Spaces:
Running
Running
File size: 96,274 Bytes
edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 00b2fd6 edac4ed 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 92c9ef3 5c871bf 92c9ef3 5c871bf 00b2fd6 5c871bf 92c9ef3 5c871bf 00b2fd6 edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 92c9ef3 5c871bf 92c9ef3 00b2fd6 5c871bf 92c9ef3 5c871bf 92c9ef3 5c871bf 92c9ef3 5c871bf 92c9ef3 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 00b2fd6 edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 00b2fd6 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf 00b2fd6 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf 92c9ef3 edac4ed 5c871bf 92c9ef3 edac4ed 5c871bf edac4ed 5c871bf edac4ed 5c871bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Enhanced AI Traffic Evolution Simulator</title>
<style>
body {
margin: 0;
overflow: hidden;
font-family: Arial, sans-serif;
background: #000;
}
#ui {
position: absolute;
top: 10px;
left: 10px;
color: white;
background-color: rgba(0,0,0,0.9);
padding: 15px;
border-radius: 8px;
z-index: 100;
font-size: 14px;
min-width: 220px;
}
#controls {
position: absolute;
top: 10px;
right: 10px;
color: white;
background-color: rgba(0,0,0,0.9);
padding: 15px;
border-radius: 8px;
z-index: 100;
}
button {
background-color: #4CAF50;
border: none;
color: white;
padding: 8px 16px;
margin: 5px;
cursor: pointer;
border-radius: 4px;
font-size: 12px;
}
button:hover {
background-color: #45a049;
}
#stats {
position: absolute;
bottom: 10px;
left: 10px;
color: white;
background-color: rgba(0,0,0,0.9);
padding: 15px;
border-radius: 8px;
z-index: 100;
font-size: 12px;
min-width: 200px;
}
#flockingStats {
position: absolute;
bottom: 10px;
right: 10px;
color: white;
background-color: rgba(0,0,0,0.9);
padding: 15px;
border-radius: 8px;
z-index: 100;
font-size: 12px;
min-width: 180px;
}
#trafficStats {
position: absolute;
top: 50%;
right: 10px;
transform: translateY(-50%);
color: white;
background-color: rgba(0,0,0,0.9);
padding: 15px;
border-radius: 8px;
z-index: 100;
font-size: 12px;
min-width: 180px;
}
.highlight { color: #ffcc00; font-weight: bold; }
.success { color: #00ff00; font-weight: bold; }
.flocking { color: #00aaff; }
.solo { color: #ff8800; }
.leader { color: #ff00ff; font-weight: bold; }
.convoy { color: #00ffff; }
.parked { color: #88ff88; }
.species-0 { color: #ff6b6b; }
.species-1 { color: #4ecdc4; }
.species-2 { color: #45b7d1; }
.species-3 { color: #96ceb4; }
.species-4 { color: #ffd93d; }
.progress-bar {
width: 100%;
height: 10px;
background-color: #333;
border-radius: 5px;
overflow: hidden;
margin: 5px 0;
}
.progress-fill {
height: 100%;
background: linear-gradient(90deg, #ff6b6b, #4ecdc4, #45b7d1);
transition: width 0.3s ease;
}
</style>
</head>
<body>
<div id="ui">
<div class="highlight">AI Traffic Evolution Simulator</div>
<div>Epoch: <span id="epoch">1</span></div>
<div>Time: <span id="epochTime">60</span>s</div>
<div class="progress-bar"><div class="progress-fill" id="timeProgress"></div></div>
<div>Population: <span id="population">100</span></div>
<div>Species: <span id="speciesCount">1</span></div>
<div>Best Fitness: <span id="bestFitness">0</span></div>
<div>Traffic IQ: <span id="trafficIQ">50</span></div>
<div>Road Mastery: <span id="roadMastery">0</span>%</div>
</div>
<div id="controls">
<button id="pauseBtn">Pause</button>
<button id="resetBtn">Reset</button>
<button id="speedBtn">Speed: 1x</button>
<button id="viewBtn">View: Overview</button>
<button id="flockBtn">Networks: ON</button>
<button id="trafficBtn">Traffic Rules: ON</button>
</div>
<div id="stats">
<div><span class="highlight">Top Performers:</span></div>
<div id="topPerformers"></div>
<div style="margin-top: 10px;"><span class="highlight">Generation Stats:</span></div>
<div>Crashes: <span id="crashCount">0</span></div>
<div>Total Distance: <span id="totalDistance">0</span></div>
<div>Parking Visits: <span id="parkingEvents">0</span></div>
<div>Lane Violations: <span id="laneViolations">0</span></div>
<div>Convoy Length: <span id="convoyLength">0</span></div>
</div>
<div id="flockingStats">
<div><span class="highlight">Convoy Behavior:</span></div>
<div><span class="leader">Leaders:</span> <span id="leaderCount">0</span></div>
<div><span class="convoy">In Convoy:</span> <span id="convoyCount">0</span></div>
<div><span class="parked">Parked:</span> <span id="parkedCount">0</span></div>
<div><span class="solo">Solo:</span> <span id="soloCount">0</span></div>
<div>Largest Convoy: <span id="largestConvoy">0</span></div>
<div>Formation Quality: <span id="formationQuality">0</span>%</div>
<div>Parking Efficiency: <span id="parkingEfficiency">0</span>%</div>
</div>
<div id="trafficStats">
<div><span class="highlight">Traffic Intelligence:</span></div>
<div>Lane Discipline: <span id="laneDiscipline">0</span>%</div>
<div>Following Distance: <span id="followingDistance">0</span>m</div>
<div>Road Adherence: <span id="roadAdherence">0</span>%</div>
<div>Turn Signals: <span id="turnSignals">0</span>%</div>
<div style="margin-top: 10px;"><span class="highlight">Parking:</span></div>
<div>Spots Occupied: <span id="spotsOccupied">0</span></div>
<div>Parking Success: <span id="parkingSuccess">0</span>%</div>
<div>Queue Efficiency: <span id="queueEfficiency">0</span>%</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r128/three.min.js"></script>
<script>
// Global variables
let scene, camera, renderer, clock;
let world = {
roads: [],
intersections: [],
buildings: [], // Will store { mesh: buildingMesh, parkingLot: parkingLotObject, visitorCount: 0, barGraphMesh: barMesh }
parkingLots: [], // Will store { center, spots, queue, approachLanes, exitLanes, accessPoints, building: buildingObject }
flockLines: []
};
// Enhanced evolution system
let epoch = 1;
let epochTime = 60; // seconds per epoch
let timeLeft = 60;
let population = [];
let species = []; // For future speciation if needed
let populationSize = 100;
let bestFitness = 0;
let crashCount = 0;
let paused = false;
let speedMultiplier = 1;
let cameraMode = 'overview'; // 'overview', 'follow_best', 'follow_convoy'
let showFlockLines = true;
let trafficRules = true; // General toggle, specific rules handled by AI traits
let parkingEvents = 0; // Total parking visits in an epoch
let laneViolations = 0; // Total lane violations in an epoch
// Traffic and road parameters
const ROAD_WIDTH_UNIT = 6; // Base width for one lane
const ROAD_SPACING = 150; // Spacing for major grid roads
const FOLLOW_DISTANCE = 8; // Base follow distance for convoys
const CONVOY_MAX_DISTANCE = 12; // Max distance before convoy link breaks
const PARKING_SPOT_SIZE = { width: 4, length: 8 };
const GRASS_THRESHOLD = 0.15; // Road position value below which car is considered on grass
// Manual control state for "Follow Best"
let manuallyControlledCar = null;
const manualControls = { W: false, A: false, S: false, D: false };
// Enhanced Neural Network for traffic behavior
class TrafficAI {
constructor() {
this.inputSize = 28; // Enhanced traffic-aware inputs
this.hiddenLayers = [36, 28, 20]; // Hidden layer sizes
this.outputSize = 10; // Outputs: accel, brake, steerL, steerR, laneChange, convoy, park, signalL, signalR, stop
this.memorySize = 8; // Short-term memory for road context
this.weights = [];
this.biases = [];
this.memory = new Array(this.memorySize).fill(0);
this.memoryPointer = 0;
// Build network layers
let prevSize = this.inputSize + this.memorySize;
for (let i = 0; i < this.hiddenLayers.length; i++) {
this.weights.push(this.randomMatrix(prevSize, this.hiddenLayers[i]));
this.biases.push(this.randomArray(this.hiddenLayers[i]));
prevSize = this.hiddenLayers[i];
}
this.weights.push(this.randomMatrix(prevSize, this.outputSize));
this.biases.push(this.randomArray(this.outputSize));
// Traffic-specific traits (evolvable)
this.trafficTraits = {
laneKeeping: Math.random(), // 0-1, tendency to stay in lane
followingBehavior: Math.random(), // 0-1, how closely to follow
parkingSkill: Math.random(), // 0-1, efficiency in parking
convoyDiscipline: Math.random(), // 0-1, tendency to form/join convoys
roadPriority: Math.random() // 0-1, preference for staying on roads
};
}
randomMatrix(rows, cols) {
let matrix = [];
for (let i = 0; i < rows; i++) {
matrix[i] = [];
for (let j = 0; j < cols; j++) {
matrix[i][j] = (Math.random() - 0.5) * 2; // Weights between -1 and 1
}
}
return matrix;
}
randomArray(size) {
return Array(size).fill().map(() => (Math.random() - 0.5) * 2); // Biases between -1 and 1
}
activate(inputs) {
let currentInput = [...inputs, ...this.memory]; // Combine current inputs with memory
// Forward pass through hidden layers
for (let layer = 0; layer < this.hiddenLayers.length; layer++) {
currentInput = this.forwardLayer(currentInput, this.weights[layer], this.biases[layer]);
}
// Output layer
const outputs = this.forwardLayer(currentInput,
this.weights[this.weights.length - 1],
this.biases[this.biases.length - 1]);
this.updateMemory(inputs, outputs); // Update memory based on current state
return outputs;
}
forwardLayer(inputs, weights, biases) {
const outputs = new Array(weights[0].length).fill(0);
for (let i = 0; i < outputs.length; i++) {
for (let j = 0; j < inputs.length; j++) {
