File size: 16,632 Bytes
a48f0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.16.1
#   kernelspec:
#     display_name: Python 3
#     language: python
#     name: python3
# ---

# # 3 LINCS SCIPLEX GENE MATCHING
#
# **Requires**
# * `'lincs_full_smiles.h5ad'`
# * `'sciplex_raw_chunk_{i}.h5ad'` with $i \in \{0,1,2,3,4\}$
#
# **Output**
# * `'sciplex3_matched_genes_lincs.h5ad'`
# * `lincs`: `'sciplex3_lincs_genes.h5ad'`
# * `sciplex`: `'lincs_full_smiles_sciplex_genes.h5ad'`
#
# ## Description 
#
# The goal of this notebook is to match and merge genes between the LINCS and SciPlex datasets, resulting in the creation of three new datasets:
#
# ### Created datasets
#
# - **`sciplex3_matched_genes_lincs.h5ad`**: Contains **SciPlex observations**. **Genes are limited to the intersection** of the genes found in both LINCS and SciPlex datasets.
#
# - **`sciplex3_lincs_genes.h5ad`**: Contains **SciPlex data**, but filtered to include **only the genes that are shared with the LINCS dataset**.
#
# - **`lincs_full_smiles_sciplex_genes.h5ad`**: Contains **LINCS data**, but filtered to include **only the genes that are shared with the SciPlex dataset**.
#
# To create these datasets, we need to match the genes between the two datasets, which is done as follows:
#
# ### Gene Matching
#
# 1. **Gene ID Assignment**: SciPlex gene names are standardized to Ensembl gene IDs by extracting the primary identifier and using either **sfaira** or a predefined mapping (`symbols_dict.json`). The LINCS dataset is already standardized.
#
# 2. **Identifying Shared Genes**: We then compute the intersection of the gene IDs (`gene_id`) inside LINCS and SciPlex. Both datasets are then filtered to ggvG$retain only these shared genes.
#
# 3. **Reindexing**: The LINCS dataset is reindexed to match the order of genes in the SciPlex dataset.
#
#

# +
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sfaira
import warnings
os.getcwd()

from chemCPA.paths import DATA_DIR, PROJECT_DIR

pd.set_option('display.max_columns', 100)

root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(root_dir)
import raw_data.datasets as datasets
import logging

logging.basicConfig(level=logging.INFO)
from notebook_utils import suppress_output

import scanpy as sc
with suppress_output():
    sc.set_figure_params(dpi=80, frameon=False)
    sc.logging.print_header()
    warnings.filterwarnings('ignore')
# -

# %load_ext autoreload
# %autoreload 2

# ## Load data

# Load lincs

adata_lincs = sc.read(DATA_DIR/'lincs_full_smiles.h5ad' )

# Load sciplex 

# +
from tqdm import tqdm
from chemCPA.paths import DATA_DIR, PROJECT_DIR
from raw_data.datasets import sciplex

# Load and concatenate chunks
adatas_sciplex = []
logging.info("Starting to load in sciplex data")

# Get paths to all sciplex chunks
chunk_paths = sciplex()

# Load chunks with progress bar
for chunk_path in tqdm(chunk_paths, desc="Loading sciplex chunks"):
    tqdm.write(f"Loading {os.path.basename(chunk_path)}")
    adatas_sciplex.append(sc.read(chunk_path))
    
adata_sciplex = adatas_sciplex[0].concatenate(adatas_sciplex[1:])
logging.info("Sciplex data loaded")
# -

# Add gene_id to sciplex

adata_sciplex.var['gene_id'] = adata_sciplex.var.id.str.split('.').str[0]
adata_sciplex.var['gene_id'].head()

# ### Get gene ids from symbols via sfaira

# Load genome container with sfaira

try: 
    # load json file with symbol to id mapping
    import json
    with open(DATA_DIR/ 'symbols_dict.json') as json_file:
        symbols_dict = json.load(json_file)
except: 
    logging.info("No symbols_dict.json found, falling back to sfaira")
    genome_container = sfaira.versions.genomes.GenomeContainer(organism="homo_sapiens", release="82")
    symbols_dict = genome_container.symbol_to_id_dict
    # Extend symbols dict with unknown symbol
    symbols_dict.update({'PLSCR3':'ENSG00000187838'})

