import io import os import re import glob import textwrap import base64 import sys from datetime import datetime from pathlib import Path from contextlib import redirect_stdout import streamlit as st import pandas as pd from PIL import Image from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import letter from reportlab.lib.utils import ImageReader from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase.ttfonts import TTFont import mistune from gtts import gTTS # --- Helper Functions --- # ๐Ÿ—‘๏ธ Deletes a specified file and reruns the app. def delete_asset(path): """Safely deletes a file if it exists and reruns the Streamlit app.""" try: os.remove(path) except OSError as e: st.error(f"Error deleting file {path}: {e}") st.rerun() # ๐Ÿ“ฅ Gets text input from either a file upload or a text area. def get_text_input(file_uploader_label, accepted_types, text_area_label): """ Provides UI for uploading a text file or entering text manually. Returns the text content and a filename stem. """ md_text = "" stem = datetime.now().strftime('%Y%m%d_%H%M%S') uploaded_file = st.file_uploader(file_uploader_label, type=accepted_types) if uploaded_file: md_text = uploaded_file.getvalue().decode("utf-8") stem = Path(uploaded_file.name).stem else: md_text = st.text_area(text_area_label, height=200, value="## Your Markdown Here\n\nEnter your markdown text, or upload a file.") # Convert markdown to plain text for processing renderer = mistune.HTMLRenderer() markdown = mistune.create_markdown(renderer=renderer) html = markdown(md_text or "") plain_text = re.sub(r'<[^>]+>', '', html) return plain_text, stem # ๐Ÿ—ฃ๏ธ Generates an MP3 voice file from text using gTTS. def generate_voice_file(text, lang, is_slow, filename): """ Creates an MP3 from text, saves it, and provides it for playback and download. """ if not text.strip(): st.warning("No text to generate voice from.") return voice_file_path = f"{filename}.mp3" try: tts = gTTS(text=text, lang=lang, slow=is_slow) tts.save(voice_file_path) st.audio(voice_file_path) with open(voice_file_path, 'rb') as fp: st.download_button("๐Ÿ“ฅ Download MP3", data=fp, file_name=voice_file_path, mime="audio/mpeg") except Exception as e: st.error(f"Failed to generate audio: {e}") # ๐Ÿ“„ Creates a PDF document from text and images. def generate_pdf(text_content, images, pdf_params): """ Generates a PDF buffer from text and a list of images based on specified parameters. """ buf = io.BytesIO() # --- Register Custom Fonts --- for font_path in pdf_params.get('ttf_files', []): try: font_name = Path(font_path).stem pdfmetrics.registerFont(TTFont(font_name, font_path)) except Exception as e: st.warning(f"Could not register font {font_path}: {e}") c = canvas.Canvas(buf) page_w, page_h = letter margin = 40 gutter = 20 col_w = (page_w - 2 * margin - (pdf_params['columns'] - 1) * gutter) / pdf_params['columns'] # Use registered font name, which is the stem of the file path font_name_to_use = Path(pdf_params['font_family']).stem if ".ttf" in pdf_params['font_family'] else pdf_params['font_family'] c.setFont(font_name_to_use, pdf_params['font_size']) line_height = pdf_params['font_size'] * 1.2 # Estimate characters per line for wrapping # 0.6 is a common factor for average character width vs font size wrap_width = int(col_w / (pdf_params['font_size'] * 0.6)) if pdf_params['font_size'] > 0 else 50 y = page_h - margin col_idx = 0 # --- Render Text --- for paragraph in text_content.split("\n"): wrapped_lines = textwrap.wrap(paragraph, wrap_width) if paragraph.strip() else [""] for line in wrapped_lines: if y < margin: col_idx += 1 if col_idx >= pdf_params['columns']: c.showPage() c.setFont(font_name_to_use, pdf_params['font_size']) col_idx = 0 y = page_h - margin x = margin + col_idx * (col_w + gutter) c.drawString(x, y, line) y -= line_height y -= line_height # Add extra space for paragraph breaks # --- Render Images --- for img_file in images: try: # Handle both file paths and uploaded file objects img = Image.open(img_file) w, h = img.size c.showPage() c.setPageSize((w, h)) c.drawImage(ImageReader(img), 0, 0, w, h, preserveAspectRatio=True, mask='auto') except Exception as e: img_name = img_file.name if hasattr(img_file, 'name') else img_file st.warning(f"Could not process image {img_name}: {e}") continue c.save() buf.seek(0) return buf # ๐Ÿ—‚๏ธ Displays a list of generated assets with download/delete options. def show_asset_manager(): """Scans for local files and displays them with management controls.""" st.markdown("---") st.subheader("๐Ÿ“‚ Available Assets") assets = sorted(glob.glob("*.