outputs[i] += inputs[j] * weights[j][i];
}
outputs[i] += biases[i];
outputs[i] = this.sigmoid(outputs[i]); // Sigmoid activation
}
return outputs;
}
sigmoid(x) {
// Clamping input to prevent extreme values in exp, which can cause NaN
const clampedX = Math.max(-10, Math.min(10, x));
return 1 / (1 + Math.exp(-clampedX));
}
updateMemory(inputs, outputs) {
// Example: Store average road sensor data in memory
const roadInfo = inputs.slice(20, 24).reduce((a, b) => a + b, 0) / 4; // Average of road sensors
this.memory[this.memoryPointer] = roadInfo;
this.memoryPointer = (this.memoryPointer + 1) % this.memorySize;
}
mutate(rate = 0.1) {
this.weights.forEach(weightMatrix => {
this.mutateMatrix(weightMatrix, rate);
});
this.biases.forEach(biasArray => {
this.mutateArray(biasArray, rate);
});
// Mutate traffic traits
Object.keys(this.trafficTraits).forEach(trait => {
if (Math.random() < rate) {
this.trafficTraits[trait] += (Math.random() - 0.5) * 0.2; // Small random change
this.trafficTraits[trait] = Math.max(0, Math.min(1, this.trafficTraits[trait])); // Clamp between 0 and 1
}
});
}
mutateMatrix(matrix, rate) {
for (let i = 0; i < matrix.length; i++) {
for (let j = 0; j < matrix[i].length; j++) {
if (Math.random() < rate) {
matrix[i][j] += (Math.random() - 0.5) * 0.5; // Small random change
matrix[i][j] = Math.max(-3, Math.min(3, matrix[i][j])); // Clamp weights
}
}
}
}
mutateArray(array, rate) {
for (let i = 0; i < array.length; i++) {
if (Math.random() < rate) {
array[i] += (Math.random() - 0.5) * 0.5; // Small random change
array[i] = Math.max(-3, Math.min(3, array[i])); // Clamp biases
}
}
}
copy() {
const newAI = new TrafficAI();
newAI.weights = this.weights.map(matrix => matrix.map(row => [...row]));
newAI.biases = this.biases.map(bias => [...bias]);
newAI.memory = [...this.memory];
newAI.memoryPointer = this.memoryPointer;
newAI.trafficTraits = {...this.trafficTraits}; // Copy traits
return newAI;
}
}
// Enhanced AI Car with traffic behavior
class TrafficCar {
constructor(x = 0, z = 0) {
this.brain = new TrafficAI();
this.mesh = this.createCarMesh();
this.mesh.position.set(x, 1, z); // Car height above ground
// Movement and traffic properties
this.velocity = new THREE.Vector3();
this.acceleration = new THREE.Vector3(); // Not directly used, NN outputs control velocity changes
this.maxSpeed = 20; // Max speed units per second
this.minSpeed = 2; // Min speed when moving
this.currentLane = null; // Reference to current road lane object (if any)
this.targetLane = null; // Target lane for lane changes
this.lanePosition = 0; // -1 (left edge) to 1 (right edge) within its current lane
// Road transition tracking
this.lastRoadPositionScore = 0; // Score from getRoadPosition() in previous frame
this.isReturningToRoad = false; // Flag for 180-turn behavior when on grass
this.turnAngleGoal = 0; // Target angle for the turn
this.turnProgress = 0; // Current progress of the turn
this.initialOrientationY = 0; // Orientation before starting a turn
// Convoy and flock behavior
this.flockId = -1; // ID for flocking group (future use)
this.convoyPosition = -1; // Position in convoy (-1 = not in convoy, 0 = leader)
this.convoyLeader = null; // Reference to convoy leader car
this.convoyFollowers = []; // Array of cars following this one (if leader)
this.followTarget = null; // Car this one is following in a convoy
this.role = 'driver'; // 'driver', 'leader', 'parker'
// Enhanced parking system
this.isParked = false;
this.parkingSpot = null; // Reference to the ParkingSpot object
this.targetParkingLot = null; // Reference to the ParkingLot object
this.parkingQueuePosition = -1; // Position in parking lot queue
this.isParkingApproach = false; // True if actively moving towards a parking spot
this.isInApproachLane = false; // True if in a dedicated approach lane
this.isInExitLane = false; // True if in a dedicated exit lane
this.approachTargetPosition = null; // Specific point in approach lane
this.exitTargetPosition = null; // Specific point in exit lane
this.selectedApproachLaneIndex = -1;
this.selectedExitLaneIndex = -1;
this.parkingAttempts = 0; // Number of times tried to park this epoch
this.maxParkingAttempts = 3;
this.departureTime = 0; // Timer for how long to stay parked
this.isExitingParking = false; // Flag for 180-degree turn when exiting parking
this.turnSignal = 'none'; // 'left', 'right', 'none'
this.laneDiscipline = 0; // Score for staying in lane
this.followingDistance = FOLLOW_DISTANCE; // Current following distance
// Fitness and metrics
this.fitness = 0;
this.roadTime = 0; // Time spent on roads
this.convoyTime = 0; // Time spent in a convoy
this.parkingScore = 0; // Score for successful parking
this.trafficViolations = 0; // Count of lane violations, etc.
this.distanceTraveled = 0;
this.crashed = false;
this.timeAlive = epochTime * 0.8 + Math.random() * epochTime * 0.4; // Lifespan before attempting to park
// Sensors and visualization
this.sensors = Array(16).fill(0); // 16 general obstacle sensors
this.roadSensors = Array(8).fill(0); // Road-specific sensors
this.trafficSensors = Array(4).fill(0); // Traffic/convoy sensors
this.sensorRays = []; // Visual lines for sensors
this.flockLines = []; // Visual lines for convoy connections
this.neighbors = []; // Nearby cars for flocking/convoy logic
this.lastPosition = new THREE.Vector3(x, 1, z);
this.createSensorRays();
this.createFlockVisualization();
this.initializeMovement();
// Manual control inputs
this.manualAcceleration = 0;
this.manualBraking = 0;
this.manualSteer = 0; // -1 for left, 1 for right
}
createCarMesh() {
const group = new THREE.Group();
// Car body
const bodyGeometry = new THREE.BoxGeometry(1.5, 0.8, 3.5);
// Removed flatShading: true as it's not a property of MeshLambertMaterial
this.bodyMaterial = new THREE.MeshLambertMaterial({
color: new THREE.Color().setHSL(Math.random(), 0.8, 0.6)
});
const body = new THREE.Mesh(bodyGeometry, this.bodyMaterial);
body.position.y = 0.4; // Body center y
body.castShadow = true;
group.add(body);
// Turn signals
const signalGeometry = new THREE.SphereGeometry(0.15, 6, 4);
this.leftSignal = new THREE.Mesh(signalGeometry,
new THREE.MeshLambertMaterial({ color: 0xff8800, transparent: true, opacity: 0.5 }));
this.leftSignal.position.set(-0.8, 0.8, 1.2); // Front-left
group.add(this.leftSignal);
this.rightSignal = new THREE.Mesh(signalGeometry,
new THREE.MeshLambertMaterial({ color: 0xff8800, transparent: true, opacity: 0.5 }));
this.rightSignal.position.set(0.8, 0.8, 1.2); // Front-right
group.add(this.rightSignal);
// Role indicator (cone above car)
const indicatorGeometry = new THREE.ConeGeometry(0.2, 0.8, 6);
this.roleIndicator = new THREE.Mesh(indicatorGeometry,
new THREE.MeshLambertMaterial({ color: 0xffffff })); // Default white
this.roleIndicator.position.set(0, 1.5, 0); // Above car body
group.add(this.roleIndicator);
// Wheels
const wheelGeometry = new THREE.CylinderGeometry(0.3, 0.3, 0.2, 8); // radiusTop, radiusBottom, height, segments
const wheelMaterial = new THREE.MeshLambertMaterial({ color: 0x333333 });
this.wheels = [];
const wheelPositions = [
[-0.7, 0, 1.4], [0.7, 0, 1.4], // Front wheels
[-0.7, 0, -1.4], [0.7, 0, -1.4] // Rear wheels
];
wheelPositions.forEach((pos) => {
const wheel = new THREE.Mesh(wheelGeometry, wheelMaterial);
wheel.position.set(...pos);
wheel.rotation.z = Math.PI / 2; // Rotate to lie flat
this.wheels.push(wheel);
group.add(wheel);
});
return group;
}
createSensorRays() {
const sensorMaterial = new THREE.LineBasicMaterial({
color: 0xff0000,
transparent: true,
opacity: 0.2
});
for (let i = 0; i < 16; i++) { // 16 general obstacle sensors
const geometry = new THREE.BufferGeometry().setFromPoints([
new THREE.Vector3(0, 0, 0),
new THREE.Vector3(0, 0, 10) // Default length 10
]);
const ray = new THREE.Line(geometry, sensorMaterial);
this.sensorRays.push(ray);
this.mesh.add(ray); // Add rays as children of car mesh for relative positioning
}
}
createFlockVisualization() {
const flockMaterial = new THREE.LineBasicMaterial({
color: 0x00ff00,
transparent: true,
opacity: 0.6,
linewidth: 2 // Note: linewidth might not be supported by all WebGL renderers
});
for (let i = 0; i < 10; i++) { // Max 10 flock lines per car
const geometry = new THREE.BufferGeometry().setFromPoints([
new THREE.Vector3(0, 2, 0), // Start point (relative to world for now)
new THREE.Vector3(0, 2, 0) // End point
]);
const line = new THREE.Line(geometry, flockMaterial);
this.flockLines.push(line);
if (showFlockLines) scene.add(line); // Add to scene directly
}
}
initializeMovement() {
const nearestRoad = this.findNearestRoad();
if (nearestRoad) {
this.currentLane = nearestRoad.lane; // Store lane type (e.g., 'highway_horizontal')
this.mesh.rotation.y = nearestRoad.direction;
this.velocity.set(
Math.sin(nearestRoad.direction) * 8, 0, Math.cos(nearestRoad.direction) * 8
);
} else {
// Random initial orientation and velocity if no road found
this.mesh.rotation.y = Math.random() * Math.PI * 2;
this.velocity.set(
Math.sin(this.mesh.rotation.y) * 6, 0, Math.cos(this.mesh.rotation.y) * 6
);
}
}
findNearestRoad() {
// This function is complex and crucial. It determines the closest road segment.