# Identify genes that are shared between lincs and trapnell

# For lincs
adata_lincs.var['gene_id'] = adata_lincs.var_names.map(symbols_dict)
adata_lincs.var['in_sciplex'] = adata_lincs.var.gene_id.isin(adata_sciplex.var.gene_id)

# For trapnell
adata_sciplex.var['in_lincs'] = adata_sciplex.var.gene_id.isin(adata_lincs.var.gene_id)

# Print gene matching statistics
print("\nGene matching statistics:")
print(f"Number of genes in LINCS: {adata_lincs.shape[1]}")
print(f"Number of genes in sciplex: {adata_sciplex.shape[1]}")
print(f"Number of shared genes: {sum(adata_sciplex.var.in_lincs)}")

# ## Preprocess sciplex dataset

# See `sciplex3.ipynb`

# The original CPA implementation required to subset the data due to scaling limitations.   
# In this version we expect to be able to handle the full sciplex dataset.

# +
SUBSET = False

if SUBSET: 
    sc.pp.subsample(adata_sciplex, fraction=0.5, random_state=42)
# -

sc.pp.normalize_per_cell(adata_sciplex)

sc.pp.log1p(adata_sciplex)

sc.pp.highly_variable_genes(adata_sciplex, n_top_genes=1032, subset=False)

# ### Combine HVG with lincs genes
#
# Union of genes that are considered highly variable and those that are shared with lincs

((adata_sciplex.var.in_lincs) | (adata_sciplex.var.highly_variable)).sum()

# Subset to that union of genes

adata_sciplex = adata_sciplex[:, (adata_sciplex.var.in_lincs) | (adata_sciplex.var.highly_variable)].copy()

# ### Create additional meta data 

# Normalise dose values

adata_sciplex.obs['dose_val'] = adata_sciplex.obs.dose.astype(float) / np.max(adata_sciplex.obs.dose.astype(float))
adata_sciplex.obs.loc[adata_sciplex.obs['product_name'].str.contains('Vehicle'), 'dose_val'] = 1.0

adata_sciplex.obs['dose_val'].value_counts()

# Change `product_name`

adata_sciplex.obs['product_name'] = [x.split(' ')[0] for x in adata_sciplex.obs['product_name']]
adata_sciplex.obs.loc[adata_sciplex.obs['product_name'].str.contains('Vehicle'), 'product_name'] = 'control'

# Create copy of `product_name` with column name `control`

adata_sciplex.obs['condition'] = adata_sciplex.obs.product_name.copy()

# Add combinations of drug (`condition`), dose (`dose_val`), and cell_type (`cell_type`)

# make column of dataframe to categorical 
adata_sciplex.obs["condition"] = adata_sciplex.obs["condition"].astype('category').cat.rename_categories({"(+)-JQ1": "JQ1"})
adata_sciplex.obs['drug_dose_name'] = adata_sciplex.obs.condition.astype(str) + '_' + adata_sciplex.obs.dose_val.astype(str)
adata_sciplex.obs['cov_drug_dose_name'] = adata_sciplex.obs.cell_type.astype(str) + '_' + adata_sciplex.obs.drug_dose_name.astype(str)
adata_sciplex.obs['cov_drug'] = adata_sciplex.obs.cell_type.astype(str) + '_' + adata_sciplex.obs.condition.astype(str)

# Add `control` columns with vale `1` where only the vehicle was used

adata_sciplex.obs['control'] = [1 if x == 'control_1.0' else 0 for x in adata_sciplex.obs.drug_dose_name.values]

