from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Load Hugging Face's CodeGen model model_name = "Salesforce/codegen-2B-multi" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Function to review Python code def review_code(code_snippet): inputs = tokenizer(code_snippet, return_tensors="pt") outputs = model.generate(**inputs, max_length=512) reviewed_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return reviewed_code # Function to handle UI logic def check_code(input_code): reviewed_code = review_code(input_code) return input_code, reviewed_code, reviewed_code # Return all for UI & download # Gradio UI with Side-by-Side Comparison & Download Option interface = gr.Interface( fn=check_code, inputs=gr.Textbox(label="Enter Python Code"), outputs=[ gr.Textbox(label="Original Code", interactive=False), # Left side gr.Textbox(label="Reviewed Code", interactive=False), # Right side gr.File(label="Download Reviewed Code") # Download button ], title="AI Code Reviewer", description="📌 Enter Python code and get a reviewed version. Download the reviewed code as a file.", allow_flagging="never" ) # Launch the app interface.launch(share=True) # share=True allows public access