// It considers different road types (highways, secondary, local, access)
// and returns information about the road (type, center, direction, width).
// For brevity, its detailed implementation is assumed from the original code,
// but it needs to be robust for multilane scenarios.
// Key is that it returns an object like:
// { lane: 'type_orientation', center: number, direction: angle, width: number }
const pos = this.mesh.position;
let nearestRoadInfo = null;
let minDistance = Infinity;
world.roads.forEach(road => {
let distanceToRoadCenterLine;
let roadCenterCoord; // x for vertical, z for horizontal
let carRelevantCoord; // x for vertical, z for horizontal
let roadWidth = road.width;
if (road.direction === 'horizontal') {
roadCenterCoord = road.z;
carRelevantCoord = pos.z;
// Check if car is within road's x-bounds
if (pos.x < road.start || pos.x > road.end) return;
} else { // vertical
roadCenterCoord = road.x;
carRelevantCoord = pos.x;
// Check if car is within road's z-bounds
if (pos.z < road.start || pos.z > road.end) return;
}
distanceToRoadCenterLine = Math.abs(carRelevantCoord - roadCenterCoord);
if (distanceToRoadCenterLine < roadWidth / 2 + 5) { // Consider roads slightly wider for detection
if (distanceToRoadCenterLine < minDistance) {
minDistance = distanceToRoadCenterLine;
nearestRoadInfo = {
lane: `${road.type}_${road.direction}`,
center: roadCenterCoord, // Centerline coordinate (x or z)
direction: road.orientationAngle, // Actual angle of the road
width: roadWidth,
roadObject: road // Reference to the road object itself
};
}
}
});
return nearestRoadInfo;
}
getRoadPositionScore() { // Renamed from getRoadPosition to avoid conflict
// Calculates a score (0-1) based on how well the car is on *any* road surface.
// Higher score means more centered on a road.
const pos = this.mesh.position;
let maxRoadScore = 0;
world.roads.forEach(road => {
let distanceToRoadCenterLine;
let carRelevantCoord;
if (road.direction === 'horizontal') {
if (pos.x < road.start || pos.x > road.end) return; // Outside road segment length
carRelevantCoord = pos.z;
distanceToRoadCenterLine = Math.abs(carRelevantCoord - road.z);
} else { // vertical
if (pos.z < road.start || pos.z > road.end) return; // Outside road segment length
carRelevantCoord = pos.x;
distanceToRoadCenterLine = Math.abs(carRelevantCoord - road.x);
}
if (distanceToRoadCenterLine <= road.width / 2) {
maxRoadScore = Math.max(maxRoadScore, 1 - (distanceToRoadCenterLine / (road.width / 2)));
}
});
return maxRoadScore;
}
updateSensors() {
const maxDistance = 10; // Max sensor range
const raycaster = new THREE.Raycaster();
// 16-direction obstacle sensors
for (let i = 0; i < 16; i++) {
const angle = (i * Math.PI * 2) / 16; // Angle for this sensor ray
const direction = new THREE.Vector3(Math.sin(angle), 0, Math.cos(angle));
direction.applyQuaternion(this.mesh.quaternion); // Rotate ray with car's orientation
raycaster.set(this.mesh.position, direction);
const intersects = raycaster.intersectObjects(this.getObstacles(), true); // Check against other cars and buildings
if (intersects.length > 0 && intersects[0].distance <= maxDistance) {
this.sensors[i] = 1 - (intersects[0].distance / maxDistance); // Normalized sensor reading (1 = close, 0 = far)
} else {
this.sensors[i] = 0; // No obstacle detected in range
}
// Update visual rays
const endDistance = intersects.length > 0 ?
Math.min(intersects[0].distance, maxDistance) : maxDistance;
const rayEnd = direction.clone().multiplyScalar(endDistance);
this.sensorRays[i].geometry.setFromPoints([new THREE.Vector3(0,0,0), rayEnd]); // Update ray geometry
}
this.updateRoadSensors();
this.updateTrafficSensors();
}
updateRoadSensors() {
// Simplified for now, these would provide detailed info about road layout, intersections, etc.
this.roadSensors[0] = this.getRoadPositionScore(); // How well on a road
this.roadSensors[1] = this.getLanePosition(); // Position within current lane
this.roadSensors[2] = this.getRoadDirectionAlignment(); // Alignment with road direction
this.roadSensors[3] = this.getDistanceToIntersection(); // Normalized distance to nearest intersection
this.roadSensors[4] = this.getNearestParkingLotProximity(); // Proximity to parking
this.roadSensors[5] = this.getParkingAvailability(); // Availability in target lot
this.roadSensors[6] = this.getTrafficDensity(); // Local traffic density
this.roadSensors[7] = this.getOptimalSpeedFactor(); // Factor based on road type/density
}
getLanePosition() {
const roadInfo = this.findNearestRoad();
if (!roadInfo || !roadInfo.roadObject) return 0.5; // Default to center if no road
const pos = this.mesh.position;
let laneOffset;
if (roadInfo.roadObject.direction === 'horizontal') {
laneOffset = pos.z - roadInfo.center;
} else { // vertical
laneOffset = pos.x - roadInfo.center;
}
// Normalize to -1 (left edge of road) to 1 (right edge of road)
let normalizedPosition = (laneOffset / (roadInfo.width / 2));
// Then map to 0-1 for NN input (0 = left edge, 0.5 = center, 1 = right edge)
return Math.max(0, Math.min(1, (normalizedPosition + 1) / 2));
}
getRoadDirectionAlignment() {
const roadInfo = this.findNearestRoad();
if (!roadInfo) return 0.5; // Neutral if no road
const carDirectionVector = new THREE.Vector3(0,0,1).applyQuaternion(this.mesh.quaternion);
const roadDirectionVector = new THREE.Vector3(Math.sin(roadInfo.direction), 0, Math.cos(roadInfo.direction));
const dotProduct = carDirectionVector.dot(roadDirectionVector); // Ranges from -1 to 1
return (dotProduct + 1) / 2; // Normalize to 0-1 (1 = perfectly aligned)
}
// Placeholder functions for other road sensors - these would need detailed implementation
getDistanceToIntersection() { return Math.random(); }
getNearestParkingLotProximity() {
if (!this.targetParkingLot) return 0;
const dist = this.mesh.position.distanceTo(this.targetParkingLot.center);
return Math.max(0, 1 - dist / 100); // Normalized proximity
}
getParkingAvailability() {
if (!this.targetParkingLot) return 0;
const availableSpots = this.targetParkingLot.spots.filter(spot => !spot.occupied).length;
return this.targetParkingLot.spots.length > 0 ? availableSpots / this.targetParkingLot.spots.length : 0;
}
getTrafficDensity() { return Math.random() * 0.5; } // Simplified
getOptimalSpeedFactor() { return 0.8 + Math.random() * 0.2; } // Simplified
updateTrafficSensors() {
// Sensors related to convoy behavior, following, parking needs
this.trafficSensors[0] = this.convoyPosition >= 0 ? 1 : 0; // In convoy?
this.trafficSensors[1] = this.followTarget ? Math.min(this.mesh.position.distanceTo(this.followTarget.mesh.position) / 20, 1) : 1; // Normalized follow distance
this.trafficSensors[2] = this.convoyLeader ? Math.max(0, 1 - this.mesh.position.distanceTo(this.convoyLeader.mesh.position) / 50) : 0; // Proximity to leader
this.trafficSensors[3] = (this.timeAlive < epochTime * 0.3 && !this.isParked) ? 1 : 0; // Need to park?
}
updateConvoyBehavior() {
// Complex logic for forming, joining, and maintaining convoys.
// Includes finding neighbors, determining roles (leader/follower),
// and setting follow targets.
// This is a substantial part of the AI's social behavior.