# ## Compute DE genes

# +
from chemCPA.helper import rank_genes_groups_by_cov

rank_genes_groups_by_cov(adata_sciplex, groupby='cov_drug', covariate='cell_type', control_group='control', key_added='all_DEGs')
# -

adata_subset = adata_sciplex[:, adata_sciplex.var.in_lincs].copy()
rank_genes_groups_by_cov(adata_subset, groupby='cov_drug', covariate='cell_type', control_group='control', key_added='lincs_DEGs')
adata_sciplex.uns['lincs_DEGs'] = adata_subset.uns['lincs_DEGs']

# ### Map all unique `cov_drug_dose_name` to the computed DEGs, independent of the dose value
#
# Create mapping between names with dose and without dose

cov_drug_dose_unique = adata_sciplex.obs.cov_drug_dose_name.unique()

remove_dose = lambda s: '_'.join(s.split('_')[:-1])
cov_drug = pd.Series(cov_drug_dose_unique).apply(remove_dose)
dose_no_dose_dict = dict(zip(cov_drug_dose_unique, cov_drug))

# ### Compute new dicts for DEGs

uns_keys = ['all_DEGs', 'lincs_DEGs']

for uns_key in uns_keys:
    new_DEGs_dict = {}

    df_DEGs = pd.Series(adata_sciplex.uns[uns_key])

    for key, value in dose_no_dose_dict.items():
        if 'control' in key:
            continue
        new_DEGs_dict[key] = df_DEGs.loc[value]
    adata_sciplex.uns[uns_key] = new_DEGs_dict

adata_sciplex

# ## Create sciplex splits
#
# This is not the right configuration fot the experiments we want but for the moment this is okay

# ### OOD in Pathways

# +
adata_sciplex.obs['split_ho_pathway'] = 'train'  # reset

ho_drugs = [
    # selection of drugs from various pathways
    "Azacitidine",
    "Carmofur",
    "Pracinostat",
    "Cediranib",
    "Luminespib",
    "Crizotinib",
    "SNS-314",
    "Obatoclax",
    "Momelotinib",
    "AG-14361",
    "Entacapone",
    "Fulvestrant",
    "Mesna",
    "Zileuton",
    "Enzastaurin",
    "IOX2",
    "Alvespimycin",
    "XAV-939",
    "Fasudil",
]

ho_drug_pathway = adata_sciplex.obs['condition'].isin(ho_drugs)
adata_sciplex.obs.loc[ho_drug_pathway, 'pathway_level_1'].value_counts()
# -

ho_drug_pathway.sum()

# +
adata_sciplex.obs.loc[ho_drug_pathway & (adata_sciplex.obs['dose_val'] == 1.0), 'split_ho_pathway'] = 'ood'

test_idx = sc.pp.subsample(adata_sciplex[adata_sciplex.obs['split_ho_pathway'] != 'ood'], .15, copy=True).obs.index
adata_sciplex.obs.loc[test_idx, 'split_ho_pathway'] = 'test'
# -

pd.crosstab(adata_sciplex.obs.pathway_level_1, adata_sciplex.obs['condition'][adata_sciplex.obs.condition.isin(ho_drugs)])

adata_sciplex.obs['split_ho_pathway'].value_counts()

adata_sciplex[adata_sciplex.obs.split_ho_pathway == 'ood'].obs.condition.value_counts()

adata_sciplex[adata_sciplex.obs.split_ho_pathway == 'test'].obs.condition.value_counts()

# ### OOD drugs in epigenetic regulation, Tyrosine kinase signaling, cell cycle regulation

adata_sciplex.obs['pathway_level_1'].value_counts()

# ___
#
# #### Tyrosine signaling

adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Tyrosine kinase signaling"]),'condition'].value_counts()

tyrosine_drugs = adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Tyrosine kinase signaling"]),'condition'].unique()

