File size: 5,731 Bytes
a48f0ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# ---
# jupyter:
# jupytext:
# notebook_metadata_filter: -kernelspec
# text_representation:
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.14.1
# ---
# %%
from pathlib import Path
import anndata as ad
import lightning as L
import matplotlib.pyplot as plt
import numpy as np
import scanpy as sc
import torch
from chemCPA.data.data import PerturbationDataModule, load_dataset_splits
from chemCPA.lightning_module import ChemCPA
# %%
ckpt = "last.ckpt"
run_id = "lzrig76f"
cp_path = Path("/nfs/homedirs/hetzell/code/chemCPA/project_folder/checkpoints_hydra") / run_id / ckpt
# %%
module = ChemCPA.load_from_checkpoint(cp_path)
# %%
data_params = module.config["dataset"]
# %%
data_params
# %%
datasets, dataset = load_dataset_splits(**data_params, return_dataset=True)
# %%
dm = PerturbationDataModule(datasplits=datasets, train_bs=module.config["model"]["hparams"]["batch_size"])
dm.setup(stage="fit") # fit, validate/test, predict
# %%
from chemCPA.train import evaluate_r2
module.model.eval()
with torch.no_grad():
result = evaluate_r2(
module.model,
dm.ood_treated_dataset,
dm.ood_control_dataset.genes,
)
evaluation_stats = dict(zip(["R2_mean", "R2_mean_de", "R2_var", "R2_var_de"], result))
evaluation_stats
# %%
control_genes = {}
# Iterate over the dataset
_genes = dm.ood_control_dataset.genes
_cov_names = dm.ood_control_dataset.covariate_names["cell_type"]
for covariate, gene in zip(_cov_names, _genes):
if covariate not in control_genes:
control_genes[covariate] = gene.unsqueeze(0)
continue
control_genes[covariate] = torch.concat([control_genes[covariate], gene.unsqueeze(0)], dim=0)
# %%
module.model.eval()
module.model.to("cuda")
preds = {}
targs = {}
for pert_cat, item in zip(dm.ood_treated_dataset.pert_categories, dm.ood_treated_dataset):
if pert_cat not in preds:
genes = item[0]
drug_idx = item[1]
dosages = item[2]
covariates = item[4:]
cl = pert_cat.split("_")[0]
dose = pert_cat.split("_")[-1]
drug = "_".join(pert_cat.split("_")[1:-1])
genes = control_genes[cl]
n_obs = len(control_genes[cl])
# repeat torch tensor n_obs times
drugs_idx = drug_idx.repeat(n_obs)
dosages = dosages.repeat(n_obs)
covariates = [cov.repeat(n_obs, 1) for cov in covariates]
gene_reconstructions, cell_drug_embedding, latent_basal = module.model.predict(
genes=genes,
drugs=None,
drugs_idx=drugs_idx,
dosages=dosages,
covariates=covariates,
return_latent_basal=True,
)
dim = gene_reconstructions.size(1) // 2
mean = gene_reconstructions[:, :dim]
var = gene_reconstructions[:, dim:]
preds[pert_cat] = mean.detach().cpu().numpy()
targs[pert_cat] = (
(dm.ood_treated_dataset.genes[dm.ood_treated_dataset.pert_categories == pert_cat]).clone().numpy()
)
# %%
predictions = []
targets = []
cl_p = []
cl_t = []
drug_p = []
drug_t = []
dose_p = []
dose_t = []
control = {}
control_cl = {}
for key, val in preds.items():
cl = key.split("_")[0]
drug = "_".join(key.split("_")[1:-1])
dose = key.split("_")[-1]
control[cl] = control_genes[cl].numpy()
control_cl[cl] = control[cl].shape[0] * [cl]
predictions.append(val)
cl_p.extend(val.shape[0] * [cl])
drug_p.extend(val.shape[0] * [drug])
dose_p.extend(val.shape[0] * [float(dose)])
targets.append(targs[key])
cl_t.extend(targs[key].shape[0] * [cl])
drug_t.extend(targs[key].shape[0] * [drug])
dose_t.extend(targs[key].shape[0] * [float(dose)])
adata_c = ad.AnnData(np.concatenate([control[cl] for cl in control], axis=0))
adata_c.obs["cell_line"] = list(np.concatenate([control_cl[cl] for cl in control], axis=0))
adata_c.obs["condition"] = "control"
adata_c.obs["perturbation"] = "Vehicle"
adata_c.obs["dose"] = 1.0
adata_p = ad.AnnData(np.concatenate(predictions, axis=0))
adata_p.obs["condition"] = "prediction"
adata_p.obs["cell_line"] = cl_p
adata_p.obs["perturbation"] = drug_p
adata_p.obs["dose"] = dose_p
adata_t = ad.AnnData(np.concatenate(targets, axis=0))
adata_t.obs["condition"] = "target"
adata_t.obs["cell_line"] = cl_t
adata_t.obs["perturbation"] = drug_t
adata_t.obs["dose"] = dose_t
adata = ad.concat([adata_c, adata_p, adata_t])
# %%
adata.obs_names_make_unique()
adata.obs["pert_category"] = None
for key in np.unique(dm.ood_treated_dataset.pert_categories):
cl = key.split("_")[0]
drug = "_".join(key.split("_")[1:-1])
dose = float(key.split("_")[-1])
cond = adata.obs["cell_line"] == cl
cond *= adata.obs["perturbation"] == drug
cond *= adata.obs["dose"] == dose
adata.obs.loc[cond, "pert_category"] = key
# %%
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
# %%
ood_cats = np.unique(dm.ood_treated_dataset.pert_categories)
_adata = adata
cols = 6
rows = len(ood_cats) // cols + 1
fig, axis = plt.subplots(rows, cols, figsize=(3 * cols, 3 * rows))
for i, key in enumerate(np.unique(dm.ood_treated_dataset.pert_categories)):
ax = axis[i // cols, i % cols]
cl = key.split("_")[0]
drug = "_".join(key.split("_")[1:-1])
dose = float(key.split("_")[-1])
cond = _adata.obs["cell_line"] == cl
cond *= _adata.obs["perturbation"] == drug
cond *= _adata.obs["dose"] == dose
cond += _adata.obs["condition"] == "control"
sc.pl.umap(_adata[cond].copy(), color=["condition"], title=key, show=False, ax=ax, alpha=0.6)
# remove legend
if (i % cols) < (cols - 1):
ax.get_legend().remove()
plt.tight_layout()
# %%
|