File size: 17,846 Bytes
a48f0ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import numpy as np
import pandas as pd
import scanpy as sc
import seml
import torch
from tqdm.auto import tqdm
from chemCPA.data.data import (
SubDataset,
canonicalize_smiles,
drug_names_to_once_canon_smiles,
)
from chemCPA.embedding import get_chemical_representation
from chemCPA.model import ComPert
from chemCPA.paths import CHECKPOINT_DIR
from chemCPA.train import bool2idx, compute_prediction, compute_r2, repeat_n
def load_config(seml_collection, model_hash):
results_df = seml.get_results(
seml_collection,
to_data_frame=True,
fields=["config", "config_hash"],
states=["COMPLETED"],
filter_dict={"config_hash": model_hash},
)
experiment = results_df.apply(
lambda exp: {
"hash": exp["config_hash"],
"seed": exp["config.seed"],
"_id": exp["_id"],
},
axis=1,
)
assert len(experiment) == 1
experiment = experiment[0]
collection = seml.database.get_collection(seml_collection)
config = collection.find_one({"_id": experiment["_id"]})["config"]
assert config["dataset"]["data_params"]["use_drugs_idx"]
assert config["model"]["additional_params"]["doser_type"] == "amortized"
config["config_hash"] = model_hash
return config
def load_dataset(config):
perturbation_key = config["dataset"]["data_params"]["perturbation_key"]
smiles_key = config["dataset"]["data_params"]["smiles_key"]
dataset = sc.read(config["dataset"]["data_params"]["dataset_path"])
key_dict = {
"perturbation_key": perturbation_key,
"smiles_key": smiles_key,
}
return dataset, key_dict
def load_smiles(config, dataset, key_dict, return_pathway_map=False):
perturbation_key = key_dict["perturbation_key"]
smiles_key = key_dict["smiles_key"]
# this is how the `canon_smiles_unique_sorted` is generated inside chemCPA.data.Dataset
# we need to have the same ordering of SMILES, else the mapping to pathways will be off
# when we load the Vanilla embedding. For the other embeddings it's not as important.
drugs_names = np.array(dataset.obs[perturbation_key].values)
drugs_names_unique = set()
for d in drugs_names:
[drugs_names_unique.add(i) for i in d.split("&")]
drugs_names_unique_sorted = np.array(sorted(drugs_names_unique))
canon_smiles_unique_sorted = drug_names_to_once_canon_smiles(
list(drugs_names_unique_sorted), dataset, perturbation_key, smiles_key
)
smiles_to_drug_map = {
canonicalize_smiles(smiles): drug
for smiles, drug in dataset.obs.groupby(
[config["dataset"]["data_params"]["smiles_key"], perturbation_key]
).groups.keys()
}
if return_pathway_map:
smiles_to_pathway_map = {
canonicalize_smiles(smiles): pathway
for smiles, pathway in dataset.obs.groupby(
[config["dataset"]["data_params"]["smiles_key"], "pathway_level_1"]
).groups.keys()
}
return canon_smiles_unique_sorted, smiles_to_pathway_map, smiles_to_drug_map
return canon_smiles_unique_sorted, smiles_to_drug_map
def load_model(config, canon_smiles_unique_sorted):
model_hash = config["config_hash"]
model_checkp = CHECKPOINT_DIR / (model_hash + ".pt")
embedding_model = config["model"]["embedding"]["model"]
if embedding_model == "vanilla":
embedding = None
else:
embedding = get_chemical_representation(
smiles=canon_smiles_unique_sorted,
embedding_model=config["model"]["embedding"]["model"],
data_path=config["model"]["embedding"]["directory"],
device="cuda",
)
dumped_model = torch.load(model_checkp)
if len(dumped_model) == 3:
print("This model does not contain the covariate embeddings or adversaries.")
state_dict, init_args, history = dumped_model
COV_EMB_AVAILABLE = False
elif len(dumped_model) == 4:
print("This model does not contain the covariate embeddings.")
