|
|
|
|
|
seml: |
|
executable: chemCPA/seml_sweep_icb.py |
|
name: ft_sciplex_hparam |
|
output_dir: sweeps/logs |
|
conda_environment: chemical_CPA |
|
project_root_dir: ../.. |
|
|
|
slurm: |
|
max_simultaneous_jobs: 17 |
|
experiments_per_job: 2 |
|
sbatch_options_template: GPU |
|
sbatch_options: |
|
gres: gpu:1 |
|
mem: 32G |
|
cpus-per-task: 6 |
|
|
|
time: 1-00:01 |
|
|
|
|
|
fixed: |
|
profiling.run_profiler: False |
|
profiling.outdir: "./" |
|
|
|
training.checkpoint_freq: 15 |
|
training.num_epochs: 1500 |
|
training.max_minutes: 1200 |
|
training.full_eval_during_train: False |
|
training.run_eval_disentangle: True |
|
training.save_checkpoints: True |
|
training.save_dir: /storage/groups/ml01/projects/2021_chemicalCPA_leon.hetzel/sweeps/checkpoints |
|
|
|
dataset.dataset_type: trapnell |
|
dataset.data_params.dataset_path: /storage/groups/ml01/projects/2021_chemicalCPA_leon.hetzel/datasets/trapnell_cpa_lincs_genes.h5ad |
|
dataset.data_params.perturbation_key: condition |
|
dataset.data_params.pert_category: cov_drug_dose_name |
|
dataset.data_params.dose_key: dose |
|
dataset.data_params.covariate_keys: cell_type |
|
dataset.data_params.smiles_key: SMILES |
|
dataset.data_params.degs_key: lincs_DEGs |
|
dataset.data_params.split_key: split_ho_pathway |
|
dataset.data_params.use_drugs_idx: True |
|
|
|
|
|
model.pretrained_model_path: /storage/groups/ml01/projects/2021_chemicalCPA_leon.hetzel/sweeps/checkpoints |
|
model.pretrained_model_hashes: |
|
grover_base: ff420aea264fca7668ecb147f60762a1 |
|
MPNN: ff9629a1b216372be8b205556cabc6fb |
|
rdkit: 4f061dbfc7af05cf84f06a724b0c8563 |
|
weave: 1244d8b476696a7e1c01fd05d73d7450 |
|
jtvae: a7060ac4e2c6154e64a13acd414cbba2 |
|
seq2seq: e31119adc782888d5b75c57f8c803ee0 |
|
GCN: aedb25c686fb856e574a951f749b8dcf |
|
vanilla: ba3569d1f5898a6bb964b7fafbed2641 |
|
model.additional_params.patience: 4 |
|
model.additional_params.decoder_activation: linear |
|
model.additional_params.doser_type: amortized |
|
model.embedding.directory: null |
|
|
|
model.additional_params.seed: 1337 |
|
|
|
|
|
model.hparams.dim: 32 |
|
model.hparams.dropout: 0.262378 |
|
model.hparams.autoencoder_width: 256 |
|
model.hparams.autoencoder_depth: 4 |
|
|
|
random: |
|
samples: 10 |
|
seed: 42 |
|
model.hparams.batch_size: |
|
type: choice |
|
options: |
|
- 32 |
|
- 64 |
|
- 128 |
|
model.hparams.autoencoder_lr: |
|
type: loguniform |
|
min: 1e-4 |
|
max: 1e-2 |
|
model.hparams.autoencoder_wd: |
|
type: loguniform |
|
min: 1e-8 |
|
max: 1e-5 |
|
model.hparams.adversary_width: |
|
type: choice |
|
options: |
|
- 64 |
|
- 128 |
|
- 256 |
|
model.hparams.adversary_depth: |
|
type: choice |
|
options: |
|
- 2 |
|
- 3 |
|
- 4 |
|
model.hparams.adversary_lr: |
|
type: loguniform |
|
min: 5e-5 |
|
max: 1e-2 |
|
model.hparams.adversary_wd: |
|
type: loguniform |
|
min: 1e-8 |
|
max: 1e-3 |
|
model.hparams.adversary_steps: |
|
type: choice |
|
options: |
|
- 2 |
|
- 3 |
|
model.hparams.reg_adversary: |
|
type: loguniform |
|
min: 5 |
|
max: 100 |
|
model.hparams.penalty_adversary: |
|
type: loguniform |
|
min: 1 |
|
max: 10 |
|
model.hparams.dosers_lr: |
|
type: loguniform |
|
min: 1e-4 |
|
max: 1e-2 |
|
model.hparams.dosers_wd: |
|
type: loguniform |
|
min: 1e-8 |
|
max: 1e-5 |
|
|
|
grid: |
|
model.load_pretrained: |
|
type: choice |
|
options: |
|
- True |
|
- False |
|
rdkit: |
|
fixed: |
|
model.embedding.model: rdkit |
|
model.hparams.dosers_width: 64 |
|
model.hparams.dosers_depth: 3 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 128 |
|
model.hparams.embedding_encoder_depth: 4 |
|
|
|
grover_base: |
|
fixed: |
|
model.embedding.model: grover_base |
|
model.hparams.dosers_width: 512 |
|
model.hparams.dosers_depth: 2 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 512 |
|
model.hparams.embedding_encoder_depth: 3 |
|
|
|
jtvae: |
|
fixed: |
|
model.embedding.model: jtvae |
|
model.hparams.dosers_width: 64 |
|
model.hparams.dosers_depth: 2 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 256 |
|
model.hparams.embedding_encoder_depth: 4 |
|
|
|
MPNN: |
|
fixed: |
|
model.embedding.model: MPNN |
|
model.hparams.dosers_width: 64 |
|
model.hparams.dosers_depth: 2 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 128 |
|
model.hparams.embedding_encoder_depth: 4 |
|
|
|
seq2seq: |
|
fixed: |
|
model.embedding.model: seq2seq |
|
model.hparams.dosers_width: 256 |
|
model.hparams.dosers_depth: 3 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 256 |
|
model.hparams.embedding_encoder_depth: 4 |
|
|
|
vanilla: |
|
fixed: |
|
model.embedding.model: vanilla |
|
model.hparams.dosers_width: 512 |
|
model.hparams.dosers_depth: 2 |
|
|
|
|
|
|
|
model.hparams.step_size_lr: 50 |
|
model.hparams.embedding_encoder_width: 128 |
|
model.hparams.embedding_encoder_depth: 2 |
|
|