File size: 17,846 Bytes
a48f0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import numpy as np
import pandas as pd
import scanpy as sc
import seml
import torch
from tqdm.auto import tqdm

from chemCPA.data.data import (
    SubDataset,
    canonicalize_smiles,
    drug_names_to_once_canon_smiles,
)
from chemCPA.embedding import get_chemical_representation
from chemCPA.model import ComPert
from chemCPA.paths import CHECKPOINT_DIR
from chemCPA.train import bool2idx, compute_prediction, compute_r2, repeat_n


def load_config(seml_collection, model_hash):
    results_df = seml.get_results(
        seml_collection,
        to_data_frame=True,
        fields=["config", "config_hash"],
        states=["COMPLETED"],
        filter_dict={"config_hash": model_hash},
    )
    experiment = results_df.apply(
        lambda exp: {
            "hash": exp["config_hash"],
            "seed": exp["config.seed"],
            "_id": exp["_id"],
        },
        axis=1,
    )
    assert len(experiment) == 1
    experiment = experiment[0]
    collection = seml.database.get_collection(seml_collection)
    config = collection.find_one({"_id": experiment["_id"]})["config"]
    assert config["dataset"]["data_params"]["use_drugs_idx"]
    assert config["model"]["additional_params"]["doser_type"] == "amortized"
    config["config_hash"] = model_hash
    return config


def load_dataset(config):
    perturbation_key = config["dataset"]["data_params"]["perturbation_key"]
    smiles_key = config["dataset"]["data_params"]["smiles_key"]
    dataset = sc.read(config["dataset"]["data_params"]["dataset_path"])
    key_dict = {
        "perturbation_key": perturbation_key,
        "smiles_key": smiles_key,
    }
    return dataset, key_dict


def load_smiles(config, dataset, key_dict, return_pathway_map=False):
    perturbation_key = key_dict["perturbation_key"]
    smiles_key = key_dict["smiles_key"]

    # this is how the `canon_smiles_unique_sorted` is generated inside chemCPA.data.Dataset
    # we need to have the same ordering of SMILES, else the mapping to pathways will be off
    # when we load the Vanilla embedding. For the other embeddings it's not as important.
    drugs_names = np.array(dataset.obs[perturbation_key].values)
    drugs_names_unique = set()
    for d in drugs_names:
        [drugs_names_unique.add(i) for i in d.split("&")]
    drugs_names_unique_sorted = np.array(sorted(drugs_names_unique))
    canon_smiles_unique_sorted = drug_names_to_once_canon_smiles(
        list(drugs_names_unique_sorted), dataset, perturbation_key, smiles_key
    )

    smiles_to_drug_map = {
        canonicalize_smiles(smiles): drug
        for smiles, drug in dataset.obs.groupby(
            [config["dataset"]["data_params"]["smiles_key"], perturbation_key]
        ).groups.keys()
    }
    if return_pathway_map:
        smiles_to_pathway_map = {
            canonicalize_smiles(smiles): pathway
            for smiles, pathway in dataset.obs.groupby(
                [config["dataset"]["data_params"]["smiles_key"], "pathway_level_1"]
            ).groups.keys()
        }
        return canon_smiles_unique_sorted, smiles_to_pathway_map, smiles_to_drug_map
    return canon_smiles_unique_sorted, smiles_to_drug_map


def load_model(config, canon_smiles_unique_sorted):
    model_hash = config["config_hash"]
    model_checkp = CHECKPOINT_DIR / (model_hash + ".pt")

    embedding_model = config["model"]["embedding"]["model"]
    if embedding_model == "vanilla":
        embedding = None
    else:
        embedding = get_chemical_representation(
            smiles=canon_smiles_unique_sorted,
            embedding_model=config["model"]["embedding"]["model"],
            data_path=config["model"]["embedding"]["directory"],
            device="cuda",
        )
    dumped_model = torch.load(model_checkp)
    if len(dumped_model) == 3:
        print("This model does not contain the covariate embeddings or adversaries.")
        state_dict, init_args, history = dumped_model
        COV_EMB_AVAILABLE = False
    elif len(dumped_model) == 4:
        print("This model does not contain the covariate embeddings.")
        state_dict, cov_adv_state_dicts, init_args, history = dumped_model
        COV_EMB_AVAILABLE = False
    elif len(dumped_model) == 5:
        (
            state_dict,
            cov_adv_state_dicts,
            cov_emb_state_dicts,
            init_args,
            history,
        ) = dumped_model
        COV_EMB_AVAILABLE = True
        assert len(cov_emb_state_dicts) == 1
    append_layer_width = (
        config["dataset"]["n_vars"]
        if (config["model"]["append_ae_layer"] and config["model"]["load_pretrained"])
        else None
    )