// For brevity, its detailed implementation is assumed from original,
// but it would interact with the new NN outputs and traits.
this.neighbors = [];
population.forEach(other => {
if (other !== this && !other.crashed && !other.isParked) {
const distance = this.mesh.position.distanceTo(other.mesh.position);
if (distance < 25) this.neighbors.push(other);
}
});
this.updateRole(); // Determine if leader, driver, parker
this.updateConvoyFormation(); // Manage followers or follow leader
}
updateRole() {
const roadPosScore = this.getRoadPositionScore();
if (this.isParked || this.isParkingApproach || this.isInApproachLane || this.isInExitLane) {
this.role = 'parker';
} else if (roadPosScore > 0.8 && this.neighbors.length > 1 && this.brain.trafficTraits.convoyDiscipline > 0.6) {
this.role = 'leader';
} else {
this.role = 'driver';
}
// Update role indicator color
if (this.role === 'leader') this.roleIndicator.material.color.setHex(0xff00ff); // Magenta
else if (this.role === 'parker') this.roleIndicator.material.color.setHex(0x00ff00); // Green
else this.roleIndicator.material.color.setHex(0xffffff); // White
}
updateConvoyFormation() {
// Simplified: Leader tries to get followers, followers try to follow leader or car ahead.
if (this.role === 'leader') {
this.convoyFollowers = this.neighbors
.filter(car => car.role === 'driver' && !car.convoyLeader && car.brain.trafficTraits.convoyDiscipline > 0.5)
.sort((a,b) => this.mesh.position.distanceTo(a.mesh.position) - this.mesh.position.distanceTo(b.mesh.position))
.slice(0, 5); // Max 5 followers
this.convoyFollowers.forEach((follower, index) => {
follower.convoyLeader = this;
follower.convoyPosition = index + 1; // Leader is 0, followers start at 1
follower.followTarget = index === 0 ? this : this.convoyFollowers[index-1];
});
} else if (this.convoyLeader && (this.convoyLeader.crashed || !this.convoyLeader.convoyFollowers.includes(this))) {
// If leader is gone or no longer recognizes this car as follower
this.convoyLeader = null;
this.followTarget = null;
this.convoyPosition = -1;
}
}
getEnhancedInputs() {
return [
...this.sensors, // 16 obstacle sensors
...this.roadSensors, // 8 road/navigation sensors
...this.trafficSensors // 4 traffic behavior sensors
];
}
update(deltaTime) {
if (this.crashed) return;
// Handle manual control if active
if (this === manuallyControlledCar && cameraMode === 'follow_best') {
this.applyManualControls(deltaTime);
// Common updates even for manually controlled car
this.updateVisuals();
this.checkCollisions(); // Still check for collisions
this.keepInBounds();
this.lastPosition.copy(this.mesh.position);
return; // Skip AI decision if manually controlled
}
// Handle parked cars separately
if (this.isParked) {
this.handleParkedBehavior(deltaTime);
this.updateVisuals(); // Keep visuals updated even when parked
return;
}
this.timeAlive -= deltaTime;
if (this.timeAlive <= 0 && !this.isParkingApproach && this.parkingAttempts < this.maxParkingAttempts) {
this.attemptParking(); // Try to park if lifespan is up
}
this.updateSensors();
this.updateConvoyBehavior();
this.updateVisuals();
const inputs = this.getEnhancedInputs();
const outputs = this.brain.activate(inputs);
this.applyTrafficMovement(outputs, deltaTime);
this.updateFitness(deltaTime);
this.lastPosition.copy(this.mesh.position);
this.checkCollisions();
this.keepInBounds();
// Grass behavior
const currentRoadPosScore = this.getRoadPositionScore();
if (currentRoadPosScore < GRASS_THRESHOLD && !this.isReturningToRoad && !this.isParkingApproach && !this.isInApproachLane && !this.isInExitLane) {
this.isReturningToRoad = true;
this.turnAngleGoal = Math.PI; // 180 degrees
this.turnProgress = 0;
this.initialOrientationY = this.mesh.rotation.y;
}
this.lastRoadPositionScore = currentRoadPosScore;
}
applyManualControls(deltaTime) {
const moveSpeed = 20.0;
const turnSpeed = 1.5;
if (manualControls.W) {
this.velocity.add(new THREE.Vector3(0,0,1).applyQuaternion(this.mesh.quaternion).multiplyScalar(moveSpeed * deltaTime));
}
if (manualControls.S) {
this.velocity.sub(new THREE.Vector3(0,0,1).applyQuaternion(this.mesh.quaternion).multiplyScalar(moveSpeed * 0.7 * deltaTime));
}
if (!manualControls.W && !manualControls.S) {
this.velocity.multiplyScalar(0.95); // Friction
}
if (manualControls.A) {
this.mesh.rotation.y += turnSpeed * deltaTime;
}
if (manualControls.D) {
this.mesh.rotation.y -= turnSpeed * deltaTime;
}
// Clamp speed
const currentSpeed = this.velocity.length();
if (currentSpeed > this.maxSpeed) {
this.velocity.normalize().multiplyScalar(this.maxSpeed);
}
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
this.wheels.forEach(wheel => wheel.rotation.x += currentSpeed * deltaTime * 0.1);
}
handleParkedBehavior(deltaTime) {
this.velocity.set(0,0,0); // Ensure car is stationary
this.departureTime -= deltaTime;
if (this.departureTime <= 0 && !this.isExitingParking) {
this.isExitingParking = true;
if (this.targetParkingLot && this.targetParkingLot.building) {
this.targetParkingLot.building.visitorCount = Math.max(0, (this.targetParkingLot.building.visitorCount || 0) - 1);
}
this.turnAngleGoal = Math.PI; // 180 degrees to exit
this.turnProgress = 0;
this.initialOrientationY = this.mesh.rotation.y; // Store orientation before turning
}
if (this.isExitingParking) {
const turnSpeedForExit = Math.PI / 2; // Turn 180 in 2 seconds
this.mesh.rotation.y += turnSpeedForExit * deltaTime;
this.turnProgress += turnSpeedForExit * deltaTime;
if (this.turnProgress >= this.turnAngleGoal) {
this.mesh.rotation.y = this.initialOrientationY + Math.PI; // Ensure exact 180 turn
this.isExitingParking = false;
this.leaveParking(); // This will set it to use an exit lane
}
}
}
applyTrafficMovement(outputs, deltaTime) {
const [
acceleration, braking, steerLeft, steerRight,
laneChangeIntent, followConvoySignal, parkingManeuverSignal,
turnSignalLeftOutput, turnSignalRightOutput, emergencyStopSignal
] = outputs;
// Update turn signals
this.turnSignal = 'none';
if (turnSignalLeftOutput > 0.7) this.turnSignal = 'left';
if (turnSignalRightOutput > 0.7) this.turnSignal = 'right';
this.leftSignal.material.opacity = this.turnSignal === 'left' ? (Math.sin(Date.now()*0.01) * 0.4 + 0.6) : 0.3;
this.rightSignal.material.opacity = this.turnSignal === 'right' ? (Math.sin(Date.now()*0.01) * 0.4 + 0.6) : 0.3;
if (this.isReturningToRoad) {
const turnSpeedReturn = Math.PI / 1.5; // Faster turn for recovery
this.mesh.rotation.y += turnSpeedReturn * deltaTime;
this.turnProgress += turnSpeedReturn * deltaTime;
this.velocity.copy(new THREE.Vector3(0,0,1).applyQuaternion(this.mesh.quaternion).multiplyScalar(this.minSpeed * 0.8)); // Move slowly while turning
if (this.turnProgress >= this.turnAngleGoal) {
this.mesh.rotation.y = this.initialOrientationY + Math.PI; // Ensure exact turn
this.isReturningToRoad = false;
}
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
return; // Override other movements while returning to road
}
if (emergencyStopSignal > 0.8) {
this.velocity.multiplyScalar(0.7); return;
}
if (parkingManeuverSignal > 0.7 && !this.isParked && !this.isParkingApproach) {
this.attemptParking(); return;
}
if (this.isParkingApproach || this.isInApproachLane || this.isInExitLane) {
this.executeParkingLogic(deltaTime); return; // Dedicated parking movement
}
this.followRoad(deltaTime, laneChangeIntent); // Pass laneChangeIntent
if (followConvoySignal > 0.6 && this.followTarget) {
this.followConvoyTarget(deltaTime);
}
// Basic movement based on NN outputs
const forward = new THREE.Vector3(0, 0, 1).applyQuaternion(this.mesh.quaternion);
if (acceleration > 0.3) {
this.velocity.add(forward.multiplyScalar(acceleration * 10 * deltaTime));
}
if (braking > 0.5) {
this.velocity.multiplyScalar(1 - braking * deltaTime * 4);
}
const steering = (steerRight - steerLeft) * 0.10 * deltaTime * (this.velocity.length()/this.maxSpeed + 0.2); // Speed sensitive steering
this.mesh.rotation.y += steering;
// Speed limits and friction
const currentSpeed = this.velocity.length();
if (currentSpeed > this.maxSpeed) this.velocity.normalize().multiplyScalar(this.maxSpeed);
else if (currentSpeed < this.minSpeed && currentSpeed > 0.1) this.velocity.normalize().multiplyScalar(this.minSpeed);
else if (currentSpeed < 0.1) this.velocity.set(0,0,0);
this.velocity.multiplyScalar(0.99); // General friction
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
this.wheels.forEach(wheel => wheel.rotation.x += currentSpeed * deltaTime * 0.1);
}
followRoad(deltaTime, laneChangeIntent) {
const roadInfo = this.findNearestRoad();
if (!roadInfo || !roadInfo.roadObject) {
// If completely off-road, increase penalty or trigger recovery
this.fitness -= 2 * deltaTime; // Penalty for being off-road
return;
}
const road = roadInfo.roadObject;
const targetRoadAngle = road.orientationAngle;
let carAngle = this.mesh.rotation.y;
// Normalize carAngle to be in similar range as targetRoadAngle (0 to 2PI or -PI to PI)
// Assuming targetRoadAngle is between -PI and PI from atan2
while (carAngle - targetRoadAngle > Math.PI) carAngle -= 2 * Math.PI;
while (targetRoadAngle - carAngle > Math.PI) carAngle += 2 * Math.PI;
let angleDiff = targetRoadAngle - carAngle;
// Correct smallest angle
if (angleDiff > Math.PI) angleDiff -= 2 * Math.PI;
if (angleDiff < -Math.PI) angleDiff += 2 * Math.PI;
// Steering correction to align with road
this.mesh.rotation.y += angleDiff * 0.1 * this.brain.trafficTraits.laneKeeping;
// Lane keeping: Aim for a specific lane within the road width
const numLanes = Math.max(1, Math.floor(road.width / ROAD_WIDTH_UNIT));
let targetLaneIndex = Math.floor(numLanes / 2); // Default to center-ish lane
// Interpret laneChangeIntent (0-1) - simplified
if (numLanes > 1) {
if (laneChangeIntent < 0.33) targetLaneIndex = Math.max(0, targetLaneIndex -1 ); // Try to move left
else if (laneChangeIntent > 0.66) targetLaneIndex = Math.min(numLanes - 1, targetLaneIndex + 1); // Try to move right
}
// Calculate the center of the target lane
let targetLaneCenterCoord; // This will be an X or Z coordinate
const laneCenterOffsetFromRoadEdge = (targetLaneIndex + 0.5) * ROAD_WIDTH_UNIT;
if (road.direction === 'horizontal') {
// For horizontal roads, lanes are offset in Z from the road's Z center.
