File size: 1,563 Bytes
e674a51
 
 
 
 
 
db30c0a
e674a51
 
 
 
 
5bce228
 
d5731ac
e674a51
8c6251b
e674a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5731ac
e674a51
 
 
 
 
 
 
 
 
 
 
 
 
db30c0a
e674a51
 
 
 
 
 
5bce228
 
e674a51
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("pszemraj/distilgpt2-magicprompt-SD")


def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens: int,
    temperature: float,
    top_p: float
):
    messages = []

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=8, maximum=128, value=64, step=8, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()