from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch # ✅ Load the fastest model for code review model_name = "EleutherAI/pythia-70m" # Smallest & fastest alternative tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") # ✅ Function to analyze Python code def review_code(code_snippet): inputs = tokenizer(code_snippet, return_tensors="pt").to("cuda") # Move input to GPU outputs = model.generate(**inputs, max_length=80, do_sample=False, num_beams=3) # Fast inference reviewed_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return reviewed_code # ✅ Function to handle user input & return reviewed code def check_code(input_code): reviewed_code = review_code(input_code) return input_code, reviewed_code, reviewed_code # Return for UI display & download # ✅ Gradio UI with Side-by-Side Comparison & Download Option interface = gr.Interface( fn=check_code, inputs=gr.Textbox(label="Enter Python Code"), outputs=[ gr.Textbox(label="Original Code", interactive=False), # Left side gr.Textbox(label="Reviewed Code", interactive=False), # Right side gr.File(label="Download Reviewed Code") # Download button ], title="🚀 AI Code Reviewer", description="Enter Python code and get a reviewed version. Download the reviewed code as a file.", allow_flagging="never" ) # ✅ Launch the app on Hugging Face Spaces with timeout settings interface.launch(share=True)