state_dict, cov_adv_state_dicts, init_args, history = dumped_model
COV_EMB_AVAILABLE = False
elif len(dumped_model) == 5:
(
state_dict,
cov_adv_state_dicts,
cov_emb_state_dicts,
init_args,
history,
) = dumped_model
COV_EMB_AVAILABLE = True
assert len(cov_emb_state_dicts) == 1
append_layer_width = (
config["dataset"]["n_vars"]
if (config["model"]["append_ae_layer"] and config["model"]["load_pretrained"])
else None
)
if embedding_model != "vanilla":
state_dict.pop("drug_embeddings.weight")
model = ComPert(**init_args, drug_embeddings=embedding, append_layer_width=append_layer_width)
model = model.eval()
if COV_EMB_AVAILABLE:
for embedding_cov, state_dict_cov in zip(model.covariates_embeddings, cov_emb_state_dicts):
embedding_cov.load_state_dict(state_dict_cov)
incomp_keys = model.load_state_dict(state_dict, strict=False)
if embedding_model == "vanilla":
assert len(incomp_keys.unexpected_keys) == 0 and len(incomp_keys.missing_keys) == 0
else:
# make sure we didn't accidentally load the embedding from the state_dict
torch.testing.assert_allclose(model.drug_embeddings.weight, embedding.weight)
assert (
len(incomp_keys.missing_keys) == 1 and "drug_embeddings.weight" in incomp_keys.missing_keys
), incomp_keys.missing_keys
# assert len(incomp_keys.unexpected_keys) == 0, incomp_keys.unexpected_keys
return model, embedding
def compute_drug_embeddings(model, embedding, dosage=1e4):
all_drugs_idx = torch.tensor(list(range(len(embedding.weight))))
dosages = dosage * torch.ones((len(embedding.weight),))
# dosages = torch.ones((len(embedding.weight),))
with torch.no_grad():
# scaled the drug embeddings using the doser
transf_embeddings = model.compute_drug_embeddings_(drugs_idx=all_drugs_idx, dosages=dosages)
# apply drug embedder
# transf_embeddings = model.drug_embedding_encoder(transf_embeddings)
return transf_embeddings
def compute_pred(
model,
dataset,
dosages=[1e4],
cell_lines=None,
genes_control_dict=None,
use_DEGs=True,
verbose=True,
):
# dataset.pert_categories contains: 'celltype_perturbation_dose' info
pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")
allowed_cell_lines = []
cl_dict = {
torch.Tensor([1, 0, 0]): "A549",
torch.Tensor([0, 1, 0]): "K562",
torch.Tensor([0, 0, 1]): "MCF7",
}
if cell_lines is None:
cell_lines = ["A549", "K562", "MCF7"]
print(cell_lines)
predictions_dict = {}
drug_r2 = {}
for cell_drug_dose_comb, category_count in tqdm(zip(*np.unique(dataset.pert_categories, return_counts=True))):
if dataset.perturbation_key is None:
break
cl = cell_drug_dose_comb.split("_")[0]
genes_control = genes_control_dict[cl]
# estimate metrics only for reasonably-sized drug/cell-type combos
if category_count <= 5:
continue
# doesn't make sense to evaluate DMSO (=control) as a perturbation
if (
"dmso" in cell_drug_dose_comb.lower()
or "control" in cell_drug_dose_comb.lower()
or "vehicle" in cell_drug_dose_comb.lower()
):
continue
# dataset.var_names is the list of gene names
# dataset.de_genes is a dict, containing a list of all differentiably-expressed
# genes for every cell_drug_dose combination.
bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
idx_de = bool2idx(bool_de)
# need at least two genes to be able to calc r2 score
if len(idx_de) < 2:
continue
bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
idx_all = bool2idx(bool_category)
idx = idx_all[0]
y_true = dataset.genes[idx_all, :].to(device="cuda")
# cov_name = cell_drug_dose_comb.split("_")[0]
# cond = dataset_ctrl.covariate_names["cell_type"] == cov_name
# genes_control = dataset_ctrl.genes[cond]
if genes_control is None:
n_obs = y_true.size(0)
else:
assert isinstance(genes_control, torch.Tensor)
n_obs = genes_control.size(0)
emb_covs = [repeat_n(cov[idx], n_obs) for cov in dataset.covariates]
if dataset.dosages[idx] not in dosages:
continue
stop = False
for tensor, cl in cl_dict.items():
if (tensor == dataset.covariates[0][idx]).all():
if cl not in cell_lines:
stop = True
if stop:
continue
if dataset.use_drugs_idx:
emb_drugs = (
repeat_n(dataset.drugs_idx[idx], n_obs).squeeze(),
repeat_n(dataset.dosages[idx], n_obs).squeeze(),
)
else:
emb_drugs = repeat_n(dataset.drugs[idx], n_obs)
# copies just the needed genes to GPU
# Could try moving the whole genes tensor to GPU once for further speedups (but more memory problems)
if genes_control is None:
