW/g8ODqZFixYMGjSInj17YjKZDE4rhc1kMvHAAw+QlJTEzz9nNRgHHdqAzeJKQrVWBqcrmcwZaYT9tgi3lIsAuLi4MHXq1Gse6BQREZHCkZyczNy5c1m2bBlnzpwhKCiIrl27MmPGDMqXL++0edavX89rr73Gjh07sNls1K9fn4cffpj+/ftf93q73c5//vMf5s+fT2xsLFarlWrVqtGvXz8mTpyIh4eH07KVVIMHD+bEiRP88ssvAJSP/Y4Mz0BSy9c0OFnx5hl/lAoxXzvGERERDB8+3MBEIiIiJcuqVatYvXp1jmNJSUk88sgjN7zHarVy+vRpNm3KetCnS5cu+Zrb19eXNWvWMGfOHJYvX87KlSsJCgpi5MiRTJ8+3SkPrT/++OOsX7+eQ4cOcfjwYdLS0ggODqZPnz489NBDtG3btsBzlAX9+/fn559/5sSJE5itGVSI+ZpTzQdDKf8M3SMhjoDjWx3j0aNH4+fnZ2AiERERkbLDlJCQUOz2Ip4+fTrvvvsujzzyCC+++CJLly7ljTfeYMSIEYwaNYr33nuPadOm0bt3bz799NMCzbVr1y66dOnC0KFDHc2148aNY9GiRcycOZPHH388T6+3YMECFi5cmKtrZ82aRePGjUlNTeXkyZN5zl6Y1q9fz6pVqxzjyyF1OdOoL2gVwbyz2wne/z2Bf3rT07ZtW+6++241TImIiKHCwsLw8vIyOobINTIyMvjnP//Jjh07HMfO1e1KYniEgalKHnNGOmG/fYZH0qmssdnMk08+SVRUlMHJREREyobk5GS6detGdHQ04eHhtGjRgpiYGPbv309YWBjff/89oaGhBZ5n4cKFPPLII5jNZjp06IC7uzvr1q0jPT2d6dOnM3ny5GvuGT9+PAsXLsTDw4PIyEi8vLzYsmULly5dIjIykuXLl+Pp6VngbCXdlStXeOaZZzhw4AAANosbJyKHc9VPO0Ncj2vyBapsmY8lMx2AatWqMWvWLP27JCIikgezZ89mzpw5+b6/QYMGLFu2jKCgICemkuIoNjaWadOmYbdntXucadCby2GNDU5VeEzWTMI3/9uxoEKzZs147rnn9H27iIiISBEplisap6SkADg+gJw7dy4xMTEcPHiQUaNG4e3tneO6/MrMzOTRRx/Fz8+PmTNnFiz0/xw/fpyNGzfm6tqkpCSnzFkYOnbsSFpaGj/88AMAvmdjsZtXcLbhXWBSs3Gu2e0EHViXo8m4RYsW3HXXXXrTIyIiInIDrq6uTJ06lb///e+O3U4qxH4LmEgMb2FsuBLCnJFOpe1/NBkDTJgwQU3GIiIiRWjWrFlER0fTuXNnPvvsM9zc3LDb7YwbN47PPvuMKVOmMH/+/ALNce7cOZ566inMZjNffvklHTp0ALJ2jOvatSuzZs2iZ8+eNGzY0HHP119/zcKFCwkICGDlypWOcxcvXmTQoEFs3bqVt95667oNymWNu7u7o1n7/PnzmK1XCdvxX07cfj+ZHlo57c8sV5IJ2/5fR5NxYGAgzzzzjJqMRURE8uivK/rOmTMHHx+fm65obDab8fPzo2HDhkRFRek7yDKibt269OrVi5UrVwJQfv93pAVVK7V1arlDPzmajD08PBg3bpz+XRcREREpQsWy0Tj7qbts99xzDy+99BJDhw7Ncb6gheNbb73F7t27efPNNylXrlyBXitbeHh4rr+8z97Gw8vLi9q1aztlfmeqVasWXl5ejjcnfqejARNnG/ZWs3Fu/K/JuNzRzY5Dbdq04cknn8RisRgYTERERKT4c3d355lnnuFvf/sb+/fvB6BC7BoANRvfQlaT8X/xTPyjyXjcuHF07tzZwFQiIiLFQ2BgIBUrVmTfvn25ur5Tp07s3r2bixcv5mme9PR05s2bB2QtouDm5gZkfZ45e/Zsli5dyooVK4iLi6Ny5cp5eu0/++STT0hNTWXQoEGOJmPIWsnuwQcf5I033uCDDz7grbfecpz74osvAHjwwQdzNCAHBQUxe/ZsunbtykcffcTTTz+tL+7J+nfm2WefZerUqaSmpuJyJZlK2/9LXORwbK4eRscrFkyZV6m04wtc0xOBrMaPZ555huDgYIOTiYiIlDxt27bN0Ww8Z84cvL29mTp1qoGppLgaNmwY27Zt48yZM1gyr1AhejWnmg+GUlbHeyTEEXj0V8f4/vvvp0KFCgYmEhERESl7imW3qI+PDwBpaWkATJo0iZMnTzJ79mwAUlNTAQq01fehQ4eYM2cOkZGRDB8+vICJ/zB06FBWrVqVq1+NGxfvrUtMJhMPPPAA3bt3dxzzO72XkL0rwGYzMFkJcJ0m49tvv50nnnhCTcYiIiL/ExgYSL169XJ9fadOnbTlXxnj6enJzJkzqVOnjuNYhdg1+B/bepO7yjZzRjphvy3CM/Gk49jYsWPp1q2bgalERESKl78ucuDs6wE2bdpESkoKdevWpVatWjnOBQQEEBUVhd1uZ+3atXl+7T/7/vvvAejVq9c153r37p3jmmyxsbFA1lbDfxUREYGbmxtnzpzJdTN2WRAeHs7UqVNxcclat8M9+Tyhu5aAzWpwsmLAZiN091d4JJ0GslZUfOqpp6hZs6bBwURERERKPw8PDx599FHHA4LeFw/jH7fD4FTOZcq8SsjeFZjIel/WuHFjfdYpIiIiYoBi2WhcqVIlAM6cOXPd89nHw8LC8j3HmjVrSE9PJzk5mYEDBzJgwADHr/Xr1wOwYMECBgwYwJw5c/I9T0lnMpkYM2ZMjmLd73Q0Ffcu0wfpN2K3E7z/+xxNxi1btuSpp55yfBkhIiIiWYqiyUNKNi8vL5577rmczcb7vyPgT7WWZDFfTSVs20JHkwfAmDFj6NGjh4GpRERESraMjIx83RcdHQ1krSx8PdkrCcfExOQv2P9kNwNfb57sOU6fPk1CQoLjeHp6OvDHbmt/Zjab8ff3B+D3338vULbSpnHjxjm2LPeKP0ZI9Eooy+9R7HYq7PsG7wuHHIfGjh1LRESEgaFEREREypYGDRpw1113OcbB+9fimhpvYCLnCv79B9xSLwFZnxX/ubFaRERERIpOsex6zP5gPPsD+b/au3cvAPXr1y/wXPv27bvh6hwHDx7k4MGDuLu7F3ieksxsNjN27FhMJhPffPMNAL5n9mGyWTnduB+YtUKvg91O+dg1BJzY7jjUsmVLnn76aVxdXQ0MJiIiUvLlt8lDSj5vb29mzpzJP/7xD0ftXv73HzBbM4mv2fYWd5cNlivJhP22CPfk845j48aN0+oeIiIiBXDlyhWOHz/u2H0tL06dOgVAxYoVAVi6dClvvPEGI0aMYNSoUY7jJ0+evOFr3EpSUhJJSUmOeVJSUnj44YdJT0/nnXfeoUKFCvj7+5OYmEhcXBwBAQEABAcHc/jw4esu8pCWlsaFCxeArAblvFiwYAELFy7M1bWzZs2icePGpKamFuifQVGrXLky3bt3d3xG6nc6mkwPfy7W7mhsMIMEHtmI/8mdjnHnzp2pUaMGBw4cMC6UiIjILYSFhRVo19yidunSJaMjSAkwbNgwtm/fTlxcHGZbBiF7lhMXOQLMxXLduVzzOn+QgLg/vnd/8MEHKV++vIGJRERERMquYtlo3Lp1a7y9vYmNjeXQoUM5tllLSEhg48aNmEwmunTpku85xo8fz/jx4697bty4cSxatIiZM2fy+OOP53uO0iS72dhsNrN69WoAfM79TqWdizndpD92i5posdsIiV6N36ndjkNt2rThiSee0ErGIiIiBVSQJg8pHbJXNn7hhRccDyQGHfoJky2Ti7U6QBlexcKSfpnK2xbg9r+VSkwmE4888gh33HGHwclERESMl5SURGJiYo5jVquVuLi4G+6WYbVaOX36NO+//z6XL1+mVatWeZ43JSUFAE9PTwDmzp1LTEwMBw8eZNSoUXh7e+e4Lj/+fK+XlxcrV65kxYoVAHz++edMmDABb29vEhMTc1zbsmVLtmzZwvLlyxk0aFCO1/zss88c/1xSU1PzlOf48eNs3LgxV9dmN0iXRJ07dyYhIYHNm7N22Ch35BcyPXxJrNLC4GRFy/fkboIP/uQYN2/enO7duxuYSERERKTscnNz4/HHH2fy5MlYrVY8E09R7shG4mu2MzpavlmupGTtIPI/rVq1olOnTgYmEhERESnbimX3o4eHByNHjuTdd99l8uTJLFq0CDc3N+x2O9OmTSM9PZ3evXtTuXLl694/a9Ys5syZA8CKFSto167kFtDFiclk4qGHHsLV1ZVly5YB4H3hEJV2fM6ppoOwu7gZnNBANisV967A98wf2122a9eOSZMmYbFoxWcREREwrslDSg9PT0+ee+45/vnPf7Jr1y4gq7HDZM3gQp07ymSzsUtaAmHbFuKWlgBkPSD42GOP0aFDB2ODiYiIFBPvvvsuc+fOzXHs4sWLNG7c+Jb3ZteoDz/8cJ7n/Wt9e8899/DSSy8xdOjQHOcLsuXvX+do1aoVtWvXJi0tzfHA0fXmGT16NB9++CErV67kxRdfZOTIkXh7e/P111/z3HPPERQUxMWLFzHncfWz8PBwoqKicnWtn58fkNUgXbt27TzNUxw8/fTTzJ49m61btwJQft+3ZLr7klLhNoOTFQ2vC4cJiVntGDdp0oRp06ZpRzcRERERA9WsWZMhQ4bw6aefAlDu8M+kBtUgPSDM4GT5YLdTIWY1LlezHn4MDAxk/PjxBXr/JCIiIiIFUywbjQGmTZvG+vXrWbt2LREREURERBATE0NsbCyhoaHXfEEgRcNkMnH//ffj5ubGF198AYBX/DHCtn/GqWb3YHP1MDhh0TNZM6m4+yt8zv+xJWCXLl0YP368moxFRET+xKgmDyld3N3dmTFjBnPnzmXbtm0ABB7fitmWwbl6PcpUs7FrykXCfluEa3rWioAWi4Unn3ySNm3aGJxMRESk+LDb7dc05N7oIbdsJpMJPz8/GjZsyEMPPUSfPn3yPG/2ThxpaWkATJo0iUmTJjnOZ68WXJBtu/+820dqaiohISGOxtebzVOjRg0++OADxo0bx0svvcRLL73kOHfnnXdSvXp1/vWvf+Hr65unPEOHDnU0Upd22XXXs88+y4EDBzBhp+LupZyMGFoyGznywD3pDKG7vsRktwFQrVo1pkyZoiZjERGRInDgwAEOHz5McnIyGRkZN61rhwwZUoTJpLjo168f27dvJyYmBpPdTsieZZxo/QA2F3ejo+WJf9yOHN+9T5w40fGwooiIiIgYo9g2Gvv6+rJmzRrmzJnD8uXLWblyJUFBQYwcOZLp06cTEhJidMQyy2QyMXToUNzd3R1PRHomxBG2bSEnW9yLzS3/X5CUNCZrBqE7F+N98YjjWM+ePXnwwQfzvOqLiIhIaWdUk4eUPm5ubkyZMoXXXnuNX375BQD/uJ2YrJmcbdAbykAd5pZ8nrBtC3G5mrUNuqurK5MnTyYyMtLgZCIiIsXLtGnTmDZtmmMcGBhISEgIsbGxhTpvpUqVADhz5sx1z2cfDwvLf1Oqn58ffn5+JCUlcebMmWsag9PS0hw7ivx1Z7g+ffrQqlUrvvrqKw4cOICrqytt2rShd+/ejBw5EoDq1avnO1tZ4OHhwYwZM5g6dSpnzpzBbMskdMfnxN0+kgyvckbHKxQuaYlU2vE5ZutVAIKDg3nuuecK1DAvIiIit3bw4EFGjx7N3r17c32PGo3LJovF4njIMTU1Fbe0BMrv+5azje4yOlquuSZfIHj/945x7969adasmYGJRERERATAlJCQcPPuDpGbWLFiBf/+978