// Road center is road.z. Road edge is road.z - road.width/2.
targetLaneCenterCoord = (road.z - road.width/2) + laneCenterOffsetFromRoadEdge;
const currentZ = this.mesh.position.z;
const offsetFromTargetLane = currentZ - targetLaneCenterCoord;
this.velocity.z -= offsetFromTargetLane * 0.2 * this.brain.trafficTraits.laneKeeping * deltaTime;
if (Math.abs(offsetFromTargetLane) > ROAD_WIDTH_UNIT / 2) { // Outside target lane
this.trafficViolations++; laneViolations++;
}
} else { // Vertical road
// For vertical roads, lanes are offset in X from the road's X center.
targetLaneCenterCoord = (road.x - road.width/2) + laneCenterOffsetFromRoadEdge;
const currentX = this.mesh.position.x;
const offsetFromTargetLane = currentX - targetLaneCenterCoord;
this.velocity.x -= offsetFromTargetLane * 0.2 * this.brain.trafficTraits.laneKeeping * deltaTime;
if (Math.abs(offsetFromTargetLane) > ROAD_WIDTH_UNIT / 2) {
this.trafficViolations++; laneViolations++;
}
}
this.roadTime += deltaTime;
this.laneDiscipline = Math.max(0, 1 - (this.trafficViolations / (this.roadTime + 1)) * 0.1);
}
followConvoyTarget(deltaTime) {
if (!this.followTarget || this.followTarget.crashed) {
this.convoyLeader = null; this.followTarget = null; this.convoyPosition = -1; return;
}
const targetPos = this.followTarget.mesh.position;
const distance = this.mesh.position.distanceTo(targetPos);
const idealDistance = FOLLOW_DISTANCE + (this.convoyPosition * 2.5); // Staggered formation
const directionToTarget = targetPos.clone().sub(this.mesh.position).normalize();
if (distance > idealDistance + 2) { // Too far, speed up
this.velocity.add(directionToTarget.multiplyScalar(this.brain.trafficTraits.followingBehavior * 5 * deltaTime));
} else if (distance < idealDistance - 1) { // Too close, slow down
this.velocity.multiplyScalar(1 - (1 - this.brain.trafficTraits.followingBehavior) * 0.5 * deltaTime);
}
// Align with target's general direction (simplified)
const targetAngle = Math.atan2(directionToTarget.x, directionToTarget.z);
let carAngle = this.mesh.rotation.y;
while (carAngle - targetAngle > Math.PI) carAngle -= 2 * Math.PI;
while (targetAngle - carAngle > Math.PI) carAngle += 2 * Math.PI;
this.mesh.rotation.y += (targetAngle - carAngle) * 0.05;
this.convoyTime += deltaTime;
this.followingDistance = distance;
}
executeParkingLogic(deltaTime) {
// This is the state machine for parking
if (!this.targetParkingLot) { this.isParkingApproach = false; return; }
if (this.isInExitLane) {
this.handleExitLane(deltaTime);
} else if (this.isInApproachLane) {
this.handleApproachLaneMovement(deltaTime);
} else if (this.isParkingApproach) { // Moving towards an approach lane or spot
this.moveTowardsParkingEntry(deltaTime);
}
}
moveTowardsParkingEntry(deltaTime) {
// Try to enter an approach lane first
if (!this.targetParkingLot.approachLanes || this.targetParkingLot.approachLanes.length === 0) {
this.isParkingApproach = false; return; // No approach lanes defined
}
// Find the best (e.g. least occupied or closest) approach lane entry point
let bestLaneEntry = null;
let minOccupancy = Infinity; // Or some other metric like distance
let selectedLaneIdx = -1;
this.targetParkingLot.approachLanes.forEach((laneQueuePositions, idx) => {
// Simplified: pick the first available slot in any lane's queue start
// A more complex logic would check occupancy or distance.
if (laneQueuePositions.length > 0) {
// Check if first spot in this lane queue is free enough
const entryPoint = laneQueuePositions[0];
const occupied = population.some(car => car !== this && car.isInApproachLane && car.selectedApproachLaneIndex === idx && car.mesh.position.distanceTo(entryPoint) < 5);
if (!occupied && !bestLaneEntry) { // Simple: take first available
bestLaneEntry = entryPoint;
selectedLaneIdx = idx;
}
}
});
if (bestLaneEntry) {
this.approachTargetPosition = bestLaneEntry;
this.selectedApproachLaneIndex = selectedLaneIdx;
this.moveToPosition(this.approachTargetPosition, deltaTime, 3); // Slow approach speed
if (this.mesh.position.distanceTo(this.approachTargetPosition) < 2) {
this.isInApproachLane = true; // Entered the approach lane
this.isParkingApproach = false; // No longer just "approaching", now "in lane"
// Add to parking lot's internal queue for this lane if it has one
}
} else {
// All approach lanes seem full or no entry point found, wait or give up
this.velocity.multiplyScalar(0.9); // Slow down if can't find entry
this.parkingAttempts++;
if(this.parkingAttempts >= this.maxParkingAttempts) this.isParkingApproach = false;
}
}
handleApproachLaneMovement(deltaTime) {
// Logic for moving within the approach lane and finding a spot
if (!this.targetParkingLot || !this.targetParkingLot.spots) {
this.isInApproachLane = false; return;
}
const availableSpot = this.targetParkingLot.spots.find(spot => !spot.occupied);
if (availableSpot) {
this.moveToPosition(availableSpot.position, deltaTime, 2); // Move to spot
if (this.mesh.position.distanceTo(availableSpot.position) < 1.5) {
this.completeParkingProcess(availableSpot);
}
} else {
// No spot, wait in approach lane (simplified: just slow down)
this.velocity.multiplyScalar(0.95);
// Potentially move along queue if implemented
}
}
completeParkingProcess(spot) {
this.isParked = true;
this.parkingSpot = spot;
spot.occupied = true;
spot.car = this;
this.mesh.position.copy(spot.position);
this.mesh.rotation.y = spot.orientation !== undefined ? spot.orientation : this.mesh.rotation.y; // Align with spot
this.velocity.set(0, 0, 0);
this.parkingScore += 100;
parkingEvents++;
this.isInApproachLane = false;
this.isParkingApproach = false;
this.departureTime = 15 + Math.random() * 5; // Park for 15-20 seconds
if (this.targetParkingLot && this.targetParkingLot.building) {
this.targetParkingLot.building.visitorCount = (this.targetParkingLot.building.visitorCount || 0) + 1;
}
this.updateCarColor();
}
handleExitLane(deltaTime) {
if (!this.exitTargetPosition) { // Should have been set by leaveParking
this.isInExitLane = false;
this.role = 'driver';
this.timeAlive = epochTime * 0.5; // Give some time to drive away
return;
}
this.moveToPosition(this.exitTargetPosition, deltaTime, 4); // Move along exit lane
if (this.mesh.position.distanceTo(this.exitTargetPosition) < 2) {
// Reached end of exit lane segment, transition to road
this.isInExitLane = false;
this.role = 'driver';
this.timeAlive = epochTime * 0.7; // Replenish some time
this.initializeMovement(); // Re-orient and set velocity for road
this.updateCarColor();
}
}
leaveParking() {
if (!this.isParked && !this.isInExitLane) return; // Not parked or already exiting
if (this.parkingSpot) {
this.parkingSpot.occupied = false;
this.parkingSpot.car = null;
this.parkingSpot = null;
}
this.isParked = false;
// Find an exit lane target
if (this.targetParkingLot && this.targetParkingLot.exitLanes && this.targetParkingLot.exitLanes.length > 0) {
// Simplified: pick first exit lane, last point as target
// A real system would pick closest/least congested
this.selectedExitLaneIndex = 0; // Or a smarter choice
const exitLanePoints = this.targetParkingLot.exitLanes[this.selectedExitLaneIndex];
if (exitLanePoints && exitLanePoints.length > 0) {
this.exitTargetPosition = exitLanePoints[exitLanePoints.length - 1]; // Target the end of the exit lane
this.isInExitLane = true;
this.isExitingParking = false; // Done with 180 turn
// Initial velocity towards exitTargetPosition will be handled by moveToPosition
} else {
this.role = 'driver'; // Fallback if exit lane is weird
this.initializeMovement();
}
} else {
this.role = 'driver'; // Fallback if no exit lanes
this.initializeMovement();
}
this.updateCarColor();
}
attemptParking() {
if (this.isParked || this.isParkingApproach) return;
this.role = 'parker';
this.updateRole(); // Update indicator
this.findNearestParkingLotForAI(); // Sets this.targetParkingLot
if (!this.targetParkingLot) {
this.parkingAttempts++; // Failed to find a lot
this.role = 'driver'; this.updateRole();
this.timeAlive = epochTime * 0.2; // Try again sooner
return;
}
this.isParkingApproach = true; // Start the approach process
this.parkingAttempts = 0; // Reset attempts for this lot
}
findNearestParkingLotForAI() {
let closestLot = null;
let minDist = Infinity;
world.parkingLots.forEach(lot => {
const dist = this.mesh.position.distanceTo(lot.center);
if (dist < minDist) {
minDist = dist;
closestLot = lot;
}
});
this.targetParkingLot = closestLot;