*")) if not assets: st.info("No assets generated yet.") return for asset_path in assets: # Avoid showing the script itself if asset_path.endswith('.py'): continue ext = Path(asset_path).suffix.lower() cols = st.columns([3, 1, 1]) cols[0].write(f"`{asset_path}`") try: with open(asset_path, 'rb') as fp: file_bytes = fp.read() if ext == '.pdf': cols[1].download_button("๐Ÿ“ฅ", data=file_bytes, file_name=asset_path, mime="application/pdf", key=f"dl_{asset_path}") elif ext == '.mp3': cols[1].audio(file_bytes) elif ext in ['.png', '.jpg', '.jpeg']: cols[1].image(file_bytes, width=60) except Exception as e: cols[1].error("Error") cols[2].button("๐Ÿ—‘๏ธ", key=f"del_{asset_path}", on_click=delete_asset, args=(asset_path,)) # ๐Ÿงฉ Shows a demo of how to use the functions with file lists def show_batch_processing_demo(pdf_params): """Finds local files and shows how to process them.""" st.markdown("---") st.subheader("๐Ÿงฉ Batch Processing Demo") st.info("This section demonstrates how you could call the PDF generation function programmatically with lists of files.") md_files = glob.glob("*.md") img_files = glob.glob("*.png") + glob.glob("*.jpg") if not md_files or not img_files: st.warning("To run the demo, please ensure there is at least one `.md` file and one image (`.png`/`.jpg`) in the directory.") return st.write("Found the following files to use for the demo:") st.write(f"**Markdown file:** `{md_files[0]}`") st.write(f"**Image files:** `{', '.join(img_files)}`") if st.button("๐Ÿงช Run Demo with Above Files"): md_file_str = md_files[0] img_files_str = ",".join(img_files) # --- Example of programmatic execution --- # 1. Read the markdown file with open(md_file_str, 'r') as f: text_content = f.read() # 2. Open the image files (generate_pdf expects file-like objects or paths) image_objects = img_files # Pass paths directly # 3. Call the generator function pdf_buffer = generate_pdf(text_content, image_objects, pdf_params) # 4. Provide for download st.download_button( "โฌ‡๏ธ Download Batch Demo PDF", data=pdf_buffer, file_name="batch_demo_output.pdf", mime="application/pdf" ) st.success("Batch demo PDF generated!") # ๐Ÿ Renders the entire UI and logic for the Python code interpreter. def render_code_interpreter(): """Sets up the UI and execution logic for the code interpreter tab.""" st.header("๐Ÿงช Python Code Executor & Demo") # --- Nested Helper Functions for this Tab --- def extract_python_code(md_text): return re.findall(r"```python\s*(.*?)```", md_text, re.DOTALL) def execute_code(code_str): output_buffer = io.StringIO() try: # The exec function will have access to globally imported libraries exec_globals = { "st": st, "glob": glob, "base64": base64, "io": io, "canvas": canvas, "letter": letter } with redirect_stdout(output_buffer): exec(code_str, exec_globals) return output_buffer.getvalue(), None except Exception as e: return None, str(e) # --- Main Logic for the Tab --- DEFAULT_CODE = """ import streamlit as st import glob import base64 import io from reportlab.pdfgen import canvas from reportlab.lib.pagesizes import letter st.title("๐Ÿ“Š Enhanced Demo App") st.markdown("This demo shows file galleries and base64 PDF downloads.") # --- Image Gallery --- with st.expander("๐Ÿ–ผ๏ธ Show Image Files in Directory"): image_files = glob.glob("*.png") + glob.glob("*.jpg") if not image_files: st.write("No image files found.") else: st.image(image_files) # --- PDF Gallery --- with