d4yvewZyMuA+ru89N7iodzJlXqLT9czwTTjiO9evXjxEjRmjbFhERkVwoqiYPKb2sVitvvfUW69evdxy7HFKXM436gLn07izhnnSGsN8WYcnIWiHR3d2d6dOn06RJE4OTiYiIFH9FVYOuW7eOfv36UbduXTZv3nzN+QEDBrB27VreeOMNR2NvfnTr1o1ff/2VefPm0bdv3xzntm7dyp133kloaCj79u3L1evZbDbq1q3LhQsX+P333wkODs53trLi9OnTTJkyhaSkrF0mrnoFcqLlyFK3GIM5I53KW+bjnnIByFole/bs2YSHhxucTEREpHS7dOkSrVq14ty5c/j6+nLbbbfx22+/4ebmRvPmzbl48SKHDh3CZrPh5+dHo0aNAFi5cqXBycVIP/30E6+++qpjfLpRH5JDGxiYKHdMtkwq//oJHpfPAhAeHs7LL7+Mm5ubwclEREREpPQv9SWF6q677uKRRx5xNNa6p1yg8tZPcfnf9s2llTkjjbBtC3M0GQ8ZMkRNxiIiIiJFyGKxMHHiRLp27eo45ns2NmsrZ1umgckKj3viKcK2LXQ0GXt6ejJz5kw1GYuIiBQzrVu3xtvbm9jYWA4dOpTjXEJCAhs3bsRkMtGlS5cCzZN9/+rVq685l91ccscdd+T69b788kvOnTtHhw4d1GScS6GhocyYMcPR/OCWeolKOxdjspaietRmJXTXEkeTsYuLC9OmTVOTsYiISBF48803OXfuHL1792b//v18/33WSq+BgYF8/fXXbNmyhdjYWB588EGSkpJo2rSpmoyF9u3b06FDB8e4wr5vcElLNDBR7gQd+NHRZOzq6sqTTz6pJmMRERGRYkKNxlJgd955J5MmTcL8vy2q3VLjqbzlP7ikJhgbrJBYrqZQedsCPJJOO46NGjWKwYMHq8lYREREpIiZzWbGjRtH7969Hcd8zh8gdMdiTNYMA5M5n8elE1lNxpnpAHh7e/P8889Tv359g5OJiIiUHFOmTOGRRx4p9Hk8PDwcKxVPnjyZq1evAmC325k2bRrp6en06tWLypUrX/f+WbNmERAQQEBAABs2bLjhPCNHjsTT05MlS5bw448/Oo5HR0fz4YcfYjKZGDNmzDX37dmzB6vVmuPYzz//zJNPPonJZGLGjBl5/jOXZXXq1OGJJ55wfDbomRBHSPQKsJeCzQTtdirEfI1X/DHHoUcffdSxWqKIiIgUrjVr1mAymfjHP/6Bp6fnda8pX748L730EuPHj+fdd9/liy++KOKUUhyNHTuWkJAQACyZV6i4ZznYbQanujGvi0cIPParYzxy5EiqVq1qYCIRERER+TNTQkJCKfi0U4qDzZs38/LLL5OZmbVaR4a7LycjhpLhXc7gZM5juZJM2LaFjtU7AB5++GG6d+9uYCoREZGSafbs2Xh7e/Poo48aHUVKAbvdzqeffsqSJUscx1LLVeNUs0HYLa4GJnMOj/jjhO34L+b/NU/7+vry/PPPU6NGDYOTiYiIyI1cvnyZbt26ERMTQ3h4OBEREcTExBAbG0toaChr166lUqVK17131qxZzJkzB4AVK1bQrl27G87zn//8h4kTJ2I2m+nYsSNubm6sW7eO9PR0pkyZwrRp0665Z8CAAURHR9OgQQMCAwM5dOgQO3bswGw28/LLLzN69Gjn/EMoY5YvX85HH33kGMdXb8PF2h2NC+QEgYd/Ifjgesd46NChDBo0yLhAIiIiZUx4eDiZmZmcOnXKcSwwMJDg4GAOHDiQ49qLFy9Su3Ztbr/9dr7++uuijirFUGxsLNOnT8dmy2owvlCrA5dqRBmc6lrmq6lU3fQhLleSAWjevDnPPvusFvkSERERKUa0orE4TatWrZg6dSqurlmNHK5XLlN526e4/qkptySzXEmm8rYFjiZjs9nMo48+qiZjERGRfJo6daqajMVpTCYTw4YNY/DgwY5jXvFHqbTj8xK/srFn/DHCtv/RZOzv788LL7ygJmMREZFiztfXlzVr1jBhwgQAVq5cSWJiIiNHjmT9+vU3bDLOq+HDh7NkyRLatGnD1q1b+emnn2jYsCH//ve/r9tkDNC/f3+qVavGjh07WLZsGWfOnGHAgAGsXbtWTcYFcNddd9GzZ0/HuNyRX/A9tdfARAXjczY2R5Nx586dGThwoHGBREREyiCbzYa7u3uOY97e3ly6dAn7X3ZPCAoKwt/fn5iYmKKMKMVY3bp1c3xeGnRoA+6Jp25yhwHsdkJiVjuajP39/Zk4caKajEVERESKGa1oLE63a9cuXnzxRceWkJlu3sRFDiXDO9jgZPlnSb9M5W0LcEuNB7KajCdNmkT79u0NTiYiIiIif/XFF1+wYMECxzi1XFVONbunRK5s7BF/PKvJ2JbVZBwYGMjf//53qlSpYnAyEREREbkeq9XKP//5T3777TcAbCYLJyOHkh5Q2eBkeeOedIbKW+ZjtmXtXtewYUNmzpzpWGRCREREikZkZCSHDx/mxIkTeHl5AdC6dWv279/PunXraNKkiePa1NRUKleujLu7O6dPnzYqshQzVquVGTNmEBsbC8BVr3IcbzUau4ubwcmy+J3cRUj0Ksf4mWeeISIiwsBEIiIiInI9WtFYnK5JkyY899xzeHh4AOByNYXKWxfgmlwyVzb+a5OxxWLhqaeeUpOxiIiISDE1aNAghg0b5hh7xR8jdOdiTNZMA1PlncelE4TtyNlk/MILL6jJWERExAlWr17NAw88QKdOnYiMjKRp06Y0adLkur+aNm1qdFwpQSwWC08++STh4eEAmO1WQncuxiU9yeBkuWe5kkzoji8cTcahoaFMmTJFTcYiIiIGqFu3Lna7nW3btjmORUVFYbfb+ec//0lGxh87eb3yyivY7Xbq1KljRFQppiwWC5MmTXJ8d++WGk/w72sNTpXFNfUS5WO/dYx79OihJmMRERGRYkorGkuhiYmJ4e9//zvp6elA9srGw8nwLmdwstyzXEmm8tZPr2kybt26tcHJRERERORWlixZwn/+8x/HOCW4JqeaDgSzxcBUueOeeIqwbQuxWLN2CcluMg4LCzM4mYiISMk3ffp03n///Wu2mv4zk8nkOG8ymYiPjy+qeFJKnD17lqeffpqkpKwG43S/isRFDi/2u2yYbJmEbVuIZ0IcAF5eXrz00kuqQ0VERAyyYMECJkyYwKhRo3j11VcBOHDgAG3btiUjI4Pw8HCaNm3KkSNH2LNnDwCvv/46I0aMMDK2FENr167lrbfecoxPNhtMavmaxgWy26i89VNH3RkWFsarr76Ku7u7cZlERERE5Ia0orEUmvr161+zsnHYtgW4pCYYGyyXzFdTCdu2UE3GIiIiIiXUgAEDGDJkiGPsfeEQFfcsA7vNwFS35nb5HGHb/+toMvb39+cf//iHmjtEREScYM2aNbz33nt4e3vzzDPP8PnnnwNZD/UsXbqUf//73zz44IN4e3vj5+fHm2++yfLlyw1OLSVRSEgIkydPxmLJesjNI+kMFWK+hps0uBcH5WO/czR7mM1mnn76adWhIiIiBurVqxcTJkwgODjYcax27dq8//77eHt7c+zYMZYtW8bu3bsBGD9+vJqM5bo6d+5Mq1atHOOQmFWYM9IMyxN49FdH3WmxWHj88cfVZCwiIiJSjGlFYyl00dHRPP/881y9mtUocdUzgLjI4Vg9fA1OdmPmjHTCti3E4/KZrLHZzFNPPUWbNm0MTiYiIiIiefXpp5+yePFixzgxrAnn6vcEk8nAVNfnknqJKlvm43I1BQBfX19eeOEFqlatanAyERGR0mHIkCGsWbOGDz/8kP79+wNZTcYhISHExsY6rjt+/Dh9+/YlJSWFH3/8kYoVKxoVWUq41atX869//csxPle3G4nhLQxMdGN+J3cREr3KMb7//vvp27evcYFERETkpuLj4/n22285deoUfn5+dOzYkVq1ahkdS4qxxMREJk6cSGJiIgBJFRtwtnGfIs/hlnyeKps+wmy3Alnv0wYPHlzkOUREREQk97SisRS6Bg0aMGPGDFxds7YFdEtLIOy3RZivphqc7PpM1gwq7fjC0WRsMpl47LHH1GQsIiIiUkINHTqU3r17O8b+J3cRdPBHAxNdn+VKMmG/feZoMvb09GTmzJlqMhYREXGiHTt2AHDXXXfd9Lrw8HBee+01zp07x9y5c4simpRSPXr0oEuXLo5x+f3f4fG/lduKE/ekM5Tf941j3LZtW/r0KfqmExEREcm9cuXKce+99/LEE0/w4IMPqslYbsnf35/x48c7xn5novE+t79oQ9hshOxd6WgyrlmzJgMGDCjaDCIiIiKSZ2o0liLRpEmTHFsFuqdcoNKOLzBlXjU42V/YbFTcvRTPhBOOQ+PHj6dDhw4GhhIRERGRgjCZTIwePZpOnTo5jpU78gv+x7camConU+ZVKm3/HLe0SwC4ubnxzDPP6AsiERERJ7t06RIBAQGOB+IBXFxcSElJueba9u3b4+npyXfffVeUEaWUMZlMjBkzhho1amSN7VmfPxanRRjMmVeouOsrzLasZo/w8HAeeeQRTMVwBxARERERKZjbb7+djh07OsYVYr7BnJFWZPMHHNuCR9JpIOu92GOPPYaLi0uRzS8iIiIi+aNGYykykZGRTJo0yfEBtWfiSUJ3LwWbzdhg2ex2Kuz7Bp/zBxyH7r//fu68804DQ4mIiEhBJScn89xzz9GkSRNCQkKoX78+kyZN4vz5806dZ/369fTp04fw8HAqV65M165d+fLLL296z5EjR3jooYeoXbs2ISEhtGzZkldeeYWMjAynZhMwm8088sgjREREOI6Vj/0O73O/G5jqf2w2Qnd/5dhRw2w289RTT9GgQQODg4mIiJQ+gYGBpKXl/BK9XLlypKSkkJCQkOO4yWTCbDZz7ty5IkwopZG7uztTpkzBx8cHANf0JCruXQl2u8HJyPpMNHq144E3T09PpkyZgqenp8HBREREJD+WLl3KokWLjI4hxdwDDzxAYGAgAC5XUwj+/Ycimdc1NZ6gQz85xvfeey/h4eFFMreIiIiIFIwajaVItWvXjgceeMAx9r5wkPKxa4rFh+qBR37B/+ROx7hfv3707dvXsDwiIiJScMnJyXTr1o0333wTu91Oz5498fX1Zd68eXTs2JHTp087ZZ6FCxfSr18/fv75ZyIiImjXrh27d+9m9OjRN9xqOyYmhg4dOvDFF19QuXJlevTowaVLl/jHP/7B4MGDsVqtTskmf3BxceHpp5/mtttuA8AEVNy9DPekM4bmKr//O7wvHHKMH374YVq2bGlgIhERkdKrcuXKXLlyhaNHjzqOZT/cs3Tp0hzX7tixg5SUFAICAoouoJRaISEhTJw40TH2vnCQgGKww4bfyV34nt3nGD/yyCOEhYUZmEhEREQKYsqUKUyYMMHoGFLM+fr6MnbsWMfY/+QuPOOPFe6kdjsVYr7GbMsEoEaNGvouXkRERKQEUaOxFLnevXszYMAAxzggbgcBx7YYmAh8TkcTfPBHx7hjx46MGDHCwEQiIiLiDLNmzSI6OprOnTuzbds2Pv74YzZv3sy9997LyZMnmTJlSoHnOHfuHE899RRms5kvv/ySL7/8kkWLFrF27Vq8vb2ZNWsWe/fuvea+8ePHk5SUxNSpU1m3bh3z5s1j27Zt1K9fnx9++IF///vfBc4m13J3d2fGjBlUrFgRALMtg9AdX2C5kmxIHv8TvxFw4jfHeODAgXTt2tWQLCIiImVB27ZtAfjhhz9W7Orbty92u51nn32W+fPnExsby9dff81DDz2EyWSiU6dORsWVUqZly5bcfffdjnHQ7+twu2zcitmuKRcpH/udY9y9e3fHfyMiIiJSctmLwQJPUvy1atWKVq1aOcYVYr4GW+EtfuF7Ohqv/zUzZ+8+5+LiUmjziYiIiIhzqdFYDDF06FDatWvnGAf/vhav8wcNyeKeeJqQ6FWOcaNGjXjkkUcwmUyG5BERERHnSE9PZ968eQDMnTsXNzc3IGsL7NmzZ+Ph4cGKFSuIi4sr0DyffPIJqamp9O/fnw4dOjiON2jQgAcffBC73c4HH3yQ455Nmzaxc+dOKleuzNNPP+047u/vz/PPPw/Ae++9V6BccmP+/v48++yzeHl5AeB65TKhu74s1A/Sr8fj0vEcjR1RUVHcd999RZpBRESkrLnrrruw2+2OOhFg2LBhtGrViuTkZCZNmkSbNm0YOnQohw4dIigoiOnTpxsXWEqd4cOHU6NGDQDMdisV9yzD9L9V3YqUzUbFPcsx2zKArNW+R40aVfQ5RERERMQwY8aMwdPTEwC31HgCj24ulHnMGekE//69Y9y7d29q1qxZKHOJiIiISOFQo7EYwmw2M3HiROrVqwf8b9vqPctwTblYpDksV5IJ3bnYsUVLWFgYU6ZMwdXVtUhziIiIiPNt2rSJlJQU6tatS61atXKcCwgIICoqCrvdztq1aws0z/ffZ31A2qtXr2vO9e7dO8c1f72ne/fuWCyWHOc6d+6Mt7c3R44c4dChQwXKJjcWFhbG5MmTMZuz3hJ5JsRRfv93t7jLeSzplwnd9RUmuw2AmjVrMnHiREceERERKRwtWrQgLi6Or7/+2nHMbDazePFiJk2aRHh4OC4uLpQrV46BAwfy3XffER4ebmBiKW1cXV154oknHA9Cuiefp9yhDUWeI/DoL3gknQbAxcWFJ598End39yLPISIiIiLGKVeuHEOHDv1jfPgXXNKTnD/PoQ24XE0FICgoiCFDhjh9DhEREREpXPoWWwzj6urKlClTCA4OBsCSeYXQnUswZV4tmgA2GxV3L8X1ymUAvL29mT59Oj4+PkUzv4iIiBSq6OhoIGtl4etp2LAhADExMQWaZ9++fTecJ3uO06dPk5CQkKtsFouFunXrOiWb3FzTpk0ZMWKEYxxwYjs+Z4rgn7nNRsU9S3G5mgKAn58fU6dOVWOHiIhIEfH29sbb2/uaYzNnzmTnzp2cO3eOgwcP8n//939Uq1bNmJBSqlWuXJmRI0c6xoFHNuOecLLI5ne7fJagQz87xvfddx/Vq1cvsvlFRETk+sqVK0e5cuVo1arVNcdy++vcuXMG/gmkJOrRo4fjfY/ZlkHw7z849fXdks8TcGKbYzx69GjHKsoiIiIiUnKo0VgMFRAQwPTp0/9YwSPlAhX2fVMkcwcd+gmvS8eBrC3Un3rqKcLCwopkbhERESl8p06dAqBixYoALF26lE6dOvHxxx/nOH7yZP6/0E9KSiIpKcnxeikpKQwfPpxBgwZx7tw5PD098ff3ByAuLu6G2f7xj39w55138uuvvzotm+ROnz59aNOmjWNcIXo1rqnxhTpnucMb8Lp0AshaQfGpp56ifPnyhTqniIiIiBQvPXr0oFGjRgCYsBMSsxps1sKf2G4jJHq1Y2eNOnXq0KdPn8KfV0RERG7Jbrc7fl3vWG5+ieSVxWLhoYcecox9z8Q49SG44N9/wPS/fzcbNmyY47NYERERESk5XIwOIFKjRg3Gjh3LW2+9BYDf6b2kBlXncqVGhTan58UjBB75xTG+9957adasWaHNJyIiIkUvJSVrtdjs1RHmzp1LTEwMBw8eZNSoUY5V7LKvK8gcAF5eXqxcuZIVK1YA8PnnnzNhwgS8vb1JTEzMcW327728vIiPj+eVV14B4LXXXuOzzz7Ld7YFCxawcOHCXF07a9YsGjduTGpqaplvaO7Rowf79+/n4sWLWKxXCdmznLjIEWB2/nOZHpdOUO7wH3XoHXfcgaenJwcOHHD6XCIiIsVVWFgYXl5eRscQMZTZbGbChAlMnDiRK1eu4J58nsCjm7lUI6pQ5w04vg2PpNMAuLi4MHHiRCwWS6HOKSIiIrmza9cuIGtX2D8LDg5m7dq1t7zfbrfTpUsX4uML9yF6KX0aNGhAmzZt+OWXrM8ty/++lrjI4WAyFeh1PS8exfvCISBr4a/Ro0djKuBrioiIiIgx1GgsxUKXLl2Ijo7mhx+ytmKpsO8b0gMqk+EV6PS5zFdTqbhnOdlvYZo0acKgQYOcPo+IiIgY668reNxzzz289NJLDB06NMf5gnyw+dc5WrVqRe3atUlLS+OOO+644Tx/vi8wMJAePXqwceNGR02S32zHjx9n48aNubo2eyVmAQ8PD4YNG8bbb7+N1WrFM/EU5Y5sJL5mO6fOY8q8QsW9KzCR9f9vzZo16dKli1PnEBERkdy5cOEC8+fP57vvviM2NtZRGwUEBFC3bl26devGsGHDKFeunMFJpTQLCQlh6NChfPTRRwCUO7yRyxUbkOkVUCjzWdIvE3TwJ8d48ODB2uFNRESkGAkPD7/ucYvFcsNz17tWJD+GDx/Oli1byMzMxDMhDq8Lh0gtXyv/L2i3E3xgvWPYuXNnatSoUfCgIiIiImIINRpLsfHQQw+xf/9+Tp48idmaQcjelcRFDgWTc1eSqxC7BperWasD+vv7M2nSJMyFsFqdiIiIGMvHxweAtLQ0ACZNmsSkSZMc51NTUwEKtJpe9hzZrxcSEsLWrVtzXHO9ebLvS01NxWQysWjRolvekxvh4eFEReVuBTQ/Pz/HHLVr187TPKVR7dq1iY+P5z//+Q+Q1eSRXKEOV30rOG2O4APrcU1LAMDb25upU6dSvnx5p72+iIiI5M7y5ct59NFHuXz58jUPjsXHx/PLL7+wadMmXn31Vd555x169eplUFIpC3r16sX69es5fPgwZlsm5fd/z+lmAwtlrvK/r8VsvQpAlSpV6Nu3b6HMIyIiIiIlT2hoKN26dWPVqlUABB9cz/Hgmvle1dj7/AE8kk4BWat0DxkyxGlZRURERKToqdFYig1PT08ef/xxJk+ejM1mwzPhBAHHt5FQtaXT5vA5sw/fM/sc40cffZTAQOevmiwiIiLGq1SpEgBnzpy57vns4wVZwcvPzw8/Pz+SkpI4c+YMvr6+Oc6npaWRmJgIQOXKlXNk2717t9OzDR061LFis+Rd37592bJlC/v378dktxESvYoTt490yoNvHpdOEHDiN8f4oYceUpOxiIiIATZv3syoUaOw2WyEhYUxYMAAGjduTFBQEHa7nfj4eHbv3s2SJUs4efIkI0eO5OuvvyYyMtLo6FJKWSwWxowZw9SpUwHwOf87XhePkBpU3anzeFw6ge+ZGMd4zJgx12zLLiIiIsXPzJkz8fb2zvX1f32QTiQvBg0axPfff8+VK1dwv3wO7/O/k1KhTt5fyG6n3KENjmGPHj0IDg52YlIRERERKWpaxlWKlVq1ajm2DAcIOvgjLmmJTnltc0Ya5WO/dYy7dOlCRESEU15bREREip8GDRoAEB0dfd3ze/fuBaB+/foFmqdevXo3nCd7jtDQUAICAnKVzWq1Ehsb65RskjcWi4UJEybg4pL1PKZH0mn843YU/IVtNirs+8YxjIiIoEOHDgV/XREREcmzl19+GZvNRp8+fdi+fTvPP/88AwYMoGPHjnTq1IkBAwbw/PPPs337du666y6sVisvvfSS0bGllKtbty6dO3d2jIP3fw92m/MmsNspv3+tYxgVFUWjRo2c9/oiIiJSaCZNmsRDDz2U6+vnzJnD22+/XYiJpDQLCAigR48ejnG5wxshH83rXhcO4XH5LABubm7079/faRlFRERExBhqNJZiZ+DAgYSHhwNgtmbkaA4uiKADP+JyNQWAwMBARo8e7ZTXFRERkeKpdevWeHt7Exsby6FDh3KcS0hIYOPGjZhMJrp06VKgebLvX7169TXnVq5cCcAdd9xx3Xu++eYbrFZrjnM//PADKSkpVKtWjZo1axYom+RdlSpVGDjwj62qgw78iPlqaoFeM+DENtyTzwPg7u7O2LFjMeVzy0EREREpmK1bt2KxWHjttddwc3O74XVubm68/vrrmM1mtmzZUoQJpawaNmwY7u7uALgnn8fv1B6nvbbP2X05tq0eMWKE015bREREipd+/fpx3333GR1DSrC+ffs63it5JJ3BM/5onl+j3JFNjt9369YtxyIcIiIiIlIyqdFYih1XV1ceeeQRR/OFz/kDeJ0/dIu7bs4t6WyO1egeeuihPG0zJCIiIiWPh4cHI0eOBGDy5MlcvXoVyNo+cNq0aaSnp9OrVy8qV6583ftnzZpFQEAAAQEBbNiw4brXAIwcORJPT0+WLFnCjz/+6DgeHR3Nhx9+iMlkYsyYMTnuad26NY0bNyYuLi7HCnmJiYnMnDkTgIcffjh/f3ApsP79+1OxYkUALJnpBB3+Od+vZc5Io9yhP+4fPHgw5cuXL3BGERERyR+bzYavry+BgYG3vLZcuXL4+flhszlxZVmRGyhXrhz9+vX7Y3zoZ0y2zIK/sM1G0MGfHMPevXsTEhJS8NcVERERkVIpICAgx+Icgcfy9uCle+IpPBNOAODi4kKfPn2cmk9EREREjKFGYymW6tSpk+MNTPnfv4f8fqljt1N+//eYyNrWpVmzZrRu3doZMUVERKSYmzZtGvXr12ft2rVEREQwevRoWrduzaJFiwgNDWXu3LkFniMkJIS5c+dis9no378/AwYMYMiQIXTp0oWUlBQmT558zbbEJpOJd999F19fX2bPnk3nzp0ZNWoUkZGRxMTE0KFDBx588MECZ5P8cXNzY9SoUY6x/4nfcE2Jz9drlTv8C5bMdAAqVqzIXXfd5ZSMIiIikj9NmzYlMTGRuLi4W157/PhxEhMTadasWREkE4E+ffrg5+cHgGt6In5xOwv8mr6n9+KWmlXLenl5MWDAgAK/poiIiBSdtWvXMn36dN555x2jo0gZcvfddzsWBfO+cAjXlAu5vjfg2FbH79u2bUtwcLDT84mIiIhI0VOjsRRbw4YNw8vLCwC3lIv4ndqVr9fxungYr0vHADCbzYwePVpbVYuIiJQRvr6+rFmzhgkTJgCwcuVKEhMTGTlyJOvXr6dSpUpOmWf48OEsWbKENm3asHXrVn766ScaNmzIv//9b6ZNm3bdexo2bMj69esZMGAAx48fZ/Xq1fj7+zNjxgy++OILXFxcnJJN8qdly5Y0aNAAAJPdTrl8rGpsSb+M/4nfHOMRI0bg6urqtIwiIiKSd9OnT8disTBmzBguXrx4w+suXLjA2LFjcXV1ZcaMGUWYUMoyT09P+vfv7xgHHt0MNmv+X9Buo9yRjY5hnz598PHxKUhEERERKWKvvPIK77//PmFhYUZHkTIkNDSUyMhIx9j/xI6bXP0Hy5UUfM/uc4y16IKIiIhI6WFKSEiwGx1C5Ea++OILFixYAECGuy/H2o7DbslD043dTpXNH+Nx+QwA3bt31zbkIiIiIpIrsbGxTJ06FQA7cCxqLBneQbm+Pzj2WwKPbwOgZs2avPzyy3rgTUREpAgtWrTousd/+eUXPv30U7y9venatSuNGzemXLlyAMTHx7N7926+/fZbUlNTGTFiBLfffjtDhgwpyuhShl25coUxY8aQmJgIwNkGvUgKa5Kv1/I5E0Po7qUAeHt783//93+OhR1ERESkZKhRowbJycnExcXh5uZmdBwpQ3bs2MHzzz8PgNXFgyMdHsVuufkiCgFHNlP+wA9A1g7Gc+bMKfScIiIiIlI0tEyaFGt33XUXq1atIiEhAdcrl/E7tYvEKi1yfb/3+YOOJmM3NzfuueeewooqIiIiIqVM3bp1ad68Odu3b8dE1opy5xr0ytW9lqsp+P9pq+shQ4aoyVhERKSIjR8//qZ//6akpLB06VKWLl16zTm7PWtthvnz5zN//nw1GkuRcXd35+677+Y///kPAAFHN5NUqTHktZa027NWRP6fXr16qclYRESkBEpPT8fX11dNxlLkmjRpQkhICGfPnsWSmY73+QMkV6x/4xvs9hw7FHft2rUIUoqIiIhIUVGjsRRrHh4e9OvXj48//hiAwCObSQxrBmZzru4PPPKL4/fdu3d3rE4jIiIiIpIbAwcOZPv27QD4ndrDxVodsLrfertp/xPbMdsygayVZ1q0yP3DciIiIuIcbdq00YM+UiJ1796dxYsXk5aWhnvKRbwuHiE1uEaeXsMj4QQeSX8swNCrV+4emBMREZHipWrVqhw4cIDU1FQ9NCRFymw207lzZ8dOMX4nd9+00dg96TTuKReBrO/4o6KiiiSniIiIiBQNNRpLsZf9wfrly5dxTU/E51zszZ+W/B+PhDg8E08C4OLiQt++fQs5qYiIiIiUNvXr16du3brExsZistvwP7Gd+Frtb36TzYr/ie2OYd++fdXkJCIiYoBVq1YZHUEkX7y9venSpQsrV64EIOD41jw3Ggcc3+b4fYcOHfD393dqRhERESkagwcP5vnnn2fx4sWMGDHC6DhSxnTs2NHRaOwVfwTz1VRsbtdvePc9E+P4fevWrfHw8CiSjCIiIiJSNHK3LKyIgdzd3enZs6dj/OcPyW8m4PhWx+87dOig1YxFREREJF969+7t+L3/yZ1gs930ep9z+3G5mgJAuXLlaNOmTWHGExEREZFS6M8rEHtdOIRLWmKu77VcScbn3O+O8Z/rWRERESlZxo8fT/v27ZkxYwbff/+90XGkjAkJCaFOnToAmOx2fM7tv/6Fdjs+Z/Y5hu3b32KhBhEREREpcbSisZQIPXr0YPHixVitVjwT4nC7fI6rvhVueL3lSjI+Z/94o3PXXXcVRUwRERERKYVatWpFQEAACQkJuFxJxvvCIVIq1L7h9X4ndzl+f+edd+LiorddIiIixUVmZiapqamYTCZ8fX2NjiNyQ6GhoTRt2pSdO3diAvxO7iS+Vodc3et3ajcme9bDcfXq1aNq1aqFmFREREQK05IlSxg4cCBJSUncc889RERE0L59eypXroy7u/sN7xsyZEgRppTSLCoqiv37s7539zn3O0mVm11zjXvSGVyvXM66xseHRo0aFWlGERERESl8+sZbSoSAgABatWrFxo0bAfA/sZ2LN9my2u/kTseH6XXr1qVatWpFEVNERERESiEXFxc6derEV199BYDfqV2kBYRd91rL1VS8Lh4BwGQycccddxRZThEREbm1p556ivnz5zN06FDeeusto+OI3FTXrl3ZuXMnAH6n9pIYHoEd0y3v8zu1J8driIiISMk1fvx4TKasv//tdjtbt25l27Zb7/6qRmNxlttvv52PPvoIAM+LR3FJT8Jmztlm4nP2j9WMIyMjtfCCiIiISCmkCk9KjDvvvNPRaBwQt52AuO25vk9EREREpCA6d+7saDT2Ofd7jq2ob6Rhw4aUL1++sKOJiIhIHqxfvx6AJ554wtggIrkQGRmJj48PycnJuKYnUmP9G3m638PDg9atWxdSOhERESkKbdq0cTQaixghJCSE8PBwjh8/jtlupfpPb9/0+sjIyCJKJiIiIiJFSY3GUmI0atSIoKAgLl68mOt73NzcaNOmTSGmEhEREZGyoEqVKlSvXp0jR47k+p727W+8A4eIiIgY4+zZs/j6+lK9enWjo4jckqurK23btuWbb77J1/2tW7fGw8PDyalERESkKK1atcroCCJERERw/PjxW15nsVho3LhxESQSERERkaKmRmMpMSwWC+PGjeOjjz7i8uXLt7zew8ODe++9F09PzyJIJyIiIiKl3UMPPcR7771HQkLCTa8zmUw0atSIjh07FkkuERERyT0/Pz9SUlKKbL7k5GTmzp3LsmXLOHPmDEFBQXTt2pUZM2Y4deeD9evX89prr7Fjxw5sNhv169fn4Ycfpn///je8Z/HixXz88cfs2bOH1NRUypcvT+vWrXnsscdo0qSJ07JJwQwePJhjx44RFxeXp/tCQ0O57777CimViIiIiJQlffv25ffff+fYsWM3vMbd3Z3+/fvj4+NThMlEREREpKiYEhIS7EaHEBERERERERERESlsw4YNY/Xq1WzcuJF69eoV6lzJycl069aN6OhowsPDadGiBTExMezfv5+wsDC+//57QkNDCzzPwoULeeSRRzCbzXTo0AF3d3fWrVtHeno606dPZ/LkydfcM2XKFD744AMsFgtt2rQhKCiI2NhYYmNjcXV1ZeHChdx5550FziYiIiIiIiIiIiIiJZ8ajUVERERERERERKRM2LFjBz169KBt27Z8/vnnmM3mQptrxowZvPPOO3Tu3JnPPvsMNzc37HY748aN47PPPuPuu+9m/vz5BZrj3LlzNG3alCtXrvDll1/SoUMHAKKjo+natSupqals2LCBhg0bOu7Zu3cvbdu2xd3dnW+++YZmzZo5zr3wwgu8/PLLhIeHs3v37gJlExEREREREREREZHSofA+SRcREREREREREREpRpo1a8ann35KbGwsvXr1Yt26dVy5csXp86SnpzNv3jwA5s6di5ubGwAmk4nZs2fj4eHBihUriIuLK9A8n3zyCampqfTv39/RZAzQoEEDHnzwQex2Ox988EGOe3755RcA2rdvn6PJGODRRx8F4Pjx45w/f75A2URERERERERERESkdHAxOoCIiIiIiIiIiIhIUWjSpAkAmZmZ/PrrrwwYMACLxUJQUBDu7u7XvcdkMrFz5848zbNp0yZSUlKoW7cutWrVynEuICCAqKgo1q5dy9q1axk5cmS+/iwA33//PQC9evW65lzv3r154403HNdk8/DwALjuas4mkwkAFxcX/P39851LREREREREREREREoPNRqLiIiIiIiIiIhImXD8+PFrjmVmZnL27Nkb3pPdfJsX0dHRQNbKwtfTsGFD1q5dS0xMTJ5f+8/27dt3w3kaNmwIwOnTp0lISCAgIADIWsnYzc2Nn376iT179tCoUSPHPe+++y4A9957r2MVZhEREREx3urVq1myZAmHDx8mOTmZjIwM7Hb7da/Nz4NyIiIiIiIiN6NGYxERERERERERESkTVqxYUSTznDp1CoCKFSsCsHTpUt544w1GjBjBqFGjHMdPnjyZ7zmSkpJISkpyzJOSksLDDz9Meno677zzDhUqVMDf35/ExETi4uIcjcbVqlXj5Zdf5oknnqBTp05ERUVRrlw59u/fz6FDhxg9ejT//Oc/C/CnFxERERFnmj59Ou+///4NG4shq7k4+3x+HpQTERERERG5GTUai4iIiIiIiIiISJnQtm3bIpknJSUFAE9PTwDmzp1LTEwMBw8eZNSoUXh7e+e4riBzAHh5ebFy5UpHI/Xnn3/OhAkT8Pb2JjEx8Zp5RowYQVhYGGPHjuXHH390HG/SpAnt2rXDw8Mjz3kWLFjAwoULc3XtrFmzaNy4MampqQVqthYRERHJq7CwMLy8vIyOkWtr1qzhvffew8fHh0mTJtG4cWPuueceAgMD+fjjj7l48SKbNm3is88+w2w288ILL1C9enWjY4uIiIiISCmjRmMRERERERERERERJ/rranP33HMPL730EkOHDs1xviCrzf11jlatWlG7dm3S0tK44447bjiP3W7n+eef54033mDixImMGjWK4OBgoqOjmTZtGqNGjSI6OppnnnkmT3mOHz/Oxo0bc3Vt9krMIiIiInJz8+bNw2Qy8cYbb9C/f3/HcTc3Nzp06ABA//79efTRR+nbty8vvPBCjgfJREREREREnEGNxiIiIiIiIiIiIiJO5OPjA0BaWhoAkyZNYtKkSY7zqampAAVaTS97juzXCwkJYevWrTmuud48S5Ys4fXXX2fgwIE8//zzjuO33347n332GREREbz++usMGzaMatWq5TpPeHg4UVFRubrWz8/Pkat27dq5nkNERESkrNmxYwcAd911102vCw8P57XXXqNv377MnTuXV199tSjiiYiIiIhIGaFGYxEREREREREREREnqlSpEgBnzpy57vns42FhYfmew8/PDz8/P5KSkjhz5gy+vr45zqelpZGYmAhA5cqVHccXLVoEQPfu3a95zQoVKtCiRQvWrVvHzz//nKdG46FDhzpWbBYRERER57h06RIBAQG4uro6jrm4uJCSknLNte3bt8fT05PvvvuuKCOKiIiIiEgZYDY6gIiIiIiIiIiIiEhp0qBBAwCio6Ove37v3r0A1K9fv0Dz1KtX74bzZM8RGhpKQECA4/jx48cB8Pb2vu5rZq+UfO7cuQJlExEREZGCCwwMdOySka1cuXKkpKSQkJCQ47jJZMJsNquOExERERERp9OKxiLF2O7du0lKSsLPz4/GjRsbHUdEShj9DBERkfzS3yEiUlD6OSLF1caNG/N1X1RUVJ6ub926Nd7e3sTGxnLo0CFq1qzpOJeQkMDGjRsxmUx06dIlX3mydenShV9//ZXVq1fTt2/fHOdWrlwJwB133JHjeGBgIAC7du2iR48eOc7ZbDZH03JoaGiBsonkl/4OEZGC0s8RKU0qV67MuXPnOHr0qGO3iQYNGrB+/XqWLl3K/fff77h2x44dpKSkUKFCBWPCipQC+jtERApCP0NEpDQzJSQk2I0OISLX16tXLzZu3EhUVBSrVq0yOo6IlDD6GSIiIvmlv0NEpKD0c0SKq8DAQEwmU57uMZlMXLx4Mc9zTZ8+nXfffZcuXbqwaNEi3NzcsNvtjB8/nkWLFtG7d28+/fTT6947a9Ys5syZA8CKFSto167dda87e/YsTZs25erVq3z55Zd06NAByFrhuGvXrqSmpvLTTz/RqFEjxz2vv/46f/vb3/Dz82PFihU0adIEALvdzssvv8yLL76It7c3u3btIjg4OM9/bpGC0t8hIlJQ+jkipcnf/vY33nzzTV5++WVGjx4NwPz583nsscfw8fHhxRdfpGXLlhw5coRnn32Ww4cPc8899/D+++8bnFykZNLfISJSEPoZIiKlmVY0FhERERERERERkTKhcuXKN2w0ttvtxMfHk5qaCoCXlxdBQUH5nmvatGmsX7+etWvXEhERQUREBDExMcTGxhIaGsrcuXPz/drZQkJCmDt3LhMnTqR///507NgRNzc31q1bR3p6OlOmTMnRZAzw8MMPs2bNGjZt2kSXLl1o2bIl5cuXJyYmhgMHDmCxWHjppZfUZCwiIiJSDNx111288cYbzJs3z9FoPGzYMBYtWsTmzZuZNGmS41q73U5wcDDTp083KK2IiIiIiJRWajQWERERERERERGRMmHPnj23vObMmTN88sknvP322wwfPpynn346X3P5+vqyZs0a5syZw/Lly1m5ciVBQUGMHDmS6dOnExISkq/X/avhw4cTFhbGa6+9xtatW7FarTRs2JBx48YxYMCAa6738PBg+fLlfPjhhyxevJjdu3eTnp5OcHAwffv2ZcKECURERDglm4iIiIgUTIsWLYiLi8txzGw2s3jxYl5++WW++uorTp06hZ+fH506dWLGjBmEh4cblFZEREREREorNRqLiIiIiIiIiIiI/E/FihWZMmUKVatWZfz48VStWpV77rknX6/l6+vLCy+8wAsvvJCn+6ZNm8a0adNyfX3nzp3p3Llzrq93dXVl3LhxjBs3Lk+5RERERKToeXt7X/fYzJkzmTlzpgGJRERERESkrDEbHUBERERERERERESkuBkwYAAmk4n333/f6CgiIiIiIiIiIiIiIoZRo7GIiIiIiIiIiIjIX1y9ehW73c7+/fuNjiIiIiIiZdSpU6eMjiAiIiIiIqJGYxEREREREREREZG/WrBgAXa7HU9PT6OjiIiIiEgZ1ahRI7p37857772npmMRERERETGMi9EBRERERERERERERIrCokWLbnrearVy4cIFNm3axNq1azGZTHTt2rWI0omIiIiI5GSz2fj111/ZsmULzzzzDBEREfTr14+7776bSpUqGR1PRERERETKCDUai4iIiIiIiIiISJkwfvx4TCbTLa+z2+0ANG3alBdeeKGwY4mIiIiIXNeePXtYvnw5y5cvZ8uWLWzZsoWtW7cyY8YMIiMj6du3r5qORURERESk0KnRWERERERERERERMqENm3a3LTR2Gw24+XlRdWqVenQoQPdu3fHbDYXYUIRERERkT9UrlyZ8ePHM378eM6ePcvy5ctZtmwZmzdvdqx0PGPGDFq2bEmfPn3UdCwiIiIiIoXClJCQYDc6hIhc34IFCzh+/Djh4eEMHTrU6DgiUsLoZ4iIiOSX/g4RkYLSzxEREckv/R0iIgWlnyNSFly8eJGVK1eybNkyfv75ZzIyMjCZTJhMJlq2bMnXX39tdESREkl/h4hIQehniIiUZmo0FhERERERERERERERERERKYESEhJYvXo17777LtHR0ZhMJuLj442OJSIiIiIipYiL0QFEREREREREREREREREREQkbw4cOMDy5ctZvnw5MTExRscREREREZFSSo3GIiIiIiIiIiIiIiIiIiIiJcDevXtZvnw5K1asYP/+/QDY7Xa8vb3p1q0bffr0MTihiIiIiIiUNmo0FhERERERERERkTJhzpw5eHt7M2HChFxdP3/+fE6fPs2UKVMKOZmIiIiIyI1t377dsXLx0aNHgT+ai7t27Urfvn3p2rUrHh4exgYVEREREZFSyZSQkGA3OoSIiIiIiIiIiIhIYQsMDCQkJITY2NhcXd+pUyd27dpFfHx8IScTEREREbnWtGnTWLFiBadOnQJyNhf36dOHbt26qblYREREREQKnVY0FhERERERERERERERERERKWbef/99ADUXi4iIiIiIodRoLCIiIiIiIiIiInId8fHxuLq6Gh1DRERERMqovn370rdvX7p27Yqnp6fRcUREREREpIxSo7GIiIiIiIiIiIjIX2zdupUTJ05QpUoVo6OIiIiISBn18ccfGx1BREREREREjcYiIiIiIiIiIiJSOq1atYrVq1fnOJaUlMQjjzxyw3usViunT59m06ZNAHTp0qVQM4qIiIiIiIiIiIiIFGemhIQEu9EhRERERERERERERJxt9uzZzJkzJ9/3N2jQgGXLlhEUFOTEVCIiIiIi+XPmzBliY2O5dOkSAIGBgdStW5eKFSsanExEREREREozrWgsIiIiIiIiIiIipVLbtm1zjOfMmYOPj89NVzQ2m834+fnRsGFDoqKiMJlMhR1TREREROSmvvjiC958802io6Ove75BgwY89thjDBw4sIiTiYiIiIhIWaAVjUVERERERERERKRMCAwMJCQkhNjYWKOjiIiIiIjkyqRJk5g/fz52e9bX+haLBV9fXwAuX76M1WoFwGQyMWLECF5//XWjooqIiIiISCllNjqASFmR/eZfRERERKSoqRYVERERESOoDhURESmYJUuW8MknnwAwatQo1q1bx+nTpzly5AhHjhzh9OnT/PDDD4wcORKA+fPn89VXXxkZWaTYUC0qIiIi4jwuRgcQKSv+vM2mzWYDsrbiFBEREREpbKpFRURERMQIqkNFREQKZt68eZhMJv7+978zYcKEa867urrSrFkzmjVrRs2aNXnuuef4+OOP6devnwFpRYoX1aIiIiIizmNKSEjQY1wihcBut2MymbBarezZs4eTJ09Ss2ZN6tate821NpsNk8mU482OiIiIiEh+qRYVERERESOoDhUREXGu6tWrk5qayokTJ3Bzc7vptVeuXKFKlSp4eXlx9OjRogkoUoyoFhUREREpPFrRWKSQmEwmjh07xqhRo4iLi+P8+fN4eHhQpUoVWrZsSYcOHbj99tsJDw/Xk5MiclPZH4yIiIjklmpREXEW1aIiIpIXqkNFxFlUh4pkSUtLw9PT85ZNxgDu7u54eXmRnp5eBMlEih/VoiLiLKpFRUSupRWNRZzMZrNhNps5fPgwkyZNYsOGDbRr1w5/f39++OEHUlNTHdd6enpSp04doqKiiIqKonv37ipWROS6Dh06RM2aNY2OISIixZxqUREpDKpFpTRZu3Yta9euJSwsjEceecToOCKlhupQESkMqkNFoFmzZhw7doxNmzZRp06dm14bGxtL69atqVq1Kjt37iyagCLFgGpRESkMqkVFRHLSY1oiTmaz2QBYsmQJGzZsYPLkySxfvpwnn3wSX19fWrVqxeuvv07z5s25evUqu3bt4p133uHBBx/UmxgRySH758lPP/1EREQE77777i3vsdvt2O16hkhEpKxSLSoizqJaVEqrV155hffff5+wsDCjo4iUKqpDRcRZVIeK5NSlSxfsdjtjxozh5MmTN7wuLi6OMWPGYDKZuPPOO4swoYjxVIuKiLOoFhURuTEXowOIlDbZ26x89dVX1KlTh3vvvReA3bt3c/bsWWbMmMHw4cOpW7cuU6ZM4cKFC9x5553UqlXLyNgiUgxlZmbi5ubGDz/8gIeHh+OJyewns69HH4iIiJRtqkVFxFlUi0ppFRsbi4uLCz179jQ6ikipojpURJxFdahITk8++SRffvkle/bsoUWLFnTs2JGmTZsSFBSEyWTiwoUL7Ny5k/Xr13PlyhUCAwN54oknjI4tUqRUi4qIs6gWFRG5Ma1oLOJkZrOZhIQEjh49SrNmzahevToA+/btA7KePAa4/fbbmTdvHna7nTvuuEPbdYpIDmlpabi5uQHw7bffUqNGDce2aH99IjJ7fOzYMT788EOOHj1apFlFRKT4UC0qIs6gWlRKs/T0dHx9fR3/jouIc6gOFRFnUB0qcq3Q0FC++uoratSowZUrV1izZg1z585lypQpTJ48mblz57JmzRquXLlCrVq1+OqrrwgNDTU6tkiRUi0qIs6gWlRE5ObUaCziRNnFRGxsLBaLheDgYAAuXrzI4cOHqVChApUqVcJqtQJQrVo1XF1dWbNmjWMLBhGRkydPct999/HKK6/w5Zdfsm/fPho3bky1atUAsFgsQNaTk9m/AHbs2MHTTz/NDz/8YFR0ERExkGpREXEG1aJS2lWtWpXExERSU1ONjiJSaqgOFRFnUB0qcmNNmjRh06ZNzJs3j2HDhhEREUHNmjWpWbMmERERDBs2jHnz5vHLL7/QpEkTo+OKFCnVoiLiDKpFRURuzcXoACKlSfaWCOnp6SQnJxMUFARkPfmUlJREeHg46enpmM1mLBYLx44dw8vLi6NHj95wmwURKTvsdjsmk4mff/6Z9evXs2HDBtzd3QH4/fff+fDDD6lVqxZ169alYsWK1/zc2L9/PwC9e/cu8uwiImI81aIiUhCqRaWsGDx4MM8//zyLFy9mxIgRRscRKRVUh4pIQagOFckdV1dX+vTpQ58+fYyOIlKsqBYVkYJQLSoikntqNBYpBFWrVqVZs2bYbDYyMjKoXLkydrud3bt3c/jwYerXrw/A5s2b2b9/P927dzc4sYgUB9kfhrRo0YLXX3+ds2fP8tFHH5Gens727dvZvn075cuXp2bNmjRo0IDGjRtTv359GjRowLlz51i4cCG1a9emQoUKBv9JRETESKpFRSQ/VItKWTF+/HjWrVvHjBkzqFSpEnfccYfRkURKDdWhIpIfqkNFRMQZVIuKSH6oFhURyT1TQkKC3egQIqXRyZMnyczMpGrVqgBMmjSJTz75hLZt2zJixAjMZjN///vfOXnyJN999x3NmjUzOLGIFCfZT0/Wq1ePwMBA7r33Xo4dO8b27ds5dOgQly9fxsXFhdDQUFxcXEhOTub8+fM888wzPPnkk0bHFxERg6kWFZGCUC0qpdmiRYvIzMzko48+YteuXURERNC+fXsqV67sWLHmeoYMGVKEKUVKLtWhIlIQqkNFRKQgVIuKSEGoFhURuTk1GosUkZMnTzJgwADH1gnZnn32WZ544gmDUolIcWSz2TCbzZw5c4Z69eoxduxYZs+eTUJCAufPn+fo0aPExsayc+dO9u3bR1xcHJcvX2bixImMGzeOihUrGv1HEBGRYka1qIjklmpRKe0CAwMdq9XY7Vkfi2aPbyY+Pr5Qc4mUVqpDRSS3VIeKXF9mZiaLFy/GbrfTvXt3AgMDr3tdYmIiq1evxmQyMWjQICwWSxEnFSl+VIuKSG6pFhURuTUXowOIlAV2u52wsDBWr17N8uXLWbduHWlpaQwZMoS+ffsaHU9EipnsL7m3bNlCQEAATZs2BSAgIICAgABq165Nx44dSUxM5MKFC1itVry9vQkLC8PV1dXA5CIiUhypFhWRvFAtKqVdmzZtctVYLCIFpzpURPJCdajI9f33v//l0Ucf5c4777zpLhv+/v6sWbOG5cuXc/XqVUaMGFGEKUWKH9WiIpIXqkVFRG5NKxqLiIgUU0ePHmXnzp20bNmSSpUqYbVaMZvN+lJcRERERAqdalERERERMYLqUJGc+vXrx48//sj3339P8+bNb3rtrl276NixI+3bt2fZsmVFlFBERKT0UC0qInJjajQWMYDVasVisWC321WQiIiIiEiRUi0qIiIiIkZQHSoiIpJ31apV48qVK5w+fTpX14eGhhIYGEhMTEwhJxMpWVSLioiIiBSM2egAImWRxWIB0JsYEbkpm81mdAQRESmFVIuKSG6oFhUREWdTHSoiuaE6VCSntLQ0PD09c329h4cH8fHxhZhIpGRSLSoiuaFaVETkxtRoLFIAqampebrebs9aQPz06dMsX76cgwcPFkYsESmh/vrGxWzO/V/T2T9fRESk7FAtKiLOpFpURERyS3WoiDiT6lCRmwsODiYxMZFLly7d8tr4+HgSExMJCgoqgmQixlAtKiLOpFpURCT31Ggskk8HDhygfv36jB8/ns8++4yDBw+SkZFx03uyC43vvvuOkSNHEh0dXRRRRaSE+Osbl9y8Ocm+Rk9gi4iULapFRcTZVIuKiEhuqA4VEWdTHSpycxEREdjtdj788MNbXvvBBx9gt9uJjIwsgmQiRU+1qIg4m2pREZHcczE6gEhJtXbtWhITE1m0aBGLFi0CoFGjRrRt25Z27drRpEkTKlWqlOOe7CJl7969QNaHAyIiSUlJrFmzhoYNG1KvXj3H8T+/OfnrGxa73Y7JZGLXrl1s27aNnj17XvMzR0RESi/VoiLiLKpFpSzbsmULP//8M6dOnSI9PZ23337bcS4lJYXz588DUK1aNYMSihQ/qkNFxFlUh4rkzqhRo1i+fDlz5szBx8eHsWPHXtMUZbVaeffdd3n55ZcxmUzcf//9xoQVKWSqRUXEWVSLiojknSkhIUFruYvkQ8+ePTl69CgjRozgwIEDbN68mVOnTjnOe3l50bx5c9q3b09UVJSjONm+fTsTJkzA09OT7du3GxVfRIqRBQsWMGHCBEaNGsWrr77KqVOn2Lp1Kw0bNiQ0NBQvL69r7rHZbJjNZqZPn86//vUvdu7cSeXKlQ1ILyIiRlAtKiLOolpUyqJjx44xZswYtm7dCvzxRVF8fLzjmnPnztGsWTPS09P54YcfaNKkiVFxRYoV1aEi4iyqQ0Vy79FHH+XTTz/FZDJRvnx5oqKiCA0NxWQycfLkSTZu3MiFCxew2+0MHz6cN9980+jIIoVCtaiIOItqURGRvNOKxiL59Ntvv3H33XczdepUANLT09m1axcbNmxgw4YN7Nixg59//pmff/4ZgODgYKpVq8aePXu4cuUKzz77rJHxRaQYMZvN3HbbbdSuXRuADz/8kPfff5/IyEhq165N/fr1ue2226hWrRoVK1bExcUFs9lMcnIye/bswdfXV29iRETKGNWiIuIsqkWlrImPj6d3797ExcVRq1Yt2rVrx+eff05qamqO6ypUqMDQoUP5v//7P5YuXapGY5H/UR0qIs6iOlQk99544w1CQkJ46623OHfuHF999VWO1RUB3NzcePTRR5k+fbqRUUUKlWpREXEW1aIiInmnFY1F8mHnzp106tSJSZMmMXPmTDIzM3Fxydm3Hx8fz9atW9mwYQMbN27k+PHjAAQFBTFy5EiGDx+On5+fEfFFpJjJyMjg9OnT+Pr6EhgYSMuWLTlw4ABBQUFcunQJFxcXQkJCqFOnDg0aNKBOnTo0b96c48ePM3bsWDp16sS///1vo/8YIiJSRFSLiogzqRaVsua5557jrbfeok+fPnz44Ye4uLhQp04dzp8/n2NFY8ha9apLly7cfvvtfPPNNwYlFik+VIeKiDOpDhXJu3PnzrFs2TK2b9/uWMG4fPnyNG/enD59+lChQgWjI4oUGtWiIuJMqkVFRPJOjcYi+XTixAlcXFwIDQ11bJFgs9mw2+2YzWbHk8TZTp48ycmTJ2nUqBGenp4GpRaR4i4hIYHq1avTv39/7rnnHn7//Xf27NnDvn37OHbsGMnJyXh6elK1alU8PDzYsWMHH330Ef369TM6uoiIFCHVoj6gw0MAABzISURBVCJSGFSLSlkQGRnJoUOH2LFjB1WrVgW4YaOxzWajYsWKVKhQgb179xoRV6TYUR0qIoVBdaiIiOSGalERKQyqRUVEcsfl1peIyPVUqVLF8Xuz2Zzjf7NZrVYALBYLYWFhhIWFFV1AESlRrFYrFouFH3/8EYB27drRrVs3unXrRkJCAidOnODQoUPExMQQHR3N/v37OXDgAACdOnUyMrqIiBhAtaiIOJNqUSlLTpw4gbe3t6PJ+GbMZjM+Pj6cP3++CJKJlAyqQ0XEmVSHiohIXqgWFRFnUi0qIpI3ajQWKUQWi8Xxe7vdfs1TlCIi2bJ/XlitVgYNGkSzZs2ArBW0AgICCAgIoFGjRvTu3Zvk5GR++eUXnnrqKXx8fAgICDAwuYiIFFeqRUUkt1SLSlni4eFBSkqK48ukm0lNTSUpKYnAwMAiSidSOqgOFZHcUh0qIiLOplpURHJLtaiISN6o0VikiOhNjIjkRv/+/enUqRO+vr7AH09i2+12AFxcXAgICCAwMJDExER69+5tWFYRESk5VIuKSG6oFpWyoF69evz6669s2rSJtm3b3vTaL7/8EqvVSqNGjYoonUjpozpURHJDdaiIiBQG1aIikhuqRUVEcsd860tERESkKAUGBuLikvNZIJPJhMlkcryh+eWXX0hNTaVXr15GRBQRERGRUkq1qJR2AwcOxG63M23aNOLj42943a+//sqMGTMwmUwMHDiwCBOKiIiUTapDRURERMQoqkVFRG5NKxqL5JG2WBERI5lMJqxWK4mJiXh4eBAVFWV0JBERKUKqRUXESKpFpTS4//77WbRoEb/99hvt2rVjwIABpKWlAbBmzRpOnjzJDz/8wDfffIPVaqVly5bce++9BqcWMZ7qUBExkupQEZGyTbWoiBhJtaiISBZTQkKC3egQIiWR1WoFwGKxGJxEREo6m82G2Wzm559/plGjRvj7+9/0eqvVyr59+zh//jydOnUqopQiIlKcqBYVEWdRLSpl0aVLlxg1ahQ//vjjdb+szl6ppl27dsybN49y5coVdUSRYkt1qIg4i+pQERHJK9WiIuIsqkVFRPJOjcYieXD06FHsdjvVq1fPcdxut2Oz2TCZTJjN5uve+9VXX3H58mWGDBmCq6trUcQVkRKmYsWKrFmzhiZNmtzwmuw3PSIiUvaoFhWRwqRaVMqiNWvW8N///pdt27Zx/vx5AIKDg2nRogWDBg2iZ8+eWjVLBNWhIlK4VIeKiMjNqBYVkcKkWlREJPfUaCySB0OHDmX16tVERkbSqlUr2rdvT0REBAEBATmus9lsjtVvLBYLly5dYsCAAezYsYNLly4ZkFxEirsTJ07QuHFjevXqxaeffprj3F+3hEpNTWXTpk20b99eH4yIiJQhqkVFpLCoFhURkZtRHSoihUV1qIiI3IpqUREpLKpFRUTyRo3GInlQvXp1EhMTHW9SAPz9/WnevDnt2rWjbdu2NGnSBDc3txz3bd++nfvuu4/WrVvz8ccfF3VsESkhpkyZwr/+9S8WL15Mly5dcpyz2+1cuHCBBQsWsH79en788Ud9MCIiUsaoFhWRwqRaVEREbkR1qIgUJtWhIiJyM6pFRaQwqRYVEck9F6MDiJQUMTExJCQkMH78eO6++27WrVvHhg0b2L59O+vWrWPdunUAhIWFERkZSfv27YmKisLNzY0333yTs2fP0qtXL4P/FCJSnI0ZM4b//ve/vPLKK0RFReHh4UFycjIbN25kxYoVrF692vHmZfjw4QanFRGRoqRaVEQKm2pRERG5HtWhIlLYVIeKiMiNqBYVkcKmWlREJPe0orFILv3zn//kpZdeYt68efTp08dx/OTJk+zcuZMNGzbw888/Ex0dneM+Dw8P0tPTadWqFZ999hn+/v5FHV1EirE/P4FtMpl4+eWXefHFF3n//fc5cOAAGzZsYMuWLQD4+voyePBg7rjjDtq0aYOvr69RsUVEpIipFhWRwqBaVMqyCxcu8J///IfvvvuO2NhYEhMTAfDz86Nu3brceeedDB8+nPLlyxucVMRYqkNFpDCoDhURkdxQLSoihUG1qIhI/qjRWCSXXnzxRX777Tfmzp1LrVq1sFqtWCyWHNdkZGRw5MgRtmzZwqZNm9iyZQsmk4m+ffsyaNAgateubVB6ESlOtm3bxoULF7j99tsJDAzMce7YsWP079+fw4cPO45169aNzp07069fP33JLSJSRqkWFRFnUS0qAsuWLWPixIlcvnw5x5dLf2YymfDx8eHNN9+kb9++RRtQpBhRHSoizqI6VERE8kq1qIg4i2pREZGCU6OxSC5duHCBtLQ0KleujMlkyvV9KSkpeHh4YLFYsNvtebpXREqnyMhIDh48iJ+fH5GRkXTo0IGoqCjq1KmDt7c3n332GePGjaNHjx48++yz1K1b1/Gzw2azYTabDf4TiIhIUVMtKiLOolpUyrrNmzfTq1cvbDYbVapUYcCAATRs2JCgoCDsdjvx8fHs2bOHL7/8khMnTmCxWFi1ahW333670dFFDKE6VEScRXWoiIjklWpREXEW1aIiIgWnRmORQmKz2TCZTHrjIiLXePbZZ1m1ahVHjhzJcTwkJISOHTtSq1YtFixYgN1u59tvv6VChQqAfq6IiEju6e8MEbkR1aJS1g0cOJC1a9fSv39/3n//fVxdXa97XUZGBmPGjGHp0qV06dKFxYsXF3FSkZJJf1+IyI2oDhURkcKmvzNE5EZUi4qIFJwajUVERAxy/vx5NmzYwDfffMP69es5f/58jvMWi4X+/fvTv39/GjVqRFhYmEFJRURERKS0US0qZVXVqlVJSUnh4MGDBAQE3PTaS5cuUatWLXx8fDh27FjRBBQRESnlVIeKiIiIiFFUi4qI5J8ajUVERIqQzWYjIyMDV1fXa7ZYOXjwID/88ANff/01GzduJCMjw3HObDYTGRlJVFQUM2bM0PYsIiIiIpJnqkVFoEqVKri4uFyzgs2NVK9eHavVyvHjxws5mYiISOmlOlREREREjKJaVETEOdRoLJILdrs931shFOReESndrFYrVqsVk8l03e16t23bxnfffce3337Lzp07AfDw8OD06dNFnFRERIykWlRECoNqUSmr+vTpw4YNG9i1axdVqlS56bXHjx+nadOmtG3bluXLlxdRQpHiQ3WoiBQG1aEiIpIbqkVFpDCoFhURyT81Govkg96ciEh+2Gw2tm/fTtWqVSlfvvw15zMzM7HZbJjNZlxcXHKcS0lJYd26dZjNZnr27FlUkUVEpBhSLSoi+aFaVCTL1q1b6dWrFxEREfznP/8hKCjoutdduHCB4cOH89tvv7F8+XJatWpVxElFih/VoSKSH6pDRUTEGVSLikh+qBYVEXEeNRqL3MKWLVtIT0+nefPm+Pj4XHPebs/6T+ivb2yuXr3Kt99+i7u7O3feeWeRZBWR4m39+vWMHj2a9u3bU69ePerVq0fNmjUJCwsjICDgmuszMjKw2+1YLBYsFkvRBxYREcOpFhURZ1EtKpJl0aJF/Prrr3zyySd4e3vTtWtXGjduTLly5QCIj49n9+7dfPvtt6SmpjJs2DBat2593dcaMmRIUUYXKVKqQ0XEWVSHiohIXqkWFRFnUS0qIuI8ajQWuYXIyEguXLjAF198QUREBD/99BN+fn5Uq1btuoVHZmYmLi4u7Nmzh5EjRxIZGckHH3xQ9MFFpNj55JNPeP7558nMzCQ5ORlfX1+qVatGo0aNqFOnDnXr1qVmzZqEhobi6emZ416bzYbVar3uFi4iIlJ6qRYVEWdRLSqSJTAwEJPJdMMvprPd6jxkNSWLlFaqQ0XEWVSHiohIXqkWFRFnUS0qIuI8Lre+RKTsSkpKonLlyvj6+lKpUiVsNhvjx48nJCSE2267jfr1619TeGRvp/D7779z5MgRHnjgAYP/FCJSXNx1113Uq1ePw4cPs2fPHg4dOsSePXtYsGABXl5eBAUFUaVKFerXr0+DBg2oVasW1apVo2LFiri4uGA2m43+I4iISBFSLSoizqRaVCRLmzZttN2uyC2oDhURZ1IdKiIieaFaVEScSbWoiIjzaEVjkVs4ffo0iYmJ1K1bl59//pm77roLPz8/0tPTyczMJDg4mBo1atCgQQPq16/PbbfdRu3atXnjjTd477332L59O9WrVzf6jyEixUxGRga//PILzz77LIcPHyY9PZ2QkBBSU1NJTEzE3d2datWqUbt2bW677TaqVKlCz549KV++vNHRRUSkCKkWFZHCoFpURERuRXWoiBQG1aEiIpIbqkVFpDCoFhURKRitaCxyC6GhoYSGhgKwatUqPDw8ePrppwkMDGTbtm3s27ePgwcPsmXLFiwWC6GhodSoUYPY2FjKly+vNzEi4mC327Farbi4uHDq1Clef/11Tp8+zXvvvcftt99OXFwcp06dYt++faxfv55ffvmF2NhYLBYLVquVDh066I2MiEgZo1pURJxFtaiIiOSF6lARcRbVoSIikleqRUXEWVSLiog4j1Y0FrkFu92O3W7HbDbTtGlTvLy8WLFiBUFBQVy+fJmzZ89y6NAh9u/fz969e9m/fz9Hjx4lKSmJwYMH8/777xv9RxCRYiQzMxMXFxdmz57Na6+9xjvvvMPAgQOvue7MmTN8+umnfPDBB9SpU4eqVavyzjvvGJBYRESMpFpURJxJtaiIiOSW6lARcSbVoSIikheqRUXEmVSLiog4h1Y0FrkFk8mEyWTiypUrNG/enPr16xMYGAiAr68vvr6+1KpVi27dunHx4kUSExN58