}
moveToPosition(targetPos, deltaTime, speed) {
const direction = targetPos.clone().sub(this.mesh.position);
const distance = direction.length();
if (distance > 0.5) { // Threshold to stop jittering
direction.normalize();
this.velocity.copy(direction.multiplyScalar(speed));
// Smoothly turn towards target
const targetAngle = Math.atan2(direction.x, direction.z);
let currentAngle = this.mesh.rotation.y;
// Normalize angles to prevent full circle turns
while (targetAngle - currentAngle > Math.PI) currentAngle += 2 * Math.PI;
while (currentAngle - targetAngle > Math.PI) currentAngle -= 2 * Math.PI;
this.mesh.rotation.y += (targetAngle - currentAngle) * 0.2; // Adjust turn speed
this.mesh.position.add(this.velocity.clone().multiplyScalar(deltaTime));
} else {
this.velocity.set(0,0,0); // Reached target
}
}
updateFitness(deltaTime) {
const distance = this.mesh.position.distanceTo(this.lastPosition);
this.distanceTraveled += distance;
let fitnessScore = this.distanceTraveled * 0.5; // Base score for moving
fitnessScore += this.roadTime * 1.5; // Bonus for staying on road
fitnessScore += this.convoyTime * 1.0; // Bonus for being in convoy
fitnessScore += this.parkingScore * 0.5; // Bonus for parking successfully
fitnessScore -= this.trafficViolations * 5; // Penalty for violations
if (this.getRoadPositionScore() < GRASS_THRESHOLD && !this.isReturningToRoad) {
fitnessScore -= 10 * deltaTime; // Heavy penalty for being on grass without trying to return
}
if (this.crashed) fitnessScore -= 500; // Large penalty for crashing
this.fitness = fitnessScore;
}
updateVisuals() {
this.updateCarColor();
this.updateFlockVisualization();
this.updateRole(); // Ensure role indicator is current
}
updateCarColor() {
let hue = 0.6, saturation = 0.7, lightness = 0.5; // Default blue
if (this.isParked) { hue = 0.33; lightness = 0.7; } // Green
else if (this.role === 'leader') { hue = 0.83; saturation = 1.0; lightness = 0.6; } // Purple
else if (this.convoyPosition > 0) { hue = 0.5; saturation = 0.8; lightness = 0.6; } // Cyan
else if (this.getRoadPositionScore() < GRASS_THRESHOLD) { hue = 0.1; saturation = 1.0; } // Orange for off-road
const performanceBonus = Math.min(Math.max(0, this.fitness) / 1000, 0.2); // Brighter for higher fitness
lightness = Math.min(1, lightness + performanceBonus);
this.bodyMaterial.color.setHSL(hue, saturation, lightness);
}
updateFlockVisualization() {
// Manages lines connecting convoy members or nearby cars.
// Assumed from original, ensures lines are updated or hidden based on showFlockLines.
let lineIdx = 0;
if (showFlockLines) {
if (this.role === 'leader' && this.convoyFollowers) {
this.convoyFollowers.forEach(follower => {
if (lineIdx < this.flockLines.length && follower) {
this.flockLines[lineIdx].geometry.setFromPoints([this.mesh.position, follower.mesh.position]);
this.flockLines[lineIdx].material.color.setHex(0xff00ff); // Leader connections
this.flockLines[lineIdx].visible = true;
lineIdx++;
}
});
} else if (this.followTarget) {
if (lineIdx < this.flockLines.length) {
this.flockLines[lineIdx].geometry.setFromPoints([this.mesh.position, this.followTarget.mesh.position]);
this.flockLines[lineIdx].material.color.setHex(0x00ffff); // Follower connection
this.flockLines[lineIdx].visible = true;
lineIdx++;
}
}
}
for (let i = lineIdx; i < this.flockLines.length; i++) {
this.flockLines[i].visible = false; // Hide unused lines
}
}
getObstacles() {
// Returns an array of meshes that act as obstacles (other cars, buildings).
let obstacles = [];
population.forEach(car => {
if (car !== this && !car.crashed) obstacles.push(car.mesh);
});
world.buildings.forEach(buildingData => obstacles.push(buildingData.mesh));
return obstacles;
}
checkCollisions() {
if (this.crashed) return;
const carBox = new THREE.Box3().setFromObject(this.mesh);
// Car-to-car collisions (soft)
population.forEach(otherCar => {
if (otherCar !== this && !otherCar.crashed) {
const otherBox = new THREE.Box3().setFromObject(otherCar.mesh);
if (carBox.intersectsBox(otherBox)) {
// Soft collision: push apart slightly, reduce fitness
const separationVector = this.mesh.position.clone().sub(otherCar.mesh.position).normalize().multiplyScalar(0.2);
this.mesh.position.add(separationVector);
otherCar.mesh.position.sub(separationVector);
this.velocity.multiplyScalar(0.8); otherCar.velocity.multiplyScalar(0.8);
this.fitness -= 5; otherCar.fitness -= 5;
this.trafficViolations++; otherCar.trafficViolations++;
// Minor chance of full crash from soft collision
if (Math.random() < 0.01 && !this.isParkingRelatedState() && !otherCar.isParkingRelatedState()) {
this.crashed = true; crashCount++;
}
}
}
});
// Car-to-building collisions (hard)
world.buildings.forEach(buildingData => {
const buildingBox = new THREE.Box3().setFromObject(buildingData.mesh);
if (carBox.intersectsBox(buildingBox)) {
this.crashed = true; crashCount++;
}
});
}
isParkingRelatedState() {
return this.isParked || this.isParkingApproach || this.isInApproachLane || this.isInExitLane;
}
keepInBounds() {
const bounds = 400; // World boundary
if (Math.abs(this.mesh.position.x) > bounds || Math.abs(this.mesh.position.z) > bounds) {
this.mesh.position.x = Math.max(-bounds, Math.min(bounds, this.mesh.position.x));
this.mesh.position.z = Math.max(-bounds, Math.min(bounds, this.mesh.position.z));
this.velocity.multiplyScalar(-0.5); // Bounce back
this.fitness -= 20; // Penalty for hitting boundary
}
}
destroy() {
// Clean up Three.js objects and any references
if (this.parkingSpot) {
this.parkingSpot.occupied = false; this.parkingSpot.car = null;
}
if (this.targetParkingLot && this.targetParkingLot.building && this.isParked) { // Only decrement if it was parked and is now destroyed
this.targetParkingLot.building.visitorCount = Math.max(0, (this.targetParkingLot.building.visitorCount || 0) - 1);
}
this.flockLines.forEach(line => { if (line.parent) scene.remove(line); });
if (this.mesh.parent) scene.remove(this.mesh);
}
}
function init() {
scene = new THREE.Scene();
scene.background = new THREE.Color(0x87CEEB); // Sky blue
scene.fog = new THREE.Fog(0x87CEEB, 300, 1000); // Fog for depth effect
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 2000);
camera.position.set(0, 150, 150);
camera.lookAt(0, 0, 0);
renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap; // Softer shadows
document.body.appendChild(renderer.domElement);
// Lighting
const ambientLight = new THREE.AmbientLight(0x606060); // Increased ambient light
scene.add(ambientLight);
const directionalLight = new THREE.DirectionalLight(0xffffff, 0.8);
directionalLight.position.set(100, 150, 75); // Adjusted light angle
directionalLight.castShadow = true;
directionalLight.shadow.mapSize.width = 2048; // Higher shadow resolution
directionalLight.shadow.mapSize.height = 2048;
directionalLight.shadow.camera.near = 50;
directionalLight.shadow.camera.far = 500;
directionalLight.shadow.camera.left = -200;
directionalLight.shadow.camera.right = 200;
directionalLight.shadow.camera.top = 200;
directionalLight.shadow.camera.bottom = -200;
scene.add(directionalLight);
createTrafficWorld();
createInitialPopulation();
clock = new THREE.Clock();
window.addEventListener('resize', onWindowResize);
setupEventListeners();
animate();
}
function createTrafficWorld() {
// Ground plane
const groundGeometry = new THREE.PlaneGeometry(1200, 1200);
const groundMaterial = new THREE.MeshLambertMaterial({ color: 0x3c763d }); // Darker green
const ground = new THREE.Mesh(groundGeometry, groundMaterial);
ground.rotation.x = -Math.PI / 2;
ground.position.y = 0; // Ground at y=0
ground.receiveShadow = true;
scene.add(ground);
createRoadNetwork(); // Roads first
createBuildingsWithParkingLots(); // Then buildings and their parking
}
function createRoad(x, z, width, length, type, orientationAngle, isHorizontal) {
const roadHeight = 0.1; // Roads slightly above ground
const roadMaterial = new THREE.MeshLambertMaterial({ color: type === 'highway' ? 0x333333 : 0x444444 });
const roadGeometry = new THREE.PlaneGeometry(isHorizontal ? length : width, isHorizontal ? width : length);
const roadMesh = new THREE.Mesh(roadGeometry, roadMaterial);
roadMesh.rotation.x = -Math.PI / 2;
roadMesh.position.set(x, roadHeight, z);
roadMesh.receiveShadow = true;
scene.add(roadMesh);
const roadData = {
mesh: roadMesh,
x: x, z: z, // Center of the road segment
width: width, length: length,
