mcp-plausible / app.py
azettl's picture
Update PLAUSIBLE_KEY env. name
e6fe444 verified
raw
history blame
16.2 kB
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from typing import Dict, List, Any, Optional
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
PLAUSIBLE_URL = os.getenv("PLAUSIBLE_URL", "https://plausible.io/api/v2/query")
PLAUSIBLE_KEY = os.getenv("PLAUSIBLE_KEY")
class PlausibleAPI:
def __init__(self, api_key: str):
self.api_key = api_key
self.headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
def query(self, payload: Dict[str, Any]) -> Dict[str, Any]:
"""Make a query to the Plausible API"""
if not self.api_key:
return {"error": "PLAUSIBLE_KEY environment variable is not set"}
try:
response = requests.post(PLAUSIBLE_URL, headers=self.headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError as e:
return {"error": f"Failed to parse JSON response: {str(e)}"}
# Initialize API client
api_client = PlausibleAPI(PLAUSIBLE_KEY)
def basic_stats_query(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Get basic site statistics"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Format results
if result.get("results"):
metrics_data = result["results"][0]["metrics"]
stats_dict = dict(zip(metrics, metrics_data))
# Create a simple bar chart
fig = px.bar(
x=list(stats_dict.keys()),
y=list(stats_dict.values()),
title=f"Stats for {site_id} ({date_range})"
)
fig.update_layout(xaxis_title="Metrics", yaxis_title="Values")
return json.dumps(result, indent=2), stats_dict, fig
return json.dumps(result, indent=2), None, None
def timeseries_query(site_id: str, date_range: str, metrics: List[str], time_dimension: str) -> tuple:
"""Get timeseries data"""
if not site_id:
return "Please enter a site ID", None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": [time_dimension]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None
# Create timeseries chart
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {"time": row["dimensions"][0]}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
df['time'] = pd.to_datetime(df['time'])
fig = go.Figure()
for metric in metrics:
fig.add_trace(go.Scatter(
x=df['time'],
y=df[metric],
mode='lines+markers',
name=metric
))
fig.update_layout(
title=f"Timeseries for {site_id}",
xaxis_title="Time",
yaxis_title="Values"
)
return json.dumps(result, indent=2), fig
return json.dumps(result, indent=2), None
def geographic_analysis(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Analyze traffic by country and city"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": ["visit:country_name", "visit:city_name"],
"filters": [["is_not", "visit:country_name", [""]]],
"order_by": [[metrics[0], "desc"]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Create geographic visualization
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {
"country": row["dimensions"][0],
"city": row["dimensions"][1]
}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
# Create a bar chart of top countries
country_stats = df.groupby('country')[metrics[0]].sum().sort_values(ascending=False).head(10)
fig = px.bar(
x=country_stats.index,
y=country_stats.values,
title=f"Top Countries by {metrics[0]} for {site_id}",
labels={'x': 'Country', 'y': metrics[0]}
)
fig.update_xaxes(tickangle=45)
return json.dumps(result, indent=2), fig, df.head(20).to_dict('records')
return json.dumps(result, indent=2), None, None
def utm_analysis(site_id: str, date_range: str) -> tuple:
"""Analyze UTM parameters"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": ["visitors", "events", "pageviews"],
"date_range": date_range,
"dimensions": ["visit:utm_medium", "visit:utm_source"],
"filters": [["is_not", "visit:utm_medium", [""]]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
if result.get("results"):
df_data = []
for row in result["results"]:
df_data.append({
"utm_medium": row["dimensions"][0] or "Direct",
"utm_source": row["dimensions"][1] or "Direct",
"visitors": row["metrics"][0],
"events": row["metrics"][1],
"pageviews": row["metrics"][2]
})
df = pd.DataFrame(df_data)
# Create sunburst chart
fig = px.sunburst(
df,
path=['utm_medium', 'utm_source'],
values='visitors',
title=f"UTM Analysis for {site_id}"
)
return json.dumps(result, indent=2), fig, df.to_dict('records')
return json.dumps(result, indent=2), None, None
def custom_query(site_id: str, query_json: str) -> str:
"""Execute a custom JSON query"""
if not site_id:
return "Please enter a site ID"
try:
payload = json.loads(query_json)
payload["site_id"] = site_id # Override site_id
result = api_client.query(payload)
return json.dumps(result, indent=2)
except json.JSONDecodeError as e:
return f"Invalid JSON: {str(e)}"
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="Plausible Analytics Dashboard", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“Š Plausible Analytics Dashboard")
gr.Markdown("MCP Server to analyze your website statistics using the Plausible Stats API.\n\nSo far this app is 100% vibe coded with the help of Claude Sonnet 4.\n\nTry it out with the site id 'azettl.net' or 'fridgeleftoversai.com'.")