# print("Predicting AE alike.")
mean_pred, _ = compute_prediction(
model,
y_true,
emb_drugs,
emb_covs,
)
else:
# print("Predicting counterfactuals.")
mean_pred, _ = compute_prediction(
model,
genes_control,
emb_drugs,
emb_covs,
)
y_pred = mean_pred
_y_pred = mean_pred.mean(0)
_y_true = y_true.mean(0)
if use_DEGs:
r2_m_de = compute_r2(_y_true[idx_de].cuda(), _y_pred[idx_de].cuda())
print(f"{cell_drug_dose_comb}: {r2_m_de:.2f}") if verbose else None
drug_r2[cell_drug_dose_comb] = max(r2_m_de, 0.0)
else:
r2_m = compute_r2(_y_true.cuda(), _y_pred.cuda())
print(f"{cell_drug_dose_comb}: {r2_m:.2f}") if verbose else None
drug_r2[cell_drug_dose_comb] = max(r2_m, 0.0)
# predictions_dict[cell_drug_dose_comb] = [_y_true, _y_pred, idx_de]
predictions_dict[cell_drug_dose_comb] = [
genes_control.detach().cpu().numpy(),
y_pred.detach().cpu().numpy(),
y_true.detach().cpu().numpy(),
]
return drug_r2, predictions_dict
def compute_pred_ctrl(
dataset,
dosages=[1e4],
cell_lines=None,
dataset_ctrl=None,
use_DEGs=True,
verbose=True,
):
# dataset.pert_categories contains: 'celltype_perturbation_dose' info
pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")
allowed_cell_lines = []
cl_dict = {
torch.Tensor([1, 0, 0]): "A549",
torch.Tensor([0, 1, 0]): "K562",
torch.Tensor([0, 0, 1]): "MCF7",
}
if cell_lines is None:
cell_lines = ["A549", "K562", "MCF7"]
print(cell_lines)
predictions_dict = {}
drug_r2 = {}
for cell_drug_dose_comb, category_count in tqdm(zip(*np.unique(dataset.pert_categories, return_counts=True))):
if dataset.perturbation_key is None:
break
# estimate metrics only for reasonably-sized drug/cell-type combos
if category_count <= 5:
continue
# doesn't make sense to evaluate DMSO (=control) as a perturbation
if "dmso" in cell_drug_dose_comb.lower() or "control" in cell_drug_dose_comb.lower():
continue
# dataset.var_names is the list of gene names
# dataset.de_genes is a dict, containing a list of all differentiably-expressed
# genes for every cell_drug_dose combination.
bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
idx_de = bool2idx(bool_de)
# need at least two genes to be able to calc r2 score
if len(idx_de) < 2:
continue
bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
idx_all = bool2idx(bool_category)
idx = idx_all[0]
y_true = dataset.genes[idx_all, :].to(device="cuda")
cov_name = cell_drug_dose_comb.split("_")[0]
cond = dataset_ctrl.covariate_names["cell_type"] == cov_name
genes_control = dataset_ctrl.genes[cond]
if genes_control is None:
n_obs = y_true.size(0)
else:
assert isinstance(genes_control, torch.Tensor)
n_obs = genes_control.size(0)
emb_covs = [repeat_n(cov[idx], n_obs) for cov in dataset.covariates]
if dataset.dosages[idx] not in dosages:
continue
stop = False
for tensor, cl in cl_dict.items():
if (tensor == dataset.covariates[0][idx]).all():
if cl not in cell_lines:
stop = True
if stop:
continue
if dataset.use_drugs_idx:
emb_drugs = (
repeat_n(dataset.drugs_idx[idx], n_obs).squeeze(),
repeat_n(dataset.dosages[idx], n_obs).squeeze(),
)
else:
emb_drugs = repeat_n(dataset.drugs[idx], n_obs)
y_pred = genes_control
_y_pred = genes_control.mean(0)
_y_true = y_true.mean(0)
if use_DEGs:
r2_m_de = compute_r2(_y_true[idx_de].cuda(), _y_pred[idx_de].cuda())
print(f"{cell_drug_dose_comb}: {r2_m_de:.2f}") if verbose else None
drug_r2[cell_drug_dose_comb] = max(r2_m_de, 0.0)
else:
r2_m = compute_r2(_y_true.cuda(), _y_pred.cuda())
print(f"{cell_drug_dose_comb}: {r2_m:.2f}") if verbose else None
drug_r2[cell_drug_dose_comb] = max(r2_m, 0.0)
# predictions_dict[cell_drug_dose_comb] = [_y_true, _y_pred, idx_de]
predictions_dict[cell_drug_dose_comb] = [
genes_control.detach().cpu().numpy(),
y_pred.detach().cpu().numpy(),
y_true.detach().cpu().numpy(),
]
return drug_r2, predictions_dict
def evaluate_r2(autoencoder: ComPert, dataset: SubDataset, genes_control: torch.Tensor):
"""
Measures different quality metrics about an ComPert `autoencoder`, when
tasked to translate some `genes_control` into each of the drug/covariates
combinations described in `dataset`.