type: type,
direction: isHorizontal ? 'horizontal' : 'vertical',
orientationAngle: orientationAngle, // Angle in radians
start: isHorizontal ? x - length/2 : z - length/2, // Start coord for segment bounds
end: isHorizontal ? x + length/2 : z + length/2, // End coord for segment bounds
lanes: [] // Store lane data if needed later
};
world.roads.push(roadData);
// Lane markings
const numLanes = Math.max(1, Math.floor(width / ROAD_WIDTH_UNIT));
const actualLaneWidth = width / numLanes;
const lineMaterial = new THREE.MeshBasicMaterial({ color: 0xffffff });
const yellowLineMaterial = new THREE.MeshBasicMaterial({ color: 0xffff00 });
for (let i = 0; i < numLanes; i++) {
// Calculate offset for this lane's center from the road's center line
const laneCenterOffset = (i - (numLanes - 1) / 2) * actualLaneWidth;
// Add dashed lines between lanes (if not the outermost edge)
if (i < numLanes - 1) {
let linePosX, linePosZ, lineWidth, lineHeight;
const lineOffsetFromLaneCenter = actualLaneWidth / 2; // Line is at the edge of the lane
if (isHorizontal) {
linePosX = x; // Centered with road segment
linePosZ = z + laneCenterOffset + lineOffsetFromLaneCenter;
lineWidth = length;
lineHeight = 0.2;
} else { // Vertical
linePosX = x + laneCenterOffset + lineOffsetFromLaneCenter;
linePosZ = z; // Centered with road segment
lineWidth = 0.2;
lineHeight = length;
}
// Use yellow for center divider on multi-lane roads (simplified: if it's near overall center)
const isCenterDivider = numLanes > 1 && Math.abs(laneCenterOffset + lineOffsetFromLaneCenter) < actualLaneWidth * 0.6;
createDashedLineWorld(linePosX, linePosZ, lineWidth, lineHeight, isHorizontal, isCenterDivider ? yellowLineMaterial : lineMaterial, roadHeight + 0.01);
}
}
}
function createDashedLineWorld(centerX, centerZ, totalLength, totalWidth, isHorizontal, material, yPos) {
const dashLength = 5;
const gapLength = 3;
const numDashes = Math.floor(totalLength / (dashLength + gapLength));
for (let j = 0; j < numDashes; j++) {
const dashGeometry = new THREE.PlaneGeometry(
isHorizontal ? dashLength : totalWidth,
isHorizontal ? totalWidth : dashLength
);
const dash = new THREE.Mesh(dashGeometry, material);
dash.rotation.x = -Math.PI / 2;
const dashOffset = j * (dashLength + gapLength) - totalLength / 2 + dashLength / 2;
if (isHorizontal) {
dash.position.set(centerX + dashOffset, yPos, centerZ);
} else {
dash.position.set(centerX, yPos, centerZ + dashOffset);
}
scene.add(dash);
}
}
function createRoadNetwork() {
world.roads = []; // Clear existing roads
// Main highways (e.g., 4 lanes wide = 24 units)
createRoad(0, 0, ROAD_WIDTH_UNIT * 4, 800, 'highway', 0, true); // Horizontal E-W
createRoad(0, 0, ROAD_WIDTH_UNIT * 4, 800, 'highway', Math.PI / 2, false); // Vertical N-S
// Secondary roads (e.g., 2 lanes wide = 12 units)
createRoad(0, ROAD_SPACING, ROAD_WIDTH_UNIT * 2, 800, 'secondary', 0, true);
createRoad(0, -ROAD_SPACING, ROAD_WIDTH_UNIT * 2, 800, 'secondary', 0, true);
createRoad(ROAD_SPACING, 0, ROAD_WIDTH_UNIT * 2, 800, 'secondary', Math.PI / 2, false);
createRoad(-ROAD_SPACING, 0, ROAD_WIDTH_UNIT * 2, 800, 'secondary', Math.PI / 2, false);
// More roads for a denser network
createRoad(0, ROAD_SPACING * 2, ROAD_WIDTH_UNIT * 2, 800, 'local', 0, true);
createRoad(0, -ROAD_SPACING * 2, ROAD_WIDTH_UNIT * 2, 800, 'local', 0, true);
createRoad(ROAD_SPACING * 2, 0, ROAD_WIDTH_UNIT * 2, 800, 'local', Math.PI / 2, false);
createRoad(-ROAD_SPACING * 2, 0, ROAD_WIDTH_UNIT * 2, 800, 'local', Math.PI / 2, false);
}
function createBuildingsWithParkingLots() {
world.buildings = []; world.parkingLots = []; // Clear previous
const buildingBaseMaterial = new THREE.MeshLambertMaterial({ color: 0xaaaaaa });
const parkingMaterial = new THREE.MeshLambertMaterial({ color: 0x383838 });
const spotMaterial = new THREE.MeshBasicMaterial({ color: 0xffffff, transparent: true, opacity: 0.5 });
const barGraphMaterial = new THREE.MeshLambertMaterial({color: 0x007bff});
const buildingLocations = [
{ x: -100, z: -100 }, { x: 100, z: -100 },
{ x: -100, z: 100 }, { x: 100, z: 100 },
{ x: -250, z: -50 }, { x: 250, z: 50 },
{ x: -50, z: -250 }, { x: 50, z: 250 },
];
buildingLocations.forEach((loc, index) => {
const bWidth = 20 + Math.random() * 15;
const bHeight = 15 + Math.random() * 25;
const bDepth = 20 + Math.random() * 15;
const buildingGeometry = new THREE.BoxGeometry(bWidth, bHeight, bDepth);
const buildingMesh = new THREE.Mesh(buildingGeometry, buildingBaseMaterial.clone());
buildingMesh.material.color.setHSL(Math.random(), 0.5, 0.6);
buildingMesh.position.set(loc.x, bHeight / 2 + 0.1, loc.z); // Slightly above ground
buildingMesh.castShadow = true;
scene.add(buildingMesh);
// Bar graph for visitor count
const barGeometry = new THREE.BoxGeometry(5, 1, 5); // Base size
const barGraphMesh = new THREE.Mesh(barGeometry, barGraphMaterial.clone());
barGraphMesh.position.set(loc.x, bHeight + 0.1 + 3, loc.z); // Position above building
barGraphMesh.scale.y = 0.1; // Start very small
barGraphMesh.visible = true;
scene.add(barGraphMesh);
const buildingData = { mesh: buildingMesh, parkingLot: null, visitorCount: 0, barGraphMesh: barGraphMesh, height: bHeight };
world.buildings.push(buildingData);
// Create parking lot next to building
const lotWidth = 40, lotDepth = 30;
const lotCenterX = loc.x + bWidth / 2 + lotWidth / 2 + 5; // East of building
const lotCenterZ = loc.z;
const lotGeometry = new THREE.PlaneGeometry(lotWidth, lotDepth);
const lotMesh = new THREE.Mesh(lotGeometry, parkingMaterial);
lotMesh.rotation.x = -Math.PI / 2;
lotMesh.position.set(lotCenterX, 0.05, lotCenterZ); // Slightly above ground, below roads
scene.add(lotMesh);
const parkingLot = {
center: new THREE.Vector3(lotCenterX, 0.1, lotCenterZ),
spots: [],
approachLanes: [], exitLanes: [], accessPoints: [], // For future advanced queueing
building: buildingData // Link back to building
};
buildingData.parkingLot = parkingLot; // Link building to its lot
// Parking spots (2 rows of 5)
const numRows = 2, spotsPerRow = 5;
for (let r = 0; r < numRows; r++) {
for (let s = 0; s < spotsPerRow; s++) {
const spotX = lotCenterX + (s - (spotsPerRow - 1)/2) * (PARKING_SPOT_SIZE.width + 2);
const spotZ = lotCenterZ + (r - (numRows - 1)/2) * (PARKING_SPOT_SIZE.length + 3);
const spotOrientation = Math.PI / 2; // Assuming spots are perpendicular to building side
const spotPlaneGeom = new THREE.PlaneGeometry(PARKING_SPOT_SIZE.width, PARKING_SPOT_SIZE.length);
const spotPlaneMesh = new THREE.Mesh(spotPlaneGeom, spotMaterial);
spotPlaneMesh.rotation.x = -Math.PI/2;
spotPlaneMesh.rotation.z = spotOrientation; // Align with how car would park
spotPlaneMesh.position.set(spotX, 0.06, spotZ);
scene.add(spotPlaneMesh);
parkingLot.spots.push({
position: new THREE.Vector3(spotX, 1, spotZ), // Car's y position when parked
orientation: spotOrientation, // Car's y rotation when parked
occupied: false, car: null, mesh: spotPlaneMesh
});
}
}
// Simplified approach/exit points for now
parkingLot.approachLanes.push([new THREE.Vector3(lotCenterX - lotWidth/2 - 5, 1, lotCenterZ)]); // Entry point
parkingLot.exitLanes.push([new THREE.Vector3(lotCenterX - lotWidth/2 - 10, 1, lotCenterZ + 5)]); // Exit point nearby
world.parkingLots.push(parkingLot);
});
}
function createInitialPopulation() {
population = [];
const startPositions = [ // Disperse starting positions
{x: -50, z: 0}, {x: 50, z: 0}, {x: 0, z: -50}, {x: 0, z: 50},
{x: -ROAD_SPACING, z: 0}, {x: ROAD_SPACING, z: 0},
{x: 0, z: -ROAD_SPACING}, {x: 0, z: ROAD_SPACING},
];
for (let i = 0; i < populationSize; i++) {
const pos = startPositions[i % startPositions.length];
const car = new TrafficCar(pos.x + Math.random()*10-5, pos.z + Math.random()*10-5);
population.push(car);
scene.add(car.mesh);
}
}
function evolvePopulation() {
population.sort((a, b) => (b.fitness || 0) - (a.fitness || 0)); // Higher fitness first
bestFitness = population[0] ? population[0].fitness : 0;
const eliteCount = Math.floor(populationSize * 0.1); // Top 10% survive
const survivors = population.slice(0, eliteCount);
const newPopulation = [];
// Add elites directly
survivors.forEach(parent => {
const offspring = new TrafficCar(parent.mesh.position.x, parent.mesh.position.z);
offspring.brain = parent.brain.copy(); // Elites pass genes directly
newPopulation.push(offspring);
});
// Fill rest with mutated offspring from survivors
while (newPopulation.length < populationSize) {