    if embedding_model != "vanilla":
        state_dict.pop("drug_embeddings.weight")
    model = ComPert(**init_args, drug_embeddings=embedding, append_layer_width=append_layer_width)
    model = model.eval()
    if COV_EMB_AVAILABLE:
        for embedding_cov, state_dict_cov in zip(model.covariates_embeddings, cov_emb_state_dicts):
            embedding_cov.load_state_dict(state_dict_cov)

    incomp_keys = model.load_state_dict(state_dict, strict=False)
    if embedding_model == "vanilla":
        assert len(incomp_keys.unexpected_keys) == 0 and len(incomp_keys.missing_keys) == 0
    else:
        # make sure we didn't accidentally load the embedding from the state_dict
        torch.testing.assert_allclose(model.drug_embeddings.weight, embedding.weight)
        assert (
            len(incomp_keys.missing_keys) == 1 and "drug_embeddings.weight" in incomp_keys.missing_keys
        ), incomp_keys.missing_keys
        # assert len(incomp_keys.unexpected_keys) == 0, incomp_keys.unexpected_keys

    return model, embedding


def compute_drug_embeddings(model, embedding, dosage=1e4):
    all_drugs_idx = torch.tensor(list(range(len(embedding.weight))))
    dosages = dosage * torch.ones((len(embedding.weight),))
    # dosages = torch.ones((len(embedding.weight),))
    with torch.no_grad():
        # scaled the drug embeddings using the doser
        transf_embeddings = model.compute_drug_embeddings_(drugs_idx=all_drugs_idx, dosages=dosages)
        # apply drug embedder
        # transf_embeddings = model.drug_embedding_encoder(transf_embeddings)
    return transf_embeddings


def compute_pred(
    model,
    dataset,
    dosages=[1e4],
    cell_lines=None,
    genes_control_dict=None,
    use_DEGs=True,
    verbose=True,
):
    # dataset.pert_categories contains: 'celltype_perturbation_dose' info
    pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")

    allowed_cell_lines = []

    cl_dict = {
        torch.Tensor([1, 0, 0]): "A549",
        torch.Tensor([0, 1, 0]): "K562",
        torch.Tensor([0, 0, 1]): "MCF7",
    }

    if cell_lines is None:
        cell_lines = ["A549", "K562", "MCF7"]

    print(cell_lines)

    predictions_dict = {}
    drug_r2 = {}
    for cell_drug_dose_comb, category_count in tqdm(zip(*np.unique(dataset.pert_categories, return_counts=True))):
        if dataset.perturbation_key is None:
            break
        cl = cell_drug_dose_comb.split("_")[0]
        genes_control = genes_control_dict[cl]
        # estimate metrics only for reasonably-sized drug/cell-type combos
        if category_count <= 5:
            continue

        # doesn't make sense to evaluate DMSO (=control) as a perturbation
        if (
            "dmso" in cell_drug_dose_comb.lower()
            or "control" in cell_drug_dose_comb.lower()
            or "vehicle" in cell_drug_dose_comb.lower()
        ):
            continue

        # dataset.var_names is the list of gene names
        # dataset.de_genes is a dict, containing a list of all differentiably-expressed
        # genes for every cell_drug_dose combination.
        bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
        idx_de = bool2idx(bool_de)

        # need at least two genes to be able to calc r2 score
        if len(idx_de) < 2:
            continue

        bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
        idx_all = bool2idx(bool_category)
        idx = idx_all[0]
        y_true = dataset.genes[idx_all, :].to(device="cuda")

        # cov_name = cell_drug_dose_comb.split("_")[0]
        # cond = dataset_ctrl.covariate_names["cell_type"] == cov_name
        # genes_control = dataset_ctrl.genes[cond]

        if genes_control is None:
            n_obs = y_true.size(0)
        else:
            assert isinstance(genes_control, torch.Tensor)
            n_obs = genes_control.size(0)

        emb_covs = [repeat_n(cov[idx], n_obs) for cov in dataset.covariates]

        if dataset.dosages[idx] not in dosages:
            continue

        stop = False
        for tensor, cl in cl_dict.items():
            if (tensor == dataset.covariates[0][idx]).all():
                if cl not in cell_lines:
                    stop = True
        if stop:
            continue

        if dataset.use_drugs_idx:
            emb_drugs = (
                repeat_n(dataset.drugs_idx[idx], n_obs).squeeze(),
                repeat_n(dataset.dosages[idx], n_obs).squeeze(),
            )
        else:
            emb_drugs = repeat_n(dataset.drugs[idx], n_obs)

