awacke1's picture
Update app.py
591223b verified
raw
history blame
6.09 kB
import gradio as gr
import random
import time
from datetime import datetime
import tempfile
import os
from moviepy.editor import ImageClip, concatenate_videoclips
from gradio_client import Client
from PIL import Image
import edge_tts
import asyncio
import warnings
import numpy as np
warnings.filterwarnings('ignore')
# Initialize Gradio clients with public demo spaces
def initialize_clients():
try:
# Use a simpler public demo space
image_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
return image_client
except Exception as e:
print(f"Error initializing clients: {str(e)}")
return None
if gr.NO_RELOAD:
# Initialize client in NO_RELOAD block to prevent multiple initializations
CLIENT = initialize_clients()
STORY_GENRES = [
"Science Fiction",
"Fantasy",
"Mystery",
"Romance",
"Horror",
"Adventure",
"Historical Fiction",
"Comedy"
]
STORY_STRUCTURES = {
"Three Act": "Setup (Introduction, Inciting Incident) -> Confrontation (Rising Action, Climax) -> Resolution (Falling Action, Conclusion)",
"Hero's Journey": "Ordinary World -> Call to Adventure -> Trials -> Transformation -> Return",
"Five Act": "Exposition -> Rising Action -> Climax -> Falling Action -> Resolution",
"Seven Point": "Hook -> Plot Turn 1 -> Pinch Point 1 -> Midpoint -> Pinch Point 2 -> Plot Turn 2 -> Resolution"
}
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech from text using edge-tts"""
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"Error in text2speech: {str(e)}")
return None
def generate_story_prompt(base_prompt, genre, structure):
"""Generate an expanded story prompt based on genre and structure"""
prompt = f"""Create a {genre} story using this concept: '{base_prompt}'
Follow this structure: {STORY_STRUCTURES[structure]}
Include vivid descriptions and sensory details.
Make it engaging and suitable for visualization.
Keep each scene description clear and detailed enough for image generation.
Limit the story to 5-7 key scenes.
"""
return prompt
def generate_story(prompt, model_choice):
"""Generate story using specified model"""
try:
if CLIENT is None:
return "Error: Story generation service is not available."
result = CLIENT.predict(
prompt,
model_choice,
True,
api_name="/ask_llm"
)
return result
except Exception as e:
return f"Error generating story: {str(e)}"
def process_story(story_text, num_scenes=5):
"""Break story into scenes for visualization"""
if not story_text:
return []
sentences = story_text.split('.')
scenes = []
scene_length = max(1, len(sentences) // num_scenes)
for i in range(0, len(sentences), scene_length):
scene = '. '.join(sentences[i:i+scene_length]).strip()
if scene:
scenes.append(scene)
return scenes[:num_scenes]
def story_generator_interface(prompt, genre, structure, model_choice, num_scenes, words_per_scene):
"""Main story generation and multimedia creation function"""
try:
# Generate expanded prompt
story_prompt = generate_story_prompt(prompt, genre, structure)
# Generate story
story = generate_story(story_prompt, model_choice)
if story.startswith("Error"):
return story, None, None, None
# Generate speech
audio_path = asyncio.run(generate_speech(story))
return story, None, audio_path, None
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
return error_msg, None, None, None
# Create Gradio interface
with gr.Blocks(title="AI Story Generator") as demo:
gr.Markdown("# ๐ŸŽญ AI Story Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Story Concept",
placeholder="Enter your story idea...",
lines=3
)
genre_input = gr.Dropdown(
label="Genre",
choices=STORY_GENRES,
value="Fantasy"
)
structure_input = gr.Dropdown(
label="Story Structure",
choices=list(STORY_STRUCTURES.keys()),
value="Three Act"
)
model_choice = gr.Dropdown(
label="Model",
choices=["mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2"],
value="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
num_scenes = gr.Slider(
label="Number of Scenes",
minimum=3,
maximum=7,
value=5,
step=1
)
words_per_scene = gr.Slider(
label="Words per Scene",
minimum=20,
maximum=100,
value=50,
step=10
)
generate_btn = gr.Button("Generate Story")
with gr.Row():
with gr.Column():
story_output = gr.Textbox(
label="Generated Story",
lines=10,
interactive=False # Changed from readonly to interactive=False
)
with gr.Row():
audio_output = gr.Audio(label="Story Narration")
generate_btn.click(
fn=story_generator_interface,
inputs=[prompt_input, genre_input, structure_input, model_choice, num_scenes, words_per_scene],
outputs=[story_output, None, audio_output, None] # Set image and video outputs to None for now
)
if __name__ == "__main__":
demo.launch(reload=True)