File size: 9,331 Bytes
a48f0ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.1
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
import os
# # LINCS SMILES Integration Notebook
#
# **Requires:**
# - `lincs_full_pp.h5ad` or `lincs_pp.h5ad`
#
# **Outputs:**
# - `lincs_full_smiles.h5ad` or `lincs_smiles.h5ad`
#
# ## Description
#
# The aim of this notebook is to integrate SMILES data into the LINCS dataset from a previous notebook.
#
# ### Loading LINCS and Reference Data
#
# The notebook begins by loading two primary datasets:
#
# 1. **LINCS Dataset (`adata_in`)**: Contains perturbation IDs (`pert_id`) representing different drugs or compounds.
#
# 2. **Reference Dataset (`reference_df`)**: Loaded from a TSV file (`GSE92742_Broad_LINCS_pert_info.txt`), which provides `pert_id` and the corresponding `canonical_smiles`.
#
# Both datasets contain `pert_id` columns, which are used for merging.
#
# ### Left Merge Between AnnData and SMILES
#
# - The reference dataset is restricted to include only drugs present in the LINCS dataset (`adata.obs.pert_id`).
# - A left merge is performed on `adata.obs` with `reference_df` using `pert_id` as the key, adding the `canonical_smiles` column to `adata.obs`.
#
# ### Cleaning and Additional Validation
#
# 1. **Removing Invalid SMILES**:
# - The cleaning process involves removing invalid or restricted SMILES strings such as `-666`, `'restricted'`, or `NaN`.
# 2. **Validation with RDKit**:
# - RDKit is used to validate chemical structures, ensuring that only valid SMILES are retained.
# 3. **Filtering Perturbations**:
# - Perturbations (`pert_id`) with insufficient replicates or invalid dose values (e.g., `pert_dose` of `-666`) are removed to ensure a robust dataset.
#
#
#
#
#
# +
import matplotlib.pyplot as plt
import numpy as np
import warnings
from pathlib import Path
import pandas as pd
import scanpy as sc
from rdkit import Chem
from chemCPA.paths import DATA_DIR, PROJECT_DIR
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
import sys
sys.path.append(root_dir)
import raw_data.datasets as datasets
import logging
logging.basicConfig(level=logging.INFO)
from notebook_utils import suppress_output
with suppress_output():
sc.set_figure_params(dpi=80, frameon=False)
sc.logging.print_header()
warnings.filterwarnings('ignore')
# -
# %load_ext autoreload
# %autoreload 2
# ### Loading LINCS and reference data
# +
full = True
load_adata = True
if full:
adata_in = DATA_DIR / 'lincs_full_pp.h5ad'
adata_out = PROJECT_DIR / 'datasets' / 'lincs_full_smiles.h5ad'
else:
adata_in = DATA_DIR / 'lincs_pp.h5ad'
adata_out = PROJECT_DIR / 'datasets' / 'lincs_smiles.h5ad'
logging.info(f"Starting to load in data from {adata_in}")
adata = sc.read(adata_in) if load_adata else None
logging.info(f"Data loaded from {adata_in}")
# -
# Checking number of drugs for LINCS
pert_id_unique = pd.Series(np.unique(adata.obs.pert_id))
print(f"# of unique perturbations: {len(pert_id_unique)}")
# Loading reference dataframe that contains SMILES
# restricting to `'pert_id'` and `'canonical_smiles'`
reference_df = pd.read_csv(datasets.lincs_pert_info(), delimiter = "\t")
reference_df = reference_df.loc[reference_df.pert_id.isin(pert_id_unique), ['pert_id', 'canonical_smiles']]
reference_df.canonical_smiles.value_counts()
cond = ~pert_id_unique.isin(reference_df.pert_id)
print(f"From {len(pert_id_unique)} total drugs, {cond.sum()} were not part of the reference dataframe.")