803+eSTT+jRo4fB6UWkuDGbzQBs3LgRX19fIiIigKw3OBaLBcj6uVOxYkWeeuoptm3bxpkzZ5gxY4ZhmUVExDiqRUXEmVSLiohIbqkOFRFnUh0qIiJ5oVpURJxJtaiIiHOo0Vgkl9zd3Xn11VexWq2OQgSynqiErMIjKCiIoKAgXFyy/tPq0KGDIVlFpPgym81kZmZiMpm4evUqVqvVcS776WyAjIwMXF1diYiI4IMPPuDChQtUqlTJqNgiImIw1aIi4gyqRUVEJK9Uh4qIM6gOFRGR/FAtKiLOoFpURMQ5zLe+RESyBQQEEBQUlONY9hOV2W9ojh8/zqZNm6hZsyYBAQEGpBSR4s7FxYUePXpw+fJlZs2ahdVqxcXFxfEmxm634+rqCsCxY8e4cOECFStWNDKyiIgUA6pFRcQZVIuKiEheqQ4VEWdQHSoiIvmhWlREnEG1qIhIwanRWCSPst+w/JXJZALg/PnzXLhwgfbt2xdlLBEpYbp3705ERARLliwhMjKSOXPm8Msvv5CQkODYDmrx4sX897//pVGjRlSoUMHoyCIiUgyoFhURZ1AtKiIieaU6VEScQXWoiIjkh2pREXEG1aIiIgVjSkhIuH5VJiK3ZLVaMZlMObZquXjxIhs3bqRJkyZUrVrVwHQiUtxt3LiRqVOnsnfvXgD8/f0JDg7Gz88PV1dXtmzZQmhoKDNmzGDo0KEGpxURkeJGtaiIFIRqURERyS/VoSJSEKpDRUSkIFSLikhBqBYVEck/NRqL5JLdbicuLo4zZ85Qs2ZNypUrl+O8zWbDbrdjsVgMSigiJUFmZib79+/HZDJRv359AL744gu+/fZb9uzZw/Hjx0lLS8PNzY0GDRowZcoUunXrZnBqERExmmpREXEG1aIiIpJXqkNFxBlUh4qISH6oFhURZ1AtKiLiHGo0FrkJm82G2Wzm4MGD/OMf/2DPnj0kJCTg6urKbbfdRlRUFO3ataN58+Z4enoaHVdEijGr1YrFYuHHH3/k4YcfpkuXLjz//PMEBQVhtVqJj4/nwoULpKenY7PZ/r+9+/vNe/7/OP5ou3asdNMtm6R0utWP1a9hw1D7iEyQlIQdOJBYTCQiQYQQCUH8AQ4mJMIBDiQyBJE4EJH9IJ36sW5rZGM6RCObNdOOdXpd3wPWL/vBcM37ane7nSy53teS58n1zv21PPd+Z3h4OJ2dnWOvfQLg6KNFgUrRogD8HToUqBQdCsDfpUWBStGiAJVl0RgOw5IlS/LRRx/luOOOy+zZs9Pf35+hoaGx6zNnzsyCBQvyv//9LwsXLsz8+fOLGxaoSvsOMnfccUdefvnlPP3007nppptSLpcPeVj5s2sAHD20KPBvaVEA/gkdCvxbOhSAf0qLAv+WFgWoLIvGcAj7AqK3tzeXX355Fi1alCeeeCItLS0ZGRlJX19fVq9endWrV+ezzz5LqVQa+7vd3d059dRTC5weqFYdHR2ZO3duXnzxxUybNu2g33GAAUCLAkeCFgXgr+hQ4EjQoQAcDi0KHAlaFKAyJhU9AFSrfSGxdu3aHHvssVm+fHnOP//8sde1nHzyybnqqqsyOjqabdu2paenJ++99142bNjgEAMc1MDAQOrq6tLS0pJp06Yd8sDiEAOAFgUqTYsCcDh0KFBpOhSAw6VFgUrTogCVY9EYDqG2tjZJ0tLSksbGxrHDyejo6Ni1JKmrq0tbW1va2tqydOnSjIyMFDIvUP1OOOGEnHLKKfn++++LHgWAKqdFgUrTogAcDh0KVJoOBeBwaVGg0rQoQOXU/vVX4Oh2xhlnpK6uLuvWrUuS1NfXJ0lKpdIfXseyT0NDw386H1D9yuVykl//IeT222/Pzp07s2rVqtTU1KRUKmV0dPSg9xMA0KLAv6VFAfgndCjwb+lQAP4pLQr8W1oUoPI80RgOYt/rV9auXZv7778/bW1tWbFiRaZPn57Ozs5Mnz79D/9rslwuj4XK7z8HSP7/VStz5szJnDlz0t/fP3ZP6ejo+MN3S6XS2Ctb3E8Ajk5aFKgkLQrA4dKhQCXpUAD+Di0KVJIWBai8msHBwXLRQ0C12RcRK1asyMMPP5yampqxg8qiRYty8cUX56yzzkpHR0fa2toyefLkgicGqt3mzZtz0UUXjd1L9lm0aFGuvPLKXHbZZZk/f777CQBaFKg4LQrA4dChQKXpUAAOlxYFKk2LAlSWRWP4E1999VX6+vryxRdfZNOmTfn000/z5ZdfZs+ePZkyZUpaW1tz+umn59xzz017e3suvfTSNDc3Fz02UKUGBwezcePGrFmzJmvXrs26deuye/fusestLS1ZuHBhLrnkklxxxRVpb28vcFoAiqZFgUrSogAcLh0KVJIOBeDv0KJAJWlRgMqxaAyHYWRkJIODgxkYGMjWrVvT29ub9evXZ9OmTfnuu+9SW1ubX375JW+99VYuvfTSoscFxonvvvsun3zySVatWpXVq1dnw4YNY9duuOGGPPfccwVOB0C10KLAkaBFAfgrOhQ4EnQoAIdDiwJHghYF+OcsGsOfKJVKqa2tPeDzn376KT/88EO+/fbbbN68Ob29venp6clrr72W4447roBJgfFudHQ0W7duTU9PT15//fXccsstufrqq4seC4ACaVHgv6JFAfg9HQr8V3QoAPvTosB/RYsC/D0WjeEQDnWIOZhdu3blxx9/TEtLyxGeCgCAo4EWBQCgCDoUAICiaFEAgOpl0Rj+xI4dO7J9+/b09/dn6tSpaWtry8yZM4seCwCAo4AWBQCgCDoUAICiaFEAgOo0qegBoBqVy+X09PTknnvuSV9fXxobGzNr1qy0tramvb09Z599djo6OtLe3p6mpqaixwUAYALRogAAFEGHAgBQFC0KAFDdPNEYfmd0dDR1dXXp7u4eO8R0dnbm2GOPzbvvvpvR0dEkyfHHH5/W1tbMnj07p512WubPn5/rr7++4OkBABjPtCgAAEXQoQAAFEWLAgCMD7VFDwDV6Pnnn09fX1+effbZvPHGG1m6dGnq6urS1dWVRx55JFOnTs3GjRvzzjvv5Mknn8xLL71U9MgAAEwQWhQAgCLoUAAAiqJFAQCq26SiB4BqUldXlyR5++23c8UVV+Sqq65Kkmzbti0jIyO56667smDBglxwwQV58MEHM3Xq1Jx55plZvHhxkWMDADABaFEAAIqgQwEAKIoWBQAYHzzRGH5TLpeTJOvXr8/w8HDOO++8NDU1ZXh4OOvXr09DQ0MWLFiQJLn88svz6KOPpru7O9ddd126urqKHB0AgHFOiwIAUAQdCgBAUbQoAMD4YdEYfrPvINPX15e6urq0tLQkSQYGBvLll1/mnHPOSZKMjIwkSS688MI0NTXlo48+KmZgAAAmDC0KAEARdCgAAEXRogAA44dFY/hNbe2vP4dSqZS9e/dmxowZSZI9e/ZkeHg4LS0tKZfLYweeLVu25JhjjsnXX39d2MwAAEwMWhQAgCLoUAAAiqJFAQDGD4vGsJ958+bl/PPPT0NDQ5Kkvb09Q0ND6e3tzc6dOzN58uQkyfvvv5+BgYFceOGFRY4LAMAEokUBACiCDgUAoChaFACg+tUMDg6Wix4Cqsnw8HA2bdqUpqamnH766dm7d29uvfXWvPXWW1m8eHG6urpSKpXy6KOPZsqUKfnwww8zffr0oscGAGAC0KIAABRBhwIAUBQtCgBQ/SwaQ5JyuZyampqxP/fX3d2dW265JQMDA2OfnXjiibnvvvuyfPny/3JUAAAmGC0KAEARdCgAAEXRogAA44tFY0hSKpVSW1ubJUuW5JprrsmyZcvS3NyccvnXn0dNTU2+/fbbrFy5Mlu2bMnPP/+crq6udHV1FTw5AADjnRYFAKAIOhQAgKJoUQCA8cWiMfzmhx9+yNy5c9PY2Jhly5bl3nvvTXNzc5Jk7969qa+vz8jISMrlciZPnlzwtAAATCRaFACAIuhQAACKokUBAMaP2qIHgGpQLpfT3NyclStXZt68eXnqqafS2dmZV155JUlSX1+fJGloaMjkyZNTKpWKHBcAgAlEiwIAUAQdCgBAUbQoAMD44onGsJ+PP/44zzzzTFauXJlp06bl5ptvzvLly9Pa2ppSqZRyuZy6urqixwQAYALSogAAFEGHAgBQFC0KAFD9LBrDIbz22mt57LHH0t/fnwULFuSJJ57IRRddVPRYAAAcBbQoAABF0KEAABRFiwIAVC+LxrCf0dHR1NbWpqamJhs3bszTTz+dV199NaVSKbfddluWLVuW9vb2oscEAGAC0qIAABRBhwIAUBQtCgBQ/Swaw++Mjo4e9LUrzz33XB5//PHs2rUrN954Yx544IGceuqpBUwIAMBEpUUBACiCDgUAoChaFABgfLBoDPspl8vZvXt3GhsbMzQ0lO3bt2fWrFn54IMP8tBDD+Xzzz/PZZddljfffLPoUQEAmGC0KAAARdChAAAURYsCAFS/SUUPANXghRdeyObNm7Nr167U19dn27Zt+eabb3L88cdnYGAg27Zty4wZM7Jjx44kyfXXX1/wxAAATBRaFACAIuhQAACKokUBAMYXi8YctcrlcmpqarJmzZrcfffdY59PmjQpDQ0N2b17d1pbW9PU1JQ5c+Zkzpw5Oemkk7Jz585ce+21BU4OAMB4p0UBACiCDgUAoChaFABg/LJozFGrpqYmSdLc3Jw777wzF198cfbu3Zva2trMmzcvxxxzTIaGhjJ79uw0NjZmcHAw06ZNK3ZoAAAmBC0KAEARdCgAAEXRogAA41fN4OBgueghYLwol3/9uew7BAEAwH9FiwIAUAQdCgBAUbQoAEB18ERj+BscYAAAKIoWBQCgCDoUAICiaFEAgOpQW/QAAAAAAAAAAAAAAED1sWgMAAAAAAAAAAAAABzAojEAAAAAAAAAAAAAcACLxgAAAAAAAAAAAADAASwaAwAAAAAAAAAAAAAHsGgMAAAAAAAAAAAAABzAojEAAAAAAAAAAAAAcACLxgAAAAAAAAAAAADAAf4PpGKOY1csbYkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows, cols = 1, 4\n", "fig, ax = plt.subplots(rows, cols, figsize=(10 * cols, 6 * rows))\n", "\n", "for i, y in enumerate(\n", " [\n", " \"result.test_mean\",\n", " \"result.test_mean_de\",\n", " \"result.perturbation disentanglement\",\n", " \"result.covariate disentanglement\",\n", " ]\n", "):\n", " sns.violinplot(\n", " data=best,\n", " x=\"config.model.embedding.model\",\n", " y=y,\n", " hue=\"config.model.load_pretrained\",\n", " inner=\"points\",\n", " ax=ax[i],\n", " scale=\"width\",\n", " )\n", " ax[i].set_xticklabels(ax[i].get_xticklabels(), rotation=75, ha=\"right\")\n", " ax[i].set_xlabel(\"\")\n", " ax[i].set_ylabel(y.split(\".\")[-1])\n", " ax[i].legend(title=\"Pretrained\", loc=\"lower right\", fontsize=18, title_fontsize=24)\n", "ax[0].get_legend().remove()\n", "# ax[0].set_ylim([0.4, 1.01])\n", "ax[1].get_legend().remove()\n", "# ax[1].set_ylim([0.4, 1.01])\n", "ax[2].get_legend().remove()\n", "ax[3].legend(\n", " title=\"Pretrained\",\n", " fontsize=18,\n", " title_fontsize=24,\n", " loc=\"center left\",\n", " bbox_to_anchor=(1, 0.5),\n", ")\n", "plt.tight_layout()" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