        # copies just the needed genes to GPU
        # Could try moving the whole genes tensor to GPU once for further speedups (but more memory problems)

        if genes_control is None:
            # print("Predicting AE alike.")
            mean_pred, _ = compute_prediction(
                model,
                y_true,
                emb_drugs,
                emb_covs,
            )
        else:
            # print("Predicting counterfactuals.")
            mean_pred, _ = compute_prediction(
                model,
                genes_control,
                emb_drugs,
                emb_covs,
            )

        y_pred = mean_pred
        _y_pred = mean_pred.mean(0)
        _y_true = y_true.mean(0)
        if use_DEGs:
            r2_m_de = compute_r2(_y_true[idx_de].cuda(), _y_pred[idx_de].cuda())
            print(f"{cell_drug_dose_comb}: {r2_m_de:.2f}") if verbose else None
            drug_r2[cell_drug_dose_comb] = max(r2_m_de, 0.0)
        else:
            r2_m = compute_r2(_y_true.cuda(), _y_pred.cuda())
            print(f"{cell_drug_dose_comb}: {r2_m:.2f}") if verbose else None
            drug_r2[cell_drug_dose_comb] = max(r2_m, 0.0)

        # predictions_dict[cell_drug_dose_comb] = [_y_true, _y_pred, idx_de]
        predictions_dict[cell_drug_dose_comb] = [
            genes_control.detach().cpu().numpy(),
            y_pred.detach().cpu().numpy(),
            y_true.detach().cpu().numpy(),
        ]
    return drug_r2, predictions_dict


def compute_pred_ctrl(
    dataset,
    dosages=[1e4],
    cell_lines=None,
    dataset_ctrl=None,
    use_DEGs=True,
    verbose=True,
):
    # dataset.pert_categories contains: 'celltype_perturbation_dose' info
    pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")

    allowed_cell_lines = []

    cl_dict = {
        torch.Tensor([1, 0, 0]): "A549",
        torch.Tensor([0, 1, 0]): "K562",
        torch.Tensor([0, 0, 1]): "MCF7",
    }

    if cell_lines is None:
        cell_lines = ["A549", "K562", "MCF7"]

    print(cell_lines)

    predictions_dict = {}
    drug_r2 = {}
    for cell_drug_dose_comb, category_count in tqdm(zip(*np.unique(dataset.pert_categories, return_counts=True))):
        if dataset.perturbation_key is None:
            break

        # estimate metrics only for reasonably-sized drug/cell-type combos
        if category_count <= 5:
            continue

        # doesn't make sense to evaluate DMSO (=control) as a perturbation
        if "dmso" in cell_drug_dose_comb.lower() or "control" in cell_drug_dose_comb.lower():
            continue

        # dataset.var_names is the list of gene names
        # dataset.de_genes is a dict, containing a list of all differentiably-expressed
        # genes for every cell_drug_dose combination.
        bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
        idx_de = bool2idx(bool_de)

        # need at least two genes to be able to calc r2 score
        if len(idx_de) < 2:
            continue

        bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
        idx_all = bool2idx(bool_category)
        idx = idx_all[0]
        y_true = dataset.genes[idx_all, :].to(device="cuda")

        cov_name = cell_drug_dose_comb.split("_")[0]
        cond = dataset_ctrl.covariate_names["cell_type"] == cov_name
        genes_control = dataset_ctrl.genes[cond]

        if genes_control is None:
            n_obs = y_true.size(0)
        else:
            assert isinstance(genes_control, torch.Tensor)
            n_obs = genes_control.size(0)

        emb_covs = [repeat_n(cov[idx], n_obs) for cov in dataset.covariates]

        if dataset.dosages[idx] not in dosages:
            continue

        stop = False
        for tensor, cl in cl_dict.items():
            if (tensor == dataset.covariates[0][idx]).all():
                if cl not in cell_lines:
                    stop = True
        if stop:
            continue

        if dataset.use_drugs_idx:
            emb_drugs = (
                repeat_n(dataset.drugs_idx[idx], n_obs).squeeze(),
                repeat_n(dataset.dosages[idx], n_obs).squeeze(),
            )
        else:
            emb_drugs = repeat_n(dataset.drugs[idx], n_obs)