# Adding `'canoncical_smiles'` column to `adata.obs` via `pd.merge`
adata.obs = adata.obs.reset_index().merge(reference_df, how="left").set_index('index')
# Removing invalid SMILES strings
adata.obs.pert_id
reference_df
adata.obs.loc[:, 'canonical_smiles'] = adata.obs.canonical_smiles.astype('str')
invalid_smiles = adata.obs.canonical_smiles.isin(['-666', 'restricted', 'nan'])
print(f'Among {len(adata)} observations, {100*invalid_smiles.sum()/len(adata):.2f}% ({invalid_smiles.sum()}) have an invalid SMILES string')
adata = adata[~invalid_smiles]
# Remove invalid `'pert_dose'` value: `-666`
cond = adata.obs.pert_dose.isin([-666])
adata = adata[~cond]
print(f"A total of {cond.sum()} observations have invalid dose values")
drugs_validation = adata.obs.canonical_smiles.value_counts() < 6
valid_drugs = drugs_validation.index[~drugs_validation]
cond = adata.obs.canonical_smiles.isin(valid_drugs)
print(f"A total of {(~cond).sum()} observation belong to drugs which do not have enough replicates")
adata = adata[cond]
# Checking that SMILES are valid according to `rdkit`
# +
def check_smiles(smiles):
m = Chem.MolFromSmiles(smiles,sanitize=False)
if m is None:
print('invalid SMILES')
return False
else:
try:
Chem.SanitizeMol(m)
except:
print('invalid chemistry')
return False
return True
def remove_invalid_smiles(dataframe, smiles_key: str = 'SMILES', return_condition: bool = False):
unique_drugs = pd.Series(np.unique(dataframe[smiles_key]))
valid_drugs = unique_drugs.apply(check_smiles)
print(f"A total of {(~valid_drugs).sum()} have invalid SMILES strings")
_validation_map = dict(zip(unique_drugs, valid_drugs))
cond = dataframe[smiles_key].apply(lambda x: _validation_map[x])
if return_condition:
return cond
dataframe = dataframe[cond].copy()
return dataframe
adata
# -
cond = remove_invalid_smiles(adata.obs, smiles_key='canonical_smiles', return_condition=True)
adata = adata[cond]
# ### Add additional drugbank info to `adata.obs`
# +
drugbank_path = Path(datasets.drugbank_all())
if drugbank_path.exists():
drugbank_df = pd.read_csv(drugbank_path)
else:
print(f'Invalid path: {drugbank_path}')
# +
from rdkit.Chem import CanonSmiles
drugs_canonical = pd.Series(np.unique(adata.obs.canonical_smiles)).apply(CanonSmiles)
db_canonical_smiles = drugbank_df.SMILES.apply(CanonSmiles)
n_overlap = drugs_canonical.isin(db_canonical_smiles).sum()
print(f'From a total of {len(drugs_canonical)}, {100*n_overlap/len(drugs_canonical):.2f}% ({n_overlap}) is also available in drugbank.')
# -
cond = db_canonical_smiles.isin(drugs_canonical)
drugbank_df.loc[cond, ['ATC_level_1']].value_counts()
# ### Add `train`, `test`, `ood` split for full lincs dataset (if not already part in `adata.obs`)
# +
from sklearn.model_selection import train_test_split
if 'split' not in list(adata.obs):
print("Addig 'split' to 'adata.obs'.")
unique_drugs = np.unique(adata.obs.canonical_smiles)
drugs_train, drugs_tmp = train_test_split(unique_drugs, test_size=0.2, random_state=42)
drugs_val, drugs_test = train_test_split(drugs_tmp, test_size=0.5, random_state=42)
adata.obs['split'] = 'train'
adata.obs.loc[adata.obs.canonical_smiles.isin(drugs_val), 'split'] = 'test'
adata.obs.loc[adata.obs.canonical_smiles.isin(drugs_test), 'split'] = 'ood'
# -
# ### Check that `.obs.split=='test'` has sufficient samples for `pert_id` and `cell_id`
adata.obs.split.value_counts()
cond_test = adata.obs.split.isin(['test'])
adata.obs.loc[cond_test, 'cell_id'].value_counts()
adata.obs.loc[cond_test, 'pert_id'].value_counts()
# +
pert_count_treshold = 5
cov_count_treshold = 20
pert_id_neg = adata.obs.loc[cond_test, 'pert_id'].value_counts() < pert_count_treshold
print(f"pert_id: {pert_id_neg.sum()}/{len(pert_id_neg)} converted back to 'train' due to insufficient # of samples.")
cov_id_neg = adata.obs.loc[cond_test, 'cell_id'].value_counts() < cov_count_treshold
print(f"cell_id: {cov_id_neg.sum()}/{len(cov_id_neg)} converted back to 'train' due to insufficient # of samples.")
cond = cond_test & adata.obs.pert_id.isin(pert_id_neg.index[pert_id_neg])
cond |= cond_test & adata.obs.cell_id.isin(cov_id_neg.index[cov_id_neg])
# -
adata.obs['split1'] = adata.obs.split.copy()
adata.obs.loc[cond, 'split1'] = 'train'
print(f"split['test']: {cond.sum()}/{len(cond)} samples are converted back to 'train'.")
adata.obs.split1.value_counts()
# ### Add random split
adata.obs_names
train_obs, val_test_obs = train_test_split(adata.obs_names, test_size=0.15, random_state=42)
val_obs, test_obs = train_test_split(val_test_obs, test_size=0.5, random_state=42)
# +
adata.obs['random_split'] = ''
adata.obs.loc[train_obs, 'random_split'] = 'train'
adata.obs.loc[val_obs, 'random_split'] = 'test'
adata.obs.loc[test_obs, 'random_split'] = 'ood'
adata.obs['random_split'].value_counts()
# -
# Check that perturbations occur in train split (no explicit ood!)
len(adata.obs.loc[adata.obs.random_split == 'train', 'pert_id'].unique())
len(adata.obs.pert_id.unique())
# ## Safe adata
logging.info(f"Writing file to disk at {adata_out}")
adata.write(adata_out)
logging.info(f"File was written successfully at {adata_out}.")
adata
# ### Loading the result for `adata_out`
adata = sc.read(adata_out)
# **Additional**: Check that `adata.uns[rank_genes_groups_cov]` has all entries in `adata.obs.cov_drug_name` as keys
for i, k in enumerate(adata.obs.cov_drug_name.unique()):
try:
adata.uns['rank_genes_groups_cov'][k]
except:
print(f"{i}: {k}") if 'DMSO' not in k else None
|