st.expander("๐Ÿ“„ Show PDF Files in Directory"): pdf_files = glob.glob("*.pdf") if not pdf_files: st.write("No PDF files found.") else: st.write(pdf_files) # --- PDF Generation and Download --- if st.button("Generate Demo PDF & Download Link"): # 1. Create PDF in memory buffer = io.BytesIO() p = canvas.Canvas(buffer, pagesize=letter) p.drawString(100, 750, "This is a demo PDF generated from the code interpreter.") p.showPage() p.save() # 2. Encode PDF to Base64 b64 = base64.b64encode(buffer.getvalue()).decode() # 3. Create download link href = f'Download Generated PDF' st.markdown(href, unsafe_allow_html=True) st.success("PDF generated! Click the link above to download.") """ if 'code' not in st.session_state: st.session_state.code = DEFAULT_CODE uploaded_file = st.file_uploader("Upload .py or .md", type=['py', 'md'], key="code_uploader") if uploaded_file: file_content = uploaded_file.getvalue().decode() if uploaded_file.type == 'text/markdown': codes = extract_python_code(file_content) st.session_state.code = codes[0] if codes else '' else: st.session_state.code = file_content st.session_state.code = st.text_area("๐Ÿ’ป Code Editor", value=st.session_state.code, height=400) c1, c2 = st.columns(2) if c1.button("โ–ถ๏ธ Run Code", use_container_width=True): output, err = execute_code(st.session_state.code) st.subheader("Output") if err: st.error(err) if output: # Show output even if empty, to confirm it ran st.code(output, language='text') if not err: st.success("Executed successfully.") if c2.button("๐Ÿ—‘๏ธ Clear Code", use_container_width=True): st.session_state.code = '' st.rerun() # --- Main App --- def main(): """Main function to run the Streamlit application.""" st.set_page_config(page_title="PDF & Code Interpreter", layout="wide", page_icon="๐Ÿš€") tab1, tab2 = st.tabs(["๐Ÿ“„ PDF Composer", "๐Ÿงช Code Interpreter"]) with tab1: st.header("๐Ÿ“„ PDF Composer & Voice Generator ๐Ÿš€") # --- Sidebar Controls --- st.sidebar.title("PDF Settings") # --- Dynamic Font Loading --- ttf_files = glob.glob("*.ttf") standard_fonts = ["Helvetica", "Times-Roman", "Courier"] available_fonts = ttf_files + standard_fonts default_font_index = 0 if ttf_files else 0 # Default to first ttf or Helvetica pdf_params = { 'columns': st.sidebar.slider("Text columns", 1, 3, 1), 'font_family': st.sidebar.selectbox("Font", available_fonts, index=default_font_index), 'font_size': st.sidebar.slider("Font size", 6, 48, 12), 'ttf_files': ttf_files } # --- Main UI --- plain_text, filename_stem = get_text_input( "Upload Markdown (.md)", ["md"], "Or enter markdown text directly" ) st.subheader("๐Ÿ—ฃ๏ธ Voice Generation") languages = {"English (US)": "en", "English (UK)": "en-uk", "Spanish": "es"} voice_choice = st.selectbox("Voice Language", list(languages.keys())) slow_speech = st.checkbox("Slow Speech") if st.button("๐Ÿ”Š Generate Voice MP3"): generate_voice_file(plain_text, languages[voice_choice], slow_speech, filename_stem) st.subheader("๐Ÿ–ผ๏ธ Image Upload") uploaded_images = st.file_uploader( "Upload Images for PDF", type=["png", "jpg", "jpeg"], accept_multiple_files=True ) ordered_images = [] if uploaded_images: df_imgs = pd.DataFrame([{"name": f.name, "order": i} for i, f in enumerate(uploaded_images)]) edited_df = st.data_editor(df_imgs, use_container_width=True, key="img_order_editor") image_map = {f.name: f for f in uploaded_images} for _, row in edited_df.sort_values("order").iterrows(): if row['name'] in image_map: ordered_images.append(image_map[row['name']]) st.subheader("๐Ÿ–‹๏ธ PDF Generation") if st.button("Generate PDF from UI"): if not plain_text.strip() and not ordered_images: st.warning("Please provide some text or images to generate a PDF.") else: pdf_buffer = generate_pdf(plain_text, ordered_images, pdf_params) st.download_button( "โฌ‡๏ธ Download PDF", data=pdf_buffer, file_name=f"{filename_stem}.pdf", mime="application/pdf" ) show_asset_manager() show_batch_processing_demo(pdf_params) with tab2: render_code_interpreter() if __name__ == "__main__": main()