from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch # ✅ Load the fastest model on CPU model_name = "EleutherAI/pythia-70m" # Fastest model for code review tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") # Force CPU mode # ✅ Function to review Python code with debug logs def review_code(code_snippet): print("✅ Received Code:", code_snippet) # Debugging log # Process input inputs = tokenizer(code_snippet, return_tensors="pt").to("cpu") # Move to CPU outputs = model.generate(**inputs, max_length=80, do_sample=False, num_beams=3) # Check if the model generated output if outputs is None: print("❌ Model did not generate output!") # Debugging log return "Error: Model did not generate output." reviewed_code = tokenizer.decode(outputs[0], skip_special_tokens=True) print("✅ Generated Code:", reviewed_code) # Debugging log return reviewed_code # ✅ Handle user input and return reviewed code def check_code(input_code): reviewed_code = review_code(input_code) return input_code, reviewed_code, reviewed_code # Return all for UI & download # ✅ Gradio UI with Side-by-Side Comparison & Download Option interface = gr.Interface( fn=check_code, inputs=gr.Textbox(label="Enter Python Code"), outputs=[ gr.Textbox(label="Original Code", interactive=False), # Left side gr.Textbox(label="Reviewed Code", interactive=False), # Right side gr.File(label="Download Reviewed Code") # Download button ], title="🚀 AI Code Reviewer", description="📌 Enter Python code and get a reviewed version. Download the reviewed code as a file.", allow_flagging="never" ) # ✅ Launch app (Fixes font issues and removes `share=True`) interface.launch(server_name="0.0.0.0", server_port=7860, show_error=True)