File size: 6,657 Bytes
a48f0ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pickle
import sys
import time

import numpy as np
import rdkit
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from dgllife.data import JTVAEZINC, JTVAECollator, JTVAEDataset
from dgllife.model import JTNNVAE
from torch.utils.data import DataLoader
from utils import get_timestamp, mkdir_p


def main(args):
    print(f"{get_timestamp()}: {args}")
    mkdir_p(args.save_path)

    lg = rdkit.RDLogger.logger()
    lg.setLevel(rdkit.RDLogger.CRITICAL)

    if args.use_cpu or not torch.cuda.is_available():
        device = torch.device("cpu")
    else:
        device = torch.device("cuda:0")

    with open(args.vocab_path, "rb") as f:
        vocab = pickle.load(f)
    if args.train_path is None:
        dataset = JTVAEZINC("train", vocab)
    else:
        dataset = JTVAEDataset(args.train_path, vocab, training=True)
    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.num_workers,
        collate_fn=JTVAECollator(training=True),
        drop_last=True,
    )

    model = JTNNVAE(vocab, args.hidden_size, args.latent_size, args.depth)
    if args.model_path is not None:
        print(f"Loading model at {args.model_path}")
        model.load_state_dict(torch.load(args.model_path, map_location="cpu"))
    else:
        model.reset_parameters()
    model = model.to(device)
    print(
        "Model #Params: {:d}K".format(
            sum([x.nelement() for x in model.parameters()]) // 1000
        )
    )

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = lr_scheduler.ExponentialLR(optimizer, args.gamma)

    dur = []
    t0 = time.time()
    for epoch in range(args.max_epoch):
        word_acc, topo_acc, assm_acc, steo_acc = 0, 0, 0, 0
        for it, (
            batch_trees,
            batch_tree_graphs,
            batch_mol_graphs,
            stereo_cand_batch_idx,
            stereo_cand_labels,
            batch_stereo_cand_graphs,
        ) in enumerate(dataloader):
            batch_tree_graphs = batch_tree_graphs.to(device)
            batch_mol_graphs = batch_mol_graphs.to(device)
            stereo_cand_batch_idx = stereo_cand_batch_idx.to(device)
            batch_stereo_cand_graphs = batch_stereo_cand_graphs.to(device)

            loss, kl_div, wacc, tacc, sacc, dacc = model(
                batch_trees,
                batch_tree_graphs,
                batch_mol_graphs,
                stereo_cand_batch_idx,
                stereo_cand_labels,
                batch_stereo_cand_graphs,
                beta=args.beta,
            )
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            word_acc += wacc
            topo_acc += tacc
            assm_acc += sacc
            steo_acc += dacc

            if (it + 1) % args.print_iter == 0:
                dur.append(time.time() - t0)
                word_acc = word_acc / args.print_iter * 100
                topo_acc = topo_acc / args.print_iter * 100
                assm_acc = assm_acc / args.print_iter * 100
                steo_acc = steo_acc / args.print_iter * 100

                print(
                    get_timestamp(),
                    "Epoch {:d}/{:d} | Iter {:d}/{:d} | KL: {:.1f}, Word: {:.2f}, "
                    "Topo: {:.2f}, Assm: {:.2f}, Steo: {:.2f} | "
                    "Estimated time per epoch: {:.4f}s".format(
                        epoch + 1,
                        args.max_epoch,
                        it + 1,
                        len(dataloader),
                        kl_div,
                        word_acc,
                        topo_acc,
                        assm_acc,
                        steo_acc,
                        np.mean(dur) / args.print_iter * len(dataloader),
                    ),
                )
                word_acc, topo_acc, assm_acc, steo_acc = 0, 0, 0, 0
                sys.stdout.flush()
                t0 = time.time()

            if (it + 1) % 15000 == 0:
                scheduler.step()

            if (it + 1) % args.save_iter == 0:
                save_path = args.save_path + f"/model.epoch-{epoch}-iter-{it}"
                print(get_timestamp(), f"Saving checkpoint at {save_path}")
                torch.save(model.state_dict(), save_path)

        scheduler.step()
        torch.save(model.state_dict(), args.save_path + "/model.iter-" + str(epoch))

    return {
        "KL": kl_div,
        "Word": word_acc,
        "Topo": topo_acc,
        "Assm": assm_acc,
        "Steo": steo_acc,
    }


if __name__ == "__main__":
    from argparse import ArgumentParser

    parser = ArgumentParser()
    parser.add_argument(
        "-tr",
        "--train-path",
        type=str,
        help="Path to the training molecules, with one SMILES string a line",
    )
    parser.add_argument(
        "-s",
        "--save-path",
        type=str,
        default="vae_model",
        help="Directory to save model checkpoints",
    )
    parser.add_argument(
        "-m", "--model-path", type=str, help="Path to pre-trained model checkpoint"
    )
    parser.add_argument("-b", "--batch-size", type=int, default=40, help="Batch size")
    parser.add_argument(
        "-w", "--hidden-size", type=int, default=450, help="Hidden size"
    )
    parser.add_argument("-l", "--latent-size", type=int, default=56, help="Latent size")
    parser.add_argument(
        "-d", "--depth", type=int, default=3, help="Number of GNN layers"
    )
    parser.add_argument(
        "-z", "--beta", type=float, default=0.001, help="Weight for KL loss term"
    )
    parser.add_argument("-lr", "--lr", type=float, default=0.0007, help="Learning rate")
    parser.add_argument(
        "-g",
        "--gamma",
        type=float,
        default=0.9,
        help="Multiplicative factor for learning rate decay",
    )
    parser.add_argument(
        "-me",
        "--max-epoch",
        type=int,
        default=7,
        help="Maximum number of epochs for training",
    )
    parser.add_argument(
        "-nw",
        "--num-workers",
        type=int,
        default=4,
        help="Number of subprocesses for data loading",
    )
    parser.add_argument(
        "-pi",
        "--print-iter",
        type=int,
        default=20,
        help="Frequency for printing evaluation metrics",
    )
    parser.add_argument(
        "-cpu",
        "--use-cpu",
        action="store_true",
        help="By default, the script uses GPU whenever available. "
        "This flag enforces the use of CPU.",
    )
    args = parser.parse_args()

    main(args)