Spaces:
Running
Running
File size: 16,188 Bytes
ab0d64c e6fe444 ab0d64c e6fe444 ab0d64c e6fe444 ab0d64c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from typing import Dict, List, Any, Optional
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
PLAUSIBLE_URL = os.getenv("PLAUSIBLE_URL", "https://plausible.io/api/v2/query")
PLAUSIBLE_KEY = os.getenv("PLAUSIBLE_KEY")
class PlausibleAPI:
def __init__(self, api_key: str):
self.api_key = api_key
self.headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
def query(self, payload: Dict[str, Any]) -> Dict[str, Any]:
"""Make a query to the Plausible API"""
if not self.api_key:
return {"error": "PLAUSIBLE_KEY environment variable is not set"}
try:
response = requests.post(PLAUSIBLE_URL, headers=self.headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError as e:
return {"error": f"Failed to parse JSON response: {str(e)}"}
# Initialize API client
api_client = PlausibleAPI(PLAUSIBLE_KEY)
def basic_stats_query(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Get basic site statistics"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Format results
if result.get("results"):
metrics_data = result["results"][0]["metrics"]
stats_dict = dict(zip(metrics, metrics_data))
# Create a simple bar chart
fig = px.bar(
x=list(stats_dict.keys()),
y=list(stats_dict.values()),
title=f"Stats for {site_id} ({date_range})"
)
fig.update_layout(xaxis_title="Metrics", yaxis_title="Values")
return json.dumps(result, indent=2), stats_dict, fig
return json.dumps(result, indent=2), None, None
def timeseries_query(site_id: str, date_range: str, metrics: List[str], time_dimension: str) -> tuple:
"""Get timeseries data"""
if not site_id:
return "Please enter a site ID", None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": [time_dimension]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None
# Create timeseries chart
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {"time": row["dimensions"][0]}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
df['time'] = pd.to_datetime(df['time'])
fig = go.Figure()
for metric in metrics:
fig.add_trace(go.Scatter(
x=df['time'],
y=df[metric],
mode='lines+markers',
name=metric
))
fig.update_layout(
title=f"Timeseries for {site_id}",
xaxis_title="Time",
yaxis_title="Values"
)
return json.dumps(result, indent=2), fig
return json.dumps(result, indent=2), None
def geographic_analysis(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Analyze traffic by country and city"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": ["visit:country_name", "visit:city_name"],
"filters": [["is_not", "visit:country_name", [""]]],
"order_by": [[metrics[0], "desc"]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Create geographic visualization
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {
"country": row["dimensions"][0],
"city": row["dimensions"][1]
}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
# Create a bar chart of top countries
country_stats = df.groupby('country')[metrics[0]].sum().sort_values(ascending=False).head(10)
fig = px.bar(
x=country_stats.index,
y=country_stats.values,
title=f"Top Countries by {metrics[0]} for {site_id}",
labels={'x': 'Country', 'y': metrics[0]}
)
fig.update_xaxes(tickangle=45)
return json.dumps(result, indent=2), fig, df.head(20).to_dict('records')
return json.dumps(result, indent=2), None, None
def utm_analysis(site_id: str, date_range: str) -> tuple:
"""Analyze UTM parameters"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": ["visitors", "events", "pageviews"],
"date_range": date_range,
"dimensions": ["visit:utm_medium", "visit:utm_source"],
"filters": [["is_not", "visit:utm_medium", [""]]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
if result.get("results"):
df_data = []
for row in result["results"]:
df_data.append({
"utm_medium": row["dimensions"][0] or "Direct",
"utm_source": row["dimensions"][1] or "Direct",
"visitors": row["metrics"][0],
"events": row["metrics"][1],
"pageviews": row["metrics"][2]
})
df = pd.DataFrame(df_data)
# Create sunburst chart
fig = px.sunburst(
df,
path=['utm_medium', 'utm_source'],
values='visitors',
title=f"UTM Analysis for {site_id}"
)
return json.dumps(result, indent=2), fig, df.to_dict('records')
return json.dumps(result, indent=2), None, None
def custom_query(site_id: str, query_json: str) -> str:
"""Execute a custom JSON query"""
if not site_id:
return "Please enter a site ID"
try:
payload = json.loads(query_json)
payload["site_id"] = site_id # Override site_id
result = api_client.query(payload)
return json.dumps(result, indent=2)
except json.JSONDecodeError as e:
return f"Invalid JSON: {str(e)}"
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="Plausible Analytics Dashboard", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π Plausible Analytics Dashboard")
gr.Markdown("MCP Server to analyze your website statistics using the Plausible Stats API.\n\nSo far this app is 100% vibe coded with the help of Claude Sonnet 4.\n\nTry it out with the site id 'azettl.net' or 'fridgeleftoversai.com'.")