with gr.Tab("Basic Stats"):
gr.Markdown("### Get basic website statistics")
with gr.Row():
site_input = gr.Textbox(
label="Site ID",
placeholder="example.com",
info="Your domain as added to Plausible"
)
date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month", "6mo", "12mo", "year", "all"],
value="7d",
label="Date Range"
)
metrics_input = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "views_per_visit", "bounce_rate", "visit_duration", "events"],
value=["visitors", "pageviews", "bounce_rate"],
label="Metrics to Analyze"
)
basic_btn = gr.Button("Get Basic Stats", variant="primary")
with gr.Row():
basic_json = gr.Code(label="API Response", language="json")
basic_stats = gr.JSON(label="Stats Summary")
basic_chart = gr.Plot(label="Statistics Chart")
basic_btn.click(
basic_stats_query,
inputs=[site_input, date_range, metrics_input],
outputs=[basic_json, basic_stats, basic_chart]
)
with gr.Tab("Timeseries"):
gr.Markdown("### View trends over time")
with gr.Row():
ts_site = gr.Textbox(label="Site ID", placeholder="example.com")
ts_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
with gr.Row():
ts_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "events"],
value=["visitors", "pageviews"],
label="Metrics"
)
ts_time_dim = gr.Dropdown(
choices=["time:hour", "time:day", "time:week", "time:month"],
value="time:day",
label="Time Dimension"
)
ts_btn = gr.Button("Generate Timeseries", variant="primary")
with gr.Row():
ts_json = gr.Code(label="API Response", language="json")
ts_chart = gr.Plot(label="Timeseries Chart")
ts_btn.click(
timeseries_query,
inputs=[ts_site, ts_date_range, ts_metrics, ts_time_dim],
outputs=[ts_json, ts_chart]
)
with gr.Tab("Geographic Analysis"):
gr.Markdown("### Analyze traffic by location")
with gr.Row():
geo_site = gr.Textbox(label="Site ID", placeholder="example.com")
geo_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
geo_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "bounce_rate"],
value=["visitors", "pageviews"],
label="Metrics"
)
geo_btn = gr.Button("Analyze Geography", variant="primary")
with gr.Row():
geo_json = gr.Code(label="API Response", language="json")
geo_chart = gr.Plot(label="Geographic Chart")
geo_table = gr.DataFrame(label="Top Locations")
geo_btn.click(
geographic_analysis,
inputs=[geo_site, geo_date_range, geo_metrics],
outputs=[geo_json, geo_chart, geo_table]
)
with gr.Tab("UTM Analysis"):
gr.Markdown("### Analyze marketing campaigns and traffic sources")
with gr.Row():
utm_site = gr.Textbox(label="Site ID", placeholder="example.com")
utm_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
utm_btn = gr.Button("Analyze UTM Parameters", variant="primary")
with gr.Row():
utm_json = gr.Code(label="API Response", language="json")
utm_chart = gr.Plot(label="UTM Sunburst Chart")
utm_table = gr.DataFrame(label="UTM Data")
utm_btn.click(
utm_analysis,
inputs=[utm_site, utm_date_range],
outputs=[utm_json, utm_chart, utm_table]
)
with gr.Tab("Custom Query"):
gr.Markdown("### Execute custom JSON queries")
gr.Markdown("Use this tab to run advanced queries with custom filters and dimensions.")
custom_site = gr.Textbox(label="Site ID", placeholder="example.com")
custom_query_input = gr.Code(
label="JSON Query",
language="json",
value="""{
"metrics": ["visitors", "pageviews"],
"date_range": "7d",
"dimensions": ["visit:source"],
"order_by": [["visitors", "desc"]],
"pagination": {"limit": 10}
}""",
lines=15
)
custom_btn = gr.Button("Execute Query", variant="primary")
custom_result = gr.Code(label="Query Result", language="json", lines=20)
custom_btn.click(
custom_query,
inputs=[custom_site, custom_query_input],
outputs=[custom_result]
)
with gr.Tab("Setup & Documentation"):
gr.Markdown("""
## πŸ”§ Setup Instructions
### For Personal Use (Recommended)
This MCP server is designed for **personal use only**. Each user should run their own instance.
**Setup Steps:**
1. **Get your Plausible API key:**
- Log into your Plausible account
- Go to Account Settings β†’ API Keys
- Create a new key, select "Stats API" as type
2. **Set environment variable:**
```bash
# Windows
set PLAUSIBLE_KEY=your-key-here
# Mac/Linux
export PLAUSIBLE_KEY=your-key-here
# Or create .env file:
echo "PLAUSIBLE_KEY=your-key-here" > .env
```
2. **Install dependencies:**
```bash
pip install -r requirements.txt
```
3. **Run the server:**
```bash
python app.py
```
4. **Add to Claude Desktop config:**
```json
{
"mcpServers": {
"plausible": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
### ⚠️ Security Notice
- **DO NOT** share your API key with others
- **DO NOT** run this as a public server with your API key (Like I do here to show you how it works πŸ™ˆ)
- Each user should run their own instance with their own API key
---
## πŸ“– API Reference
**Available Metrics:**
- `visitors`: Unique visitors
- `visits`: Number of sessions
- `pageviews`: Total page views
- `views_per_visit`: Average pages per session
- `bounce_rate`: Bounce rate percentage
- `visit_duration`: Average visit duration
- `events`: Total events
**Date Ranges:**
- `day`: Current day
- `7d`: Last 7 days
- `28d`: Last 28 days
- `30d`: Last 30 days
- `month`: Current month
- `6mo`: Last 6 months
- `12mo`: Last 12 months
- `year`: Current year
- `all`: All time
**Common Dimensions:**
- `visit:country_name`: Country
- `visit:source`: Traffic source
- `visit:device`: Device type
- `visit:browser`: Browser
- `event:page`: Page path
- `time:day`: Daily grouping
- `time:hour`: Hourly grouping
**Example Filters:**
```json
[["is", "visit:country_name", ["United States", "Canada"]]]
[["contains", "event:page", ["/blog"]]]
[["is_not", "visit:device", ["Mobile"]]]
```
""")
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
)