Considered metrics are R2 score about means and variances for all genes, as
well as R2 score about means and variances about differentially expressed
(_de) genes.
"""
mean_score, var_score, mean_score_de, var_score_de = [], [], [], []
n_rows = genes_control.size(0)
# genes_control = genes_control.to(autoencoder.device)
# dataset.pert_categories contains: 'celltype_perturbation_dose' info
pert_categories_index = pd.Index(dataset.pert_categories, dtype="category")
for cell_drug_dose_comb, category_count in zip(*np.unique(dataset.pert_categories, return_counts=True)):
if dataset.perturbation_key is None:
break
# estimate metrics only for reasonably-sized drug/cell-type combos
if category_count <= 5:
continue
# doesn't make sense to evaluate DMSO (=control) as a perturbation
if "dmso" in cell_drug_dose_comb.lower() or "control" in cell_drug_dose_comb.lower():
continue
# dataset.var_names is the list of gene names
# dataset.de_genes is a dict, containing a list of all differentiably-expressed
# genes for every cell_drug_dose combination.
bool_de = dataset.var_names.isin(np.array(dataset.de_genes[cell_drug_dose_comb]))
idx_de = bool2idx(bool_de)
# need at least two genes to be able to calc r2 score
if len(idx_de) < 2:
continue
bool_category = pert_categories_index.get_loc(cell_drug_dose_comb)
idx_all = bool2idx(bool_category)
idx = idx_all[0]
emb_covs = [repeat_n(cov[idx], n_rows) for cov in dataset.covariates]
if dataset.use_drugs_idx:
emb_drugs = (
repeat_n(dataset.drugs_idx[idx], n_rows).squeeze(),
repeat_n(dataset.dosages[idx], n_rows).squeeze(),
)
else:
emb_drugs = repeat_n(dataset.drugs[idx], n_rows)
mean_pred, var_pred = compute_prediction(
autoencoder,
genes_control,
emb_drugs,
emb_covs,
)
# copies just the needed genes to GPU
# Could try moving the whole genes tensor to GPU once for further speedups (but more memory problems)
y_true = dataset.genes[idx_all, :].to(device="cuda")
# true means and variances
yt_m = y_true.mean(dim=0)
yt_v = y_true.var(dim=0)
# predicted means and variances
yp_m = mean_pred.mean(dim=0).to(device="cuda")
yp_v = var_pred.mean(dim=0).to(device="cuda")
r2_m = compute_r2(yt_m, yp_m)
r2_v = compute_r2(yt_v, yp_v)
r2_m_de = compute_r2(yt_m[idx_de], yp_m[idx_de])
r2_v_de = compute_r2(yt_v[idx_de], yp_v[idx_de])
# to be investigated
if r2_m_de == float("-inf") or r2_v_de == float("-inf"):
continue
mean_score.append(r2_m)
var_score.append(r2_v)
mean_score_de.append(r2_m_de)
var_score_de.append(r2_v_de)
print(f"Number of different r2 computations: {len(mean_score)}")
if len(mean_score) > 0:
return [np.mean(s) for s in [mean_score, mean_score_de, var_score, var_score_de]]
else:
return []
|