# +
adata_sciplex.obs['split_tyrosine_ood'] = 'train'  

test_idx = sc.pp.subsample(adata_sciplex[adata_sciplex.obs.pathway_level_1.isin(["Tyrosine kinase signaling"])], .20, copy=True).obs.index
adata_sciplex.obs.loc[test_idx, 'split_tyrosine_ood'] = 'test'

adata_sciplex.obs.loc[adata_sciplex.obs.condition.isin(["Cediranib", "Crizotinib", "Motesanib", "BMS-754807", "Nintedanib"]), 'split_tyrosine_ood'] = 'ood'  
# -

adata_sciplex.obs.split_tyrosine_ood.value_counts()

pd.crosstab(adata_sciplex.obs.split_tyrosine_ood, adata_sciplex.obs['condition'][adata_sciplex.obs.condition.isin(tyrosine_drugs)])

pd.crosstab(adata_sciplex.obs.split_tyrosine_ood, adata_sciplex.obs.dose_val)

# ____
#
# #### Epigenetic regulation

adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Epigenetic regulation"]),'condition'].value_counts()

epigenetic_drugs = adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Epigenetic regulation"]),'condition'].unique()

# +
adata_sciplex.obs['split_epigenetic_ood'] = 'train'  

test_idx = sc.pp.subsample(adata_sciplex[adata_sciplex.obs.pathway_level_1.isin(["Epigenetic regulation"])], .20, copy=True).obs.index
adata_sciplex.obs.loc[test_idx, 'split_epigenetic_ood'] = 'test'

adata_sciplex.obs.loc[adata_sciplex.obs.condition.isin(["Azacitidine", "Pracinostat", "Trichostatin", "Quisinostat", "Tazemetostat"]), 'split_epigenetic_ood'] = 'ood'  
# -

adata_sciplex.obs.split_epigenetic_ood.value_counts()

pd.crosstab(adata_sciplex.obs.split_epigenetic_ood, adata_sciplex.obs['condition'][adata_sciplex.obs.condition.isin(epigenetic_drugs)])

pd.crosstab(adata_sciplex.obs.split_tyrosine_ood, adata_sciplex.obs.dose_val)

# + [markdown] jp-MarkdownHeadingCollapsed=true
# __________
#
# #### Cell cycle regulation
# -

adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Cell cycle regulation"]),'condition'].value_counts()

cell_cycle_drugs = adata_sciplex.obs.loc[adata_sciplex.obs.pathway_level_1.isin(["Cell cycle regulation"]),'condition'].unique()

# +
adata_sciplex.obs['split_cellcycle_ood'] = 'train'  

test_idx = sc.pp.subsample(adata_sciplex[adata_sciplex.obs.pathway_level_1.isin(["Cell cycle regulation"])], .20, copy=True).obs.index
adata_sciplex.obs.loc[test_idx, 'split_cellcycle_ood'] = 'test'

adata_sciplex.obs.loc[adata_sciplex.obs.condition.isin(["SNS-314", "Flavopiridol", "Roscovitine"]), 'split_cellcycle_ood'] = 'ood'  
# -

adata_sciplex.obs.split_cellcycle_ood.value_counts()

pd.crosstab(adata_sciplex.obs.split_cellcycle_ood, adata_sciplex.obs['condition'][adata_sciplex.obs.condition.isin(cell_cycle_drugs)])

pd.crosstab(adata_sciplex.obs.split_cellcycle_ood, adata_sciplex.obs.dose_val)

[c for c in adata_sciplex.obs.columns if 'split' in c]

# + [markdown] jp-MarkdownHeadingCollapsed=true
# ### Further splits
#
# **We omit these split as we design our own splits - for referece this is commented out for the moment**
#
# Also a split which sees all data:

# +
# adata.obs['split_all'] = 'train'
# test_idx = sc.pp.subsample(adata, .10, copy=True).obs.index
# adata.obs.loc[test_idx, 'split_all'] = 'test'

# +
# adata.obs['ct_dose'] = adata.obs.cell_type.astype('str') + '_' + adata.obs.dose_val.astype('str')
# -

# Round robin splits: dose and cell line combinations will be held out in turn.

# +
# i = 0
# split_dict = {}

# +
# # single ct holdout
# for ct in adata.obs.cell_type.unique():
#     for dose in adata.obs.dose_val.unique():
#         i += 1
#         split_name = f'split{i}'
#         split_dict[split_name] = f'{ct}_{dose}'
        