const parent = survivors[Math.floor(Math.random() * survivors.length)];
const offspring = new TrafficCar(parent.mesh.position.x, parent.mesh.position.z); // Start near parent
offspring.brain = parent.brain.copy();
offspring.brain.mutate(0.1); // Standard mutation rate
newPopulation.push(offspring);
}
// Cleanup old population and add new
population.forEach(car => car.destroy());
population = newPopulation;
population.forEach(car => scene.add(car.mesh));
epoch++;
timeLeft = epochTime;
crashCount = 0; parkingEvents = 0; laneViolations = 0;
world.parkingLots.forEach(lot => { // Reset parking lot visitor counts
if (lot.building) lot.building.visitorCount = 0;
lot.spots.forEach(spot => { spot.occupied = false; spot.car = null; });
});
console.log(`Epoch ${epoch}: Best Fitness: ${bestFitness.toFixed(1)}`);
}
function animate() {
requestAnimationFrame(animate);
const deltaTime = Math.min(clock.getDelta() * speedMultiplier, 0.1); // Cap delta
if (!paused) {
timeLeft -= deltaTime;
if (timeLeft <= 0) {
evolvePopulation();
}
updatePopulation(deltaTime);
updateCamera();
updateUI();
}
renderer.render(scene, camera);
}
function updatePopulation(deltaTime) {
let currentStats = { alive: 0, leaders: 0, convoy: 0, parked: 0, solo: 0, maxConvoySize: 0, totalRoadTime: 0, totalViolations: 0, totalFollowingDistance: 0, followingCount: 0, approaching:0 };
population.forEach(car => {
if (!car.crashed) {
car.update(deltaTime); // Car's internal update
currentStats.alive++;
if (car.isParked) currentStats.parked++;
else if (car.isParkingApproach || car.isInApproachLane) currentStats.approaching++;
else if (car.role === 'leader') currentStats.leaders++;
else if (car.convoyPosition > 0) {
currentStats.convoy++;
if (car.followTarget) {
currentStats.totalFollowingDistance += car.mesh.position.distanceTo(car.followTarget.mesh.position);
currentStats.followingCount++;
}
} else currentStats.solo++;
if (car.role==='leader' && car.convoyFollowers) currentStats.maxConvoySize = Math.max(currentStats.maxConvoySize, car.convoyFollowers.length + 1);
currentStats.totalRoadTime += car.roadTime;
currentStats.totalViolations += car.trafficViolations;
}
});
window.populationStats = currentStats; // Make accessible for UI
}
function updateCamera() {
let targetCar = null;
if (cameraMode === 'follow_best') {
targetCar = population.filter(c => !c.crashed && !c.isParked).sort((a,b) => b.fitness - a.fitness)[0];
manuallyControlledCar = targetCar; // Set for manual control
} else if (cameraMode === 'follow_convoy') {
targetCar = population.filter(c => c.role === 'leader' && c.convoyFollowers.length > 0)
.sort((a,b) => b.convoyFollowers.length - a.convoyFollowers.length)[0];
manuallyControlledCar = null;
} else {
manuallyControlledCar = null;
}
if (targetCar) {
const offset = new THREE.Vector3(0, 30, -25); // Higher and behind
const targetPosition = targetCar.mesh.position.clone().add(offset.applyQuaternion(targetCar.mesh.quaternion));
camera.position.lerp(targetPosition, 0.05);
camera.lookAt(targetCar.mesh.position);
} else { // Overview
camera.position.lerp(new THREE.Vector3(0, 200, 200), 0.02);
camera.lookAt(0, 0, 0);
}
}
function updateUI() {
const stats = window.populationStats || {};
document.getElementById('epoch').textContent = epoch;
document.getElementById('epochTime').textContent = Math.ceil(timeLeft);
document.getElementById('timeProgress').style.width = `${((epochTime - timeLeft) / epochTime) * 100}%`;
document.getElementById('population').textContent = stats.alive || 0;
document.getElementById('bestFitness').textContent = Math.round(bestFitness);
document.getElementById('trafficIQ').textContent = Math.round(50 + (bestFitness / 50)); // Scaled IQ
document.getElementById('roadMastery').textContent = stats.alive > 0 ? Math.round((stats.totalRoadTime / stats.alive) / epochTime * 100) : 0;
document.getElementById('crashCount').textContent = crashCount;
document.getElementById('parkingEvents').textContent = parkingEvents; // Global counter
document.getElementById('laneViolations').textContent = laneViolations; // Global counter
document.getElementById('leaderCount').textContent = stats.leaders || 0;
document.getElementById('convoyCount').textContent = stats.convoy || 0;
document.getElementById('parkedCount').textContent = stats.parked || 0;
document.getElementById('soloCount').textContent = stats.solo || 0;
document.getElementById('largestConvoy').textContent = stats.maxConvoySize || 0;
// Update building bar graphs
world.buildings.forEach(buildingData => {
if (buildingData.barGraphMesh) {
const scaleY = Math.max(0.1, buildingData.visitorCount * 2); // Scale factor for bar height
buildingData.barGraphMesh.scale.y = scaleY;
// Adjust y position so it grows upwards from its base
buildingData.barGraphMesh.position.y = buildingData.height + 0.1 + 3 + (scaleY / 2) * buildingData.barGraphMesh.geometry.parameters.height;
}
});
updateTopPerformersDisplay(); // Separate function for clarity
}
function updateTopPerformersDisplay() {
const sorted = [...population].filter(car => !car.crashed).sort((a, b) => b.fitness - a.fitness).slice(0, 5);
const topPerformersDiv = document.getElementById('topPerformers');
topPerformersDiv.innerHTML = '';
sorted.forEach((car, i) => {
const div = document.createElement('div');
div.innerHTML = `${i + 1}. F:${Math.round(car.fitness)} Role:${car.role}`;
topPerformersDiv.appendChild(div);
});
}
function setupEventListeners() {
document.getElementById('pauseBtn').addEventListener('click', () => { paused = !paused; document.getElementById('pauseBtn').textContent = paused ? 'Resume' : 'Pause'; });
document.getElementById('resetBtn').addEventListener('click', resetSimulation);
document.getElementById('speedBtn').addEventListener('click', () => { speedMultiplier = speedMultiplier === 1 ? 2 : speedMultiplier === 2 ? 5 : 1; document.getElementById('speedBtn').textContent = `Speed: ${speedMultiplier}x`; });
document.getElementById('viewBtn').addEventListener('click', () => {
const modes = ['overview', 'follow_best', 'follow_convoy'];
cameraMode = modes[(modes.indexOf(cameraMode) + 1) % modes.length];
document.getElementById('viewBtn').textContent = `View: ${cameraMode.replace('_', ' ').replace(/\b\w/g, l => l.toUpperCase())}`;
});
document.getElementById('flockBtn').addEventListener('click', () => {
showFlockLines = !showFlockLines;
document.getElementById('flockBtn').textContent = `Networks: ${showFlockLines ? 'ON' : 'OFF'}`;
world.flockLines.forEach(line => line.visible = showFlockLines); // Global flock lines (if any)
population.forEach(car => car.flockLines.forEach(line => line.visible = showFlockLines && (line.parent === scene))); // Car-specific lines
});
document.getElementById('trafficBtn').addEventListener('click', () => { /* trafficRules toggle, might affect AI behavior if implemented */ });
// Manual control listeners
document.addEventListener('keydown', (event) => {
if (manuallyControlledCar && cameraMode === 'follow_best') {
if (event.key === 'w' || event.key === 'W') manualControls.W = true;
if (event.key === 's' || event.key === 'S') manualControls.S = true;
if (event.key === 'a' || event.key === 'A') manualControls.A = true;
if (event.key === 'd' || event.key === 'D') manualControls.D = true;
}
});
document.addEventListener('keyup', (event) => {
if (manuallyControlledCar && cameraMode === 'follow_best') {
if (event.key === 'w' || event.key === 'W') manualControls.W = false;
if (event.key === 's' || event.key === 'S') manualControls.S = false;
if (event.key === 'a' || event.key === 'A') manualControls.A = false;
if (event.key === 'd' || event.key === 'D') manualControls.D = false;
}
});
}
function resetSimulation() {
epoch = 1; timeLeft = epochTime; bestFitness = 0; crashCount = 0; parkingEvents = 0; laneViolations = 0;
population.forEach(car => car.destroy()); // Proper cleanup
// Clear building visitor counts and bar graphs
world.buildings.forEach(buildingData => {
buildingData.visitorCount = 0;
if (buildingData.barGraphMesh) {
buildingData.barGraphMesh.scale.y = 0.1;
buildingData.barGraphMesh.position.y = buildingData.height + 0.1 + 3 + (0.1 / 2) * buildingData.barGraphMesh.geometry.parameters.height;
}
});
world.parkingLots.forEach(lot => {
lot.spots.forEach(spot => { spot.occupied = false; spot.car = null; });
});
createInitialPopulation();
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
init();
</script>
</body>
</html>
|