with gr.Tab("Basic Stats"):
gr.Markdown("### Get basic website statistics")
with gr.Row():
site_input = gr.Textbox(
label="Site ID",
placeholder="example.com",
info="Your domain as added to Plausible"
)
date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month", "6mo", "12mo", "year", "all"],
value="7d",
label="Date Range"
)
metrics_input = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "views_per_visit", "bounce_rate", "visit_duration", "events"],
value=["visitors", "pageviews", "bounce_rate"],
label="Metrics to Analyze"
)
basic_btn = gr.Button("Get Basic Stats", variant="primary")
with gr.Row():
basic_json = gr.Code(label="API Response", language="json")
basic_stats = gr.JSON(label="Stats Summary")
basic_chart = gr.Plot(label="Statistics Chart")
basic_btn.click(
basic_stats_query,
inputs=[site_input, date_range, metrics_input],
outputs=[basic_json, basic_stats, basic_chart]
)
with gr.Tab("Timeseries"):
gr.Markdown("### View trends over time")
with gr.Row():
ts_site = gr.Textbox(label="Site ID", placeholder="example.com")
ts_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
with gr.Row():
ts_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "events"],
value=["visitors", "pageviews"],
label="Metrics"
)
ts_time_dim = gr.Dropdown(
choices=["time:hour", "time:day", "time:week", "time:month"],
value="time:day",
label="Time Dimension"
)
ts_btn = gr.Button("Generate Timeseries", variant="primary")
with gr.Row():
ts_json = gr.Code(label="API Response", language="json")
ts_chart = gr.Plot(label="Timeseries Chart")
ts_btn.click(
timeseries_query,
inputs=[ts_site, ts_date_range, ts_metrics, ts_time_dim],
outputs=[ts_json, ts_chart]
)
with gr.Tab("Geographic Analysis"):
gr.Markdown("### Analyze traffic by location")
with gr.Row():
geo_site = gr.Textbox(label="Site ID", placeholder="example.com")
geo_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
geo_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "bounce_rate"],
value=["visitors", "pageviews"],
label="Metrics"
)
geo_btn = gr.Button("Analyze Geography", variant="primary")
with gr.Row():
geo_json = gr.Code(label="API Response", language="json")
geo_chart = gr.Plot(label="Geographic Chart")
geo_table = gr.DataFrame(label="Top Locations")
geo_btn.click(
geographic_analysis,
inputs=[geo_site, geo_date_range, geo_metrics],
outputs=[geo_json, geo_chart, geo_table]
)
with gr.Tab("UTM Analysis"):
gr.Markdown("### Analyze marketing campaigns and traffic sources")
with gr.Row():
utm_site = gr.Textbox(label="Site ID", placeholder="example.com")
utm_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
utm_btn = gr.Button("Analyze UTM Parameters", variant="primary")
with gr.Row():
utm_json = gr.Code(label="API Response", language="json")
utm_chart = gr.Plot(label="UTM Sunburst Chart")
utm_table = gr.DataFrame(label="UTM Data")
utm_btn.click(
utm_analysis,
inputs=[utm_site, utm_date_range],
outputs=[utm_json, utm_chart, utm_table]
)
with gr.Tab("Custom Query"):
gr.Markdown("### Execute custom JSON queries")
gr.Markdown("Use this tab to run advanced queries with custom filters and dimensions.")
custom_site = gr.Textbox(label="Site ID", placeholder="example.com")
custom_query_input = gr.Code(
label="JSON Query",
language="json",
value="""{
"metrics": ["visitors", "pageviews"],
"date_range": "7d",
"dimensions": ["visit:source"],
"order_by": [["visitors", "desc"]],
"pagination": {"limit": 10}
}""",
lines=15
)
custom_btn = gr.Button("Execute Query", variant="primary")
custom_result = gr.Code(label="Query Result", language="json", lines=20)
custom_btn.click(
custom_query,
inputs=[custom_site, custom_query_input],
outputs=[custom_result]
)
with gr.Tab("Setup & Documentation"):
gr.Markdown("""
## π§ Setup Instructions
### For Personal Use (Recommended)
This MCP server is designed for **personal use only**. Each user should run their own instance.
**Setup Steps:**
1. **Get your Plausible API key:**
- Log into your Plausible account
- Go to Account Settings β API Keys
- Create a new key, select "Stats API" as type
2. **Set environment variable:**
```bash
# Windows
set PLAUSIBLE_KEY=your-key-here
# Mac/Linux
export PLAUSIBLE_KEY=your-key-here
# Or create .env file:
echo "PLAUSIBLE_KEY=your-key-here" > .env
```
2. **Install dependencies:**
```bash
pip install -r requirements.txt
```
3. **Run the server:**
```bash
python app.py
```
4. **Add to Claude Desktop config:**
```json
{
"mcpServers": {
"plausible": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
### β οΈ Security Notice
- **DO NOT** share your API key with others
- **DO NOT** run this as a public server with your API key (Like I do here to show you how it works π)
- Each user should run their own instance with their own API key
---
## π API Reference
**Available Metrics:**
- `visitors`: Unique visitors
- `visits`: Number of sessions
- `pageviews`: Total page views
- `views_per_visit`: Average pages per session
- `bounce_rate`: Bounce rate percentage
- `visit_duration`: Average visit duration
- `events`: Total events
**Date Ranges:**
- `day`: Current day
- `7d`: Last 7 days
- `28d`: Last 28 days
- `30d`: Last 30 days
- `month`: Current month
- `6mo`: Last 6 months
- `12mo`: Last 12 months
- `year`: Current year
- `all`: All time
**Common Dimensions:**
- `visit:country_name`: Country
- `visit:source`: Traffic source
- `visit:device`: Device type
- `visit:browser`: Browser
- `event:page`: Page path
- `time:day`: Daily grouping
- `time:hour`: Hourly grouping
**Example Filters:**
```json
[["is", "visit:country_name", ["United States", "Canada"]]]
[["contains", "event:page", ["/blog"]]]
[["is_not", "visit:device", ["Mobile"]]]
```
""")
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
) |