File size: 7,263 Bytes
a48f0ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.1
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# # 1 LINCS
#
# **Requires**
# lincs_full.h5ad / lincs.h5ad
#
# **Outputs**
# lincs_full_pp.h5ad / lincs_pp.h5ad
#
# ## Description
#
# This notebook processes gene expression data from the LINCS dataset:
#
# 1. **Data Cleaning**: Loads LINCS data, cleans columns, and renames key fields.
# 2. **Filtering Insufficient Conditions**: Filters out conditions with fewer than 5 samples.
# 3. **Calculating Differentially Expressed Genes (DEGs)**: Identifies the top 50 genes most differentially expressed for each condition compared to the control (`DMSO`).
# 4. **Creating Data Splits**: Defines `'train'`, `'ood'`, and `'test'` splits for model training and evaluation:
# - **OOD**: A random 10% selection from the samples with top occurring conditions, assigned to `'ood'`.
# - **Test**: 16% of the remaining observations assigned to `'test'`.
# - **Train**: The rest of the observations assigned to `'train'`.
#
#
#
#
#
#
# +
import os
import warnings
import numpy as np
import pandas as pd
from scipy import sparse
from tqdm.auto import tqdm
from chemCPA.helper import rank_genes_groups_by_cov
from chemCPA.paths import DATA_DIR
from pathlib import Path
import sys
import logging
from notebook_utils import suppress_output
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(root_dir)
import raw_data.datasets as datasets
import scanpy as sc
with suppress_output():
sc.set_figure_params(dpi=100, frameon=False)
sc.logging.print_header()
warnings.filterwarnings('ignore')
# logging.info is visible when running as python script
if not any('ipykernel' in arg for arg in sys.argv):
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
# -
# ## Load data
#
# Get the absolute path to the chemCPA root directory
full = True
load_adata = True
# Ensure adata_path is a Path object
adata_path = Path(datasets.lincs_full()) if full else DATA_DIR / datasets.lincs()
logging.info(f"Starting to load in data from {adata_path}")
adata = sc.read(adata_path) if load_adata else None
logging.info(f"Data loaded from {adata_path}")
# # Rename columns & clean up columns
# +
logging.info("Renaming and cleaning up columns")
import re
def remove_non_alphanumeric(input_string):
return re.sub(r'[^a-zA-Z0-9]', '', input_string)
adata.obs['condition'] = adata.obs['pert_iname'].apply(remove_non_alphanumeric)
adata.obs['cell_type'] = adata.obs['cell_id']
adata.obs['dose_val'] = adata.obs['pert_dose'].astype(float) / np.max(adata.obs['pert_dose'].astype(float))
adata.obs['cov_drug_dose_name'] = adata.obs.cell_type.astype(str) + '_' + adata.obs.condition.astype(str) + '_' + adata.obs.dose_val.astype(str)
adata.obs['cov_drug_name'] = adata.obs.cell_type.astype(str) + '_' + adata.obs.condition.astype(str)
adata.obs['eval_category'] = adata.obs['cov_drug_name']
adata.obs['control'] = (adata.obs['condition'] == 'DMSO').astype(int)
# adata.obs['cov_drug_dose_name'] = adata.obs['cov_drug_dose_name'].str.replace('/','|')
# -
pd.crosstab(adata.obs.condition, adata.obs.cell_type)
drug_abundance = adata.obs.condition.value_counts()
suff_drug_abundance = drug_abundance.index[drug_abundance>5]
# Delete conditions isufficient # of observations
adata = adata[adata.obs.condition.isin(suff_drug_abundance)].copy()
adata
logging.info("Finished cleaning up columns")
# Calculate differential genes manually, such that the genes are the same per condition.
# +
logging.info("Processing DEGs")
# %%time
de_genes = {}
de_genes_quick = {}
adata_df = adata.to_df()
adata_df = adata_df.join(adata.obs['condition']) # Ensures correct alignment
dmso = adata_df[adata_df.condition == "DMSO"].mean(numeric_only=True)
for cond, df in tqdm(adata_df.groupby('condition')):
if cond != 'DMSO':
drug_mean = df.mean(numeric_only=True)
de_50_idx = np.argsort(abs(drug_mean - dmso))[-50:]
de_genes_quick[cond] = drug_mean.index[de_50_idx].values
if full:
de_genes = de_genes_quick
else:
sc.tl.rank_genes_groups(
adata,
groupby='condition',
reference='DMSO',
rankby_abs=True,
n_genes=50
)
for cond in tqdm(np.unique(adata.obs['condition'])):
if cond != 'DMSO':
df = sc.get.rank_genes_groups_df(adata, group=cond)
de_genes[cond] = df['names'][:50].values
logging.info("Completed processing DEGs")
# -
# Mapping from `rank_genes_groups_cov` might cause problems when drug contains '_'
# +
def extract_drug(cond):
split = cond.split('_')
if len(split) == 2:
return split[-1]
return '_'.join(split[1:-1])
adata.obs['cov_drug_dose_name'].apply(lambda s: len(s.split('_'))).value_counts()
adata.obs['eval_category'].apply(lambda s: len(s.split('_'))).value_counts()
# -
adata.uns['rank_genes_groups_cov'] = {cat: de_genes_quick[extract_drug(cat)] for cat in adata.obs.eval_category.unique() if extract_drug(cat) != 'DMSO'}
adata.uns['rank_genes_groups_cov']
# +
adata.obs['split'] = 'train'
# take ood from top occurring perturbations to avoid losing data on low occ ones
ood_idx = sc.pp.subsample(
adata[adata.obs.condition.isin(list(adata.obs.condition.value_counts().index[1:50]))],
.1,
copy=True
).obs.index
adata.obs['split'].loc[ood_idx] = 'ood'
# take test from a random subsampling of the rest
test_idx = sc.pp.subsample(
adata[adata.obs.split != 'ood'],
.16,
copy=True
).obs.index
adata.obs['split'].loc[test_idx] = 'test'
# -
pd.crosstab(adata.obs['split'], adata.obs['condition'])
try:
del(adata.uns['rank_genes_groups']) # too large
except:
print('All good.')
logging.info("Converting to sparse matrix")
# code compatibility
adata.X = sparse.csr_matrix(adata.X)
logging.info("Finished converting to sparse matrix")
output_path = adata_path.with_name(adata_path.stem + "_pp.h5ad")
logging.info(f"Writing file to disk at {output_path}")
output_path.parent.mkdir(parents=True, exist_ok=True)
sc.write(output_path, adata)
logging.info(f"File was written successfully at {output_path}.")
# ### Check that `adata.uns[rank_genes_groups_cov]` has all entries in `adata.obs.cov_drug_name` as keys
for i, k in enumerate(adata.obs.eval_category.unique()):
try:
adata.uns['rank_genes_groups_cov'][k]
except:
print(f"{i}: {k}") if 'DMSO' not in k else None
# ### Checking the same for the stored adata object
adata_2 = sc.read(output_path)
for i, k in enumerate(adata_2.obs.eval_category.unique()):
try:
adata_2.uns['rank_genes_groups_cov'][k]
except:
print(f"{i}: {k}") if 'DMSO' not in k else None
set(list(adata.uns['rank_genes_groups_cov'])) - set((list(adata_2.uns['rank_genes_groups_cov'])))
set((list(adata_2.uns['rank_genes_groups_cov']))) - set(list(adata.uns['rank_genes_groups_cov']))
len(list(adata_2.uns["rank_genes_groups_cov"].keys()))
adata.obs["dose_val"].value_counts()
|