config.model.embedding.modelconfig.model.load_pretrainedconfig.dataset.data_params.split_keyresult.val_mean_deresult.test_meanresult.test_mean_deresult.perturbation disentanglementresult.covariate disentanglementconfig_hash
1vanillaFalsesplit_baseline_A5490.6737330.6768550.5380960.0978510.5867754f5a9a00cb34fff872d9e650545f8d49
30rdkitTruesplit_baseline_A5490.7351640.8733110.8454800.1148400.6592278a077f7c4f6fd3aecc192eec50a1b7db
43rdkitFalsesplit_baseline_A5490.7232510.8038060.7393970.1195870.627831abb6672bdaba28e59c22d8ef0a04a946
17vanillaFalsesplit_baseline_K5620.6736690.4923730.2863430.0966680.558397224debd3ad4bd09a254e23300b654f84
50rdkitTruesplit_baseline_K5620.7429960.6622100.5683900.1120090.62380499a342899b22d38659ef0f78b46d386b
63rdkitFalsesplit_baseline_K5620.7271490.6225050.4953560.1230620.629330f8a333ed5a87d65898ce980862e58ba1
27vanillaFalsesplit_baseline_MCF70.6757720.4485470.2026250.1132540.5022799e09ecdbef94501e956db107758bbd75
70rdkitTruesplit_baseline_MCF70.7422640.7594690.6209970.1142180.6263158c7f1848947f9a002eb62260ae92f584
83rdkitFalsesplit_baseline_MCF70.7215180.7089410.5175420.1261400.68153988dceb78980ad3e5da9f2b6245780d5a
\n", "
" ], "text/plain": [ " config.model.embedding.model config.model.load_pretrained \\\n", "1 vanilla False \n", "30 rdkit True \n", "43 rdkit False \n", "17 vanilla False \n", "50 rdkit True \n", "63 rdkit False \n", "27 vanilla False \n", "70 rdkit True \n", "83 rdkit False \n", "\n", " config.dataset.data_params.split_key result.val_mean_de result.test_mean \\\n", "1 split_baseline_A549 0.673733 0.676855 \n", "30 split_baseline_A549 0.735164 0.873311 \n", "43 split_baseline_A549 0.723251 0.803806 \n", "17 split_baseline_K562 0.673669 0.492373 \n", "50 split_baseline_K562 0.742996 0.662210 \n", "63 split_baseline_K562 0.727149 0.622505 \n", "27 split_baseline_MCF7 0.675772 0.448547 \n", "70 split_baseline_MCF7 0.742264 0.759469 \n", "83 split_baseline_MCF7 0.721518 0.708941 \n", "\n", " result.test_mean_de result.perturbation disentanglement \\\n", "1 0.538096 0.097851 \n", "30 0.845480 0.114840 \n", "43 0.739397 0.119587 \n", "17 0.286343 0.096668 \n", "50 0.568390 0.112009 \n", "63 0.495356 0.123062 \n", "27 0.202625 0.113254 \n", "70 0.620997 0.114218 \n", "83 0.517542 0.126140 \n", "\n", " result.covariate disentanglement config_hash \n", "1 0.586775 4f5a9a00cb34fff872d9e650545f8d49 \n", "30 0.659227 8a077f7c4f6fd3aecc192eec50a1b7db \n", "43 0.627831 abb6672bdaba28e59c22d8ef0a04a946 \n", "17 0.558397 224debd3ad4bd09a254e23300b654f84 \n", "50 0.623804 99a342899b22d38659ef0f78b46d386b \n", "63 0.629330 f8a333ed5a87d65898ce980862e58ba1 \n", "27 0.502279 9e09ecdbef94501e956db107758bbd75 \n", "70 0.626315 8c7f1848947f9a002eb62260ae92f584 \n", "83 0.681539 88dceb78980ad3e5da9f2b6245780d5a " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cols = [\n", " 'config.model.embedding.model',\n", " \"config.model.load_pretrained\",\n", " \"config.dataset.data_params.split_key\",\n", " \"result.val_mean_de\",\n", " \"result.test_mean\",\n", " \"result.test_mean_de\",\n", " \"result.perturbation disentanglement\",\n", " \"result.covariate disentanglement\",\n", " 'config_hash'\n", "]\n", "\n", "best.loc[:, cols]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "| | config.model.embedding.model | config.model.load_pretrained | config.dataset.data_params.split_key | result.val_mean_de | result.test_mean | result.test_mean_de | result.perturbation disentanglement | result.covariate disentanglement | config_hash |\n", "|---:|:-------------------------------|:-------------------------------|:---------------------------------------|---------------------:|-------------------:|----------------------:|--------------------------------------:|-----------------------------------:|:---------------------------------|\n", "| 1 | vanilla | False | split_baseline_A549 | 0.673733 | 0.676855 | 0.538096 | 0.0978514 | 0.586775 | 4f5a9a00cb34fff872d9e650545f8d49 |\n", "| 30 | rdkit | True | split_baseline_A549 | 0.735164 | 0.873311 | 0.84548 | 0.11484 | 0.659227 | 8a077f7c4f6fd3aecc192eec50a1b7db |\n", "| 43 | rdkit | False | split_baseline_A549 | 0.723251 | 0.803806 | 0.739397 | 0.119587 | 0.627831 | abb6672bdaba28e59c22d8ef0a04a946 |\n", "| 17 | vanilla | False | split_baseline_K562 | 0.673669 | 0.492373 | 0.286343 | 0.0966678 | 0.558397 | 224debd3ad4bd09a254e23300b654f84 |\n", "| 50 | rdkit | True | split_baseline_K562 | 0.742996 | 0.66221 | 0.56839 | 0.112009 | 0.623804 | 99a342899b22d38659ef0f78b46d386b |\n", "| 63 | rdkit | False | split_baseline_K562 | 0.727149 | 0.622505 | 0.495356 | 0.123062 | 0.62933 | f8a333ed5a87d65898ce980862e58ba1 |\n", "| 27 | vanilla | False | split_baseline_MCF7 | 0.675772 | 0.448547 | 0.202625 | 0.113254 | 0.502279 | 9e09ecdbef94501e956db107758bbd75 |\n", "| 70 | rdkit | True | split_baseline_MCF7 | 0.742264 | 0.759469 | 0.620997 | 0.114218 | 0.626315 | 8c7f1848947f9a002eb62260ae92f584 |\n", "| 83 | rdkit | False | split_baseline_MCF7 | 0.721518 | 0.708941 | 0.517542 | 0.12614 | 0.681539 | 88dceb78980ad3e5da9f2b6245780d5a |\n" ] } ], "source": [ "print(best.loc[:, cols].to_markdown())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.7.12 ('chemical_CPA')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "1951151eba8820d10dfca2d7d54a7baca5e102b36d5a32493b1f70139f456eae" } } }, "nbformat": 4, "nbformat_minor": 2 }