#         adata.obs[split_name] = 'train'
#         adata.obs.loc[adata.obs.ct_dose == f'{ct}_{dose}', split_name] = 'ood'
        
#         test_idx = sc.pp.subsample(adata[adata.obs[split_name] != 'ood'], .16, copy=True).obs.index
#         adata.obs.loc[test_idx, split_name] = 'test'
        
#         display(adata.obs[split_name].value_counts())

# +
# # double ct holdout
# for cts in [('A549', 'MCF7'), ('A549', 'K562'), ('MCF7', 'K562')]:
#     for dose in adata.obs.dose_val.unique():
#         i += 1
#         split_name = f'split{i}'
#         split_dict[split_name] = f'{cts[0]}+{cts[1]}_{dose}'
        
#         adata.obs[split_name] = 'train'
#         adata.obs.loc[adata.obs.ct_dose == f'{cts[0]}_{dose}', split_name] = 'ood'
#         adata.obs.loc[adata.obs.ct_dose == f'{cts[1]}_{dose}', split_name] = 'ood'
        
#         test_idx = sc.pp.subsample(adata[adata.obs[split_name] != 'ood'], .16, copy=True).obs.index
#         adata.obs.loc[test_idx, split_name] = 'test'
        
#         display(adata.obs[split_name].value_counts())

# +
# # triple ct holdout
# for dose in adata.obs.dose_val.unique():
#     i += 1
#     split_name = f'split{i}'

#     split_dict[split_name] = f'all_{dose}'
#     adata.obs[split_name] = 'train'
#     adata.obs.loc[adata.obs.dose_val == dose, split_name] = 'ood'

#     test_idx = sc.pp.subsample(adata[adata.obs[split_name] != 'ood'], .16, copy=True).obs.index
#     adata.obs.loc[test_idx, split_name] = 'test'

#     display(adata.obs[split_name].value_counts())

# +
# adata.uns['all_DEGs']
# -

# ## Save adata

# Reindex the lincs dataset

# +
sciplex_ids = pd.Index(adata_sciplex.var.gene_id)

lincs_idx = [sciplex_ids.get_loc(_id) for _id in adata_lincs.var.gene_id[adata_lincs.var.in_sciplex]]

# +
non_lincs_idx = [sciplex_ids.get_loc(_id) for _id in adata_sciplex.var.gene_id if not adata_lincs.var.gene_id.isin([_id]).any()]

lincs_idx.extend(non_lincs_idx)
# -

adata_sciplex = adata_sciplex[:, lincs_idx].copy()

# +
fname = PROJECT_DIR/'datasets'/'sciplex3_matched_genes_lincs.h5ad'

sc.write(fname, adata_sciplex)
# -

# Check that it worked

sc.read(fname)

# ## Subselect to shared only shared genes

# Subset to shared genes

adata_lincs = adata_lincs[:, adata_lincs.var.in_sciplex].copy() 

adata_sciplex = adata_sciplex[:, adata_sciplex.var.in_lincs].copy()

adata_lincs.var_names

adata_sciplex.var_names


# Print some stats about the gene matching
print("\nGene matching statistics:")
print(f"Number of genes in LINCS: {adata_lincs.shape[1]}")
print(f"Number of genes in combinatorial sciplex: {adata_sciplex.shape[1]}")
print(f"Number of shared genes: {sum(adata_sciplex.var.in_lincs)}")

# ## Save adata objects with shared genes only
# Index of lincs has also been reordered accordingly

# +
fname = PROJECT_DIR/'datasets'/'sciplex3_lincs_genes.h5ad'

sc.write(fname, adata_sciplex)
# -

# ____

# +
fname_lincs = PROJECT_DIR/'datasets'/'lincs_full_smiles_sciplex_genes.h5ad'

sc.write(fname_lincs, adata_lincs)
# -