        y_pred = genes_control
        _y_pred = genes_control.mean(0)
        _y_true = y_true.mean(0)
        if use_DEGs:
            r2_m_de = compute_r2(_y_true[idx_de].cuda(), _y_pred[idx_de].cuda())
            print(f"{cell_drug_dose_comb}: {r2_m_de:.2f}") if verbose else None
            drug_r2[cell_drug_dose_comb] = max(r2_m_de, 0.0)
        else:
            r2_m = compute_r2(_y_true.cuda(), _y_pred.cuda())
            print(f"{cell_drug_dose_comb}: {r2_m:.2f}") if verbose else None
            drug_r2[cell_drug_dose_comb] = max(r2_m, 0.0)

        # predictions_dict[cell_drug_dose_comb] = [_y_true, _y_pred, idx_de]
        predictions_dict[cell_drug_dose_comb] = [
            genes_control.detach().cpu().numpy(),
            y_pred.detach().cpu().numpy(),
            y_true.detach().cpu().numpy(),
        ]
    return drug_r2, predictions_dict


def evaluate_r2(autoencoder: ComPert, dataset: SubDataset, genes_control: torch.Tensor):
    """
    Measures different quality metrics about an ComPert `autoencoder`, when
    tasked to translate some `genes_control` into each of the drug/covariates
    combinations described in `dataset`.

    Considered metrics are R2 score about means and variances for all genes, as
    well as R2 score about means and variances about differentially expressed
    (_de) genes.
    """
    mean_score, var_score, mean_score_de, var_score_de = [], [], [], []
    n_rows = genes_control.size(0)
    # genes_control = genes_control.to(autoencoder.device)

    # dataset.pert_categories contains: 'celltype_perturbation_dose' info
    pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")
    for cell_drug_dose_comb, category_count in zip(*np.unique(dataset.pert_categories, return_counts=True)):
        if dataset.perturbation_key is None:
            break

        # estimate metrics only for reasonably-sized drug/cell-type combos
        if category_count <= 5:
            continue

        # doesn't make sense to evaluate DMSO (=control) as a perturbation
        if "dmso" in cell_drug_dose_comb.lower() or "control" in cell_drug_dose_comb.lower():
            continue

        # dataset.var_names is the list of gene names
        # dataset.de_genes is a dict, containing a list of all differentiably-expressed
        # genes for every cell_drug_dose combination.
        bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
        idx_de = bool2idx(bool_de)

        # need at least two genes to be able to calc r2 score
        if len(idx_de) < 2:
            continue

        bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
        idx_all = bool2idx(bool_category)
        idx = idx_all[0]

        emb_covs = [repeat_n(cov[idx], n_rows) for cov in dataset.covariates]
        if dataset.use_drugs_idx:
            emb_drugs = (
                repeat_n(dataset.drugs_idx[idx], n_rows).squeeze(),
                repeat_n(dataset.dosages[idx], n_rows).squeeze(),
            )
        else:
            emb_drugs = repeat_n(dataset.drugs[idx], n_rows)
        mean_pred, var_pred = compute_prediction(
            autoencoder,
            genes_control,
            emb_drugs,
            emb_covs,
        )

        # copies just the needed genes to GPU
        # Could try moving the whole genes tensor to GPU once for further speedups (but more memory problems)
        y_true = dataset.genes[idx_all, :].to(device="cuda")

        # true means and variances
        yt_m = y_true.mean(dim=0)
        yt_v = y_true.var(dim=0)
        # predicted means and variances
        yp_m = mean_pred.mean(dim=0).to(device="cuda")
        yp_v = var_pred.mean(dim=0).to(device="cuda")

        r2_m = compute_r2(yt_m, yp_m)
        r2_v = compute_r2(yt_v, yp_v)
        r2_m_de = compute_r2(yt_m[idx_de], yp_m[idx_de])
        r2_v_de = compute_r2(yt_v[idx_de], yp_v[idx_de])

        # to be investigated
        if r2_m_de == float("-inf") or r2_v_de == float("-inf"):
            continue

        mean_score.append(r2_m)
        var_score.append(r2_v)
        mean_score_de.append(r2_m_de)
        var_score_de.append(r2_v_de)
    print(f"Number of different r2 computations: {len(mean_score)}")
    if len(mean_score) > 0:
        return [np.mean(s) for s in [mean_score, mean_score_de, var_score, var_